
GROMACS
Groningen Machine for Chemical Simulations

USER MANUAL
Version 4.0

GROMACS
USER MANUAL

Version 4.0

David van der Spoel, Erik Lindahl, Berk Hess

Carsten Kutzner
Aldert R. van Buuren

Emile Apol
Pieter J. Meulenhoff
D. Peter Tieleman

Alfons L.T.M. Sijbers
K. Anton Feenstra
Rudi van Drunen

Herman J.C. Berendsen

c© 1991–2000: Department of Biophysical Chemistry, University of Groningen. Nijenborgh 4,
9747 AG Groningen, The Netherlands.

c© 2001–2006: The GROMACS development team.

More information can be found on our website: www.gromacs.org.

http://www.gromacs.org

iv

Preface & Disclaimer

This manual is not complete and has no pretention to be so due to lack of time of the contributors
– our first priority is to improve the software. It is worked on continuously, which in some cases
might mean the information is not entirely correct.

Comments are welcome, please send them by e-mail to gromacs@gromacs.org, or to one of the
mailing lists (see www.gromacs.org).

We try to release an updated version of the manual whenever we release a new version of the soft-
ware, so in general it is a good idea to use a manual with the same major and minor release number
as your GROMACS installation. Any revision numbers (like 3.1.1) are however independent, to
make it possible to implement bugfixes and manual improvements if necessary.

Online Resources

You can find more documentation and other material at our homepage www.gromacs.org. Among
other things there is an online reference, several GROMACS mailing lists with archives and con-
tributed topologies/force fields.

Citation information

When citing this document in any scientific publication please refer to it as:

D. van der Spoel, E. Lindahl, B. Hess, A. R. van Buuren, E. Apol, P. J. Meulenhoff,
D. P. Tieleman, A. L. T. M. Sijbers, K. A. Feenstra, R. van Drunen and H. J. C.
Berendsen, Gromacs User Manual version 4.0, www.gromacs.org (2005)

However, we prefer that you cite (some of) the GROMACS papers [1, 2, 3, 4] when you publish
your results. Any future development depends on academic research grants, since the package is
distributed as free software!

Current development

Gromacs is a joint effort, with contributions from lots of developers around the world. The core
development is currently taking place at

• Department of Cellular and Molecular Biology, Uppsala University, Sweden.
(David van der Spoel).

• Stockholm Bioinformatics Center, Stockholm University, Sweden
(Erik Lindahl).

• Max Planck Institute for Polymer Research, Mainz, Germany
(Berk Hess)

mailto:gromacs@gromacs.org
http://www.gromacs.org
http://www.gromacs.org
http://www.gromacs.org

v

GROMACS is Free Software

The entire GROMACS package is available under the GNU General Public License. This means
it’s free as in free speech, not just that you can use it without paying us money. For details, check
the COPYING file in the source code or consult www.gnu.org/copyleft/gpl.html.

The GROMACS source code and and selected set of binary packages are available on our home-
page, www.gromacs.org. Have fun.

http://www.gnu.org/copyleft/gpl.html
http://www.gromacs.org

vi

Contents

1 Introduction 1

1.1 Computational Chemistry and Molecular Modeling 1

1.2 Molecular Dynamics Simulations . 2

1.3 Energy Minimization and Search Methods . 5

2 Definitions and Units 7

2.1 Notation . 7

2.2 MD units . 7

2.3 Reduced units . 9

3 Algorithms 11

3.1 Introduction . 11

3.2 Periodic boundary conditions . 11

3.2.1 Some useful box types . 13

3.2.2 Cutoff restrictions . 14

3.3 The group concept . 14

3.4 Molecular Dynamics . 15

3.4.1 Initial conditions . 17

3.4.2 Neighbor searching . 18

3.4.3 Compute forces . 20

3.4.4 Update configuration . 22

3.4.5 Temperature coupling . 22

3.4.6 Pressure coupling . 25

3.4.7 Output step . 29

3.5 Shell molecular dynamics . 29

3.5.1 Optimization of the shell positions . 29

viii Contents

3.6 Constraint algorithms . 30

3.6.1 SHAKE . 30

3.6.2 LINCS . 31

3.7 Simulated Annealing . 33

3.8 Stochastic Dynamics . 34

3.9 Brownian Dynamics . 34

3.10 Energy Minimization . 35

3.10.1 Steepest Descent . 35

3.10.2 Conjugate Gradient . 35

3.10.3 L-BFGS . 36

3.11 Normal Mode Analysis . 36

3.12 Free energy calculations . 37

3.13 Replica exchange . 39

3.14 Essential Dynamics Sampling . 40

3.15 Parallelization . 41

3.16 Particle decomposition . 41

3.17 Domain decomposition . 41

3.17.1 Coordinate and force communication 42

3.17.2 Dynamic load balancing . 42

3.17.3 Constraints in parallel . 43

3.17.4 Interaction ranges . 44

3.17.5 Multiple-Program, Multiple-Data PME parallelization 45

3.17.6 Domain decomposition flow chart . 46

4 Interaction function and force field 49

4.1 Non-bonded interactions . 49

4.1.1 The Lennard-Jones interaction . 50

4.1.2 Buckingham potential . 51

4.1.3 Coulomb interaction . 51

4.1.4 Coulomb interaction with reaction field 52

4.1.5 Modified non-bonded interactions . 53

4.1.6 Modified short-range interactions with Ewald summation 55

4.2 Bonded interactions . 55

4.2.1 Bond stretching . 56

Contents ix

4.2.2 Morse potential bond stretching . 57

4.2.3 Cubic bond stretching potential . 57

4.2.4 FENE bond stretching potential . 58

4.2.5 Harmonic angle potential . 58

4.2.6 Cosine based angle potential . 59

4.2.7 Urey-Bradley potential . 60

4.2.8 Bond-Bond cross term . 60

4.2.9 Bond-Angle cross term . 60

4.2.10 Quartic angle potential . 60

4.2.11 Improper dihedrals . 61

4.2.12 Proper dihedrals . 61

4.2.13 Tabulated interaction functions . 64

4.3 Restraints . 64

4.3.1 Position restraints . 64

4.3.2 Angle restraints . 65

4.3.3 Dihedral restraints . 66

4.3.4 Distance restraints . 66

4.3.5 Orientation restraints . 70

4.4 Polarization . 74

4.4.1 Simple polarization . 74

4.4.2 Water polarization . 74

4.4.3 Thole polarization . 74

4.5 Free energy interactions . 75

4.5.1 Soft-core interactions . 77

4.6 Methods . 79

4.6.1 Exclusions and 1-4 Interactions. 79

4.6.2 Charge Groups. 79

4.6.3 Treatment of Cutoffs . 80

4.7 Virtual interaction-sites . 80

4.8 Dispersion correction . 84

4.8.1 Energy . 84

4.8.2 Virial and pressure . 85

4.9 Long Range Electrostatics . 86

4.9.1 Ewald summation . 86

x Contents

4.9.2 PME . 87

4.9.3 PPPM . 87

4.9.4 Optimizing Fourier transforms . 88

4.10 Force field . 89

4.10.1 GROMOS87 . 89

4.10.2 GROMOS-96 . 90

4.10.3 OPLS/AA . 91

4.10.4 Amber . 91

4.10.5 CHARMM . 91

4.10.6 Martini . 91

5 Topologies 93

5.1 Introduction . 93

5.2 Particle type . 93

5.2.1 Atom types . 94

5.2.2 Virtual sites . 95

5.3 Parameter files . 96

5.3.1 Atoms . 96

5.3.2 Bonded parameters . 96

5.3.3 Non-bonded parameters . 98

5.3.4 Pair interactions . 98

5.4 Exclusions . 99

5.5 Constraints . 100

5.6 Databases . 100

5.6.1 Residue database . 100

5.6.2 Hydrogen database . 102

5.6.3 Termini database . 104

5.7 File formats . 106

5.7.1 Topology file . 106

5.7.2 Molecule.itp file . 113

5.7.3 Ifdef option . 115

5.7.4 Topologies for free energy calculations 116

5.7.5 Constraint force . 118

5.7.6 Coordinate file . 119

Contents xi

5.8 Force-field organization . 120

5.8.1 Force-field files . 120

5.8.2 Changing force-field parameters . 120

5.8.3 Adding atom types . 121

6 Special Topics 123

6.1 Potential of mean force . 123

6.2 Non-equilibrium pulling . 124

6.3 The pull code . 124

6.4 Calculating a PMF using the free-energy code 126

6.5 Removing fastest degrees of freedom . 127

6.5.1 Hydrogen bond-angle vibrations . 128

6.5.2 Out-of-plane vibrations in aromatic groups 130

6.6 Viscosity calculation . 130

6.7 Tabulated interaction functions . 132

6.7.1 Cubic splines for potentials . 132

6.7.2 User specified potential functions . 133

6.8 Mixed Quantum-Classical simulation techniques 134

6.8.1 Overview . 134

6.8.2 Usage . 135

6.8.3 Output . 137

6.8.4 Future developments . 137

7 Run parameters and Programs 139

7.1 Online and html manuals . 139

7.2 File types . 139

7.3 Run Parameters . 141

7.3.1 General . 141

7.3.2 Preprocessing . 141

7.3.3 Run control . 141

7.3.4 Langevin dynamics . 143

7.3.5 Energy minimization . 144

7.3.6 Shell Molecular Dynamics . 144

7.3.7 Test particle insertion . 145

7.3.8 Output control . 145

xii Contents

7.3.9 Neighbor searching . 145

7.3.10 Electrostatics . 147

7.3.11 VdW . 149

7.3.12 Tables . 150

7.3.13 Ewald . 151

7.3.14 Temperature coupling . 152

7.3.15 Pressure coupling . 152

7.3.16 Simulated annealing . 154

7.3.17 Velocity generation . 155

7.3.18 Bonds . 155

7.3.19 Energy group exclusions . 157

7.3.20 Walls . 157

7.3.21 COM pulling . 158

7.3.22 NMR refinement . 160

7.3.23 Free energy calculations . 162

7.3.24 Non-equilibrium MD . 163

7.3.25 Electric fields . 164

7.3.26 Mixed quantum/classical molecular dynamics 164

7.3.27 User defined thingies . 165

7.4 Programs by topic . 166

8 Analysis 171

8.1 Groups in Analysis. 171

8.1.1 Default Groups . 172

8.2 Looking at your trajectory . 173

8.3 General properties . 174

8.4 Radial distribution functions . 174

8.5 Correlation functions . 176

8.5.1 Theory of correlation functions . 176

8.5.2 Using FFT for computation of the ACF 177

8.5.3 Special forms of the ACF . 177

8.5.4 Some Applications . 177

8.6 Mean Square Displacement . 178

8.7 Bonds, angles and dihedrals . 178

Contents xiii

8.8 Radius of gyration and distances . 180

8.9 Root mean square deviations in structure . 181

8.10 Covariance analysis . 182

8.11 Dihedral principal component analysis . 184

8.12 Hydrogen bonds . 184

8.13 Protein related items . 186

8.14 Interface related items . 188

8.15 Chemical shifts . 188

A Technical Details 191

A.1 Installation . 191

A.2 Single or Double precision . 191

A.3 Porting GROMACS . 192

A.3.1 Multi-processor Optimization . 192

A.4 Environment Variables . 193

A.5 Running GROMACS in parallel . 194

B Some implementation details 195

B.1 Single Sum Virial in GROMACS. 195

B.1.1 Virial. 195

B.1.2 Virial from non-bonded forces. 196

B.1.3 The intramolecular shift (mol-shift). 196

B.1.4 Virial from Covalent Bonds. 197

B.1.5 Virial from Shake. 198

B.2 Optimizations . 198

B.2.1 Inner Loops for Water . 198

B.2.2 Fortran Code . 199

B.3 Computation of the 1.0/sqrt function. 199

B.3.1 Introduction. 199

B.3.2 General . 199

B.3.3 Applied to floating point numbers . 200

B.3.4 Specification of the lookup table . 201

B.3.5 Separate exponent and fraction computation 202

B.3.6 Implementation . 203

B.4 Modifying GROMACS . 203

xiv Contents

C Averages and fluctuations 205

C.1 Formulae for averaging . 205

C.2 Implementation . 206

C.2.1 Part of a Simulation . 207

C.2.2 Combining two simulations . 207

C.2.3 Summing energy terms . 208

D Manual Pages 211

D.1 options . 211

D.2 anadock . 212

D.3 do dssp . 212

D.4 editconf . 213

D.5 eneconv . 215

D.6 g anaeig . 215

D.7 g analyze . 217

D.8 g angle . 219

D.9 g bond . 220

D.10 g bundle . 221

D.11 g chi . 222

D.12 g cluster . 224

D.13 g clustsize . 225

D.14 g confrms . 226

D.15 g covar . 227

D.16 g current . 228

D.17 g density . 229

D.18 g densmap . 230

D.19 g dielectric . 231

D.20 g dih . 231

D.21 g dipoles . 232

D.22 g disre . 234

D.23 g dist . 235

D.24 g dyndom . 235

D.25 genbox . 236

D.26 genconf . 237

Contents xv

D.27 g enemat . 238

D.28 g energy . 239

D.29 genion . 240

D.30 genrestr . 241

D.31 g filter . 242

D.32 g gyrate . 243

D.33 g h2order . 243

D.34 g hbond . 244

D.35 g helix . 246

D.36 g helixorient . 247

D.37 g lie . 248

D.38 g mdmat . 248

D.39 g mindist . 249

D.40 g morph . 250

D.41 g msd . 250

D.42 gmxcheck . 251

D.43 gmxdump . 252

D.44 g nmeig . 253

D.45 g nmens . 253

D.46 g nmtraj . 254

D.47 g order . 254

D.48 g polystat . 255

D.49 g potential . 256

D.50 g principal . 256

D.51 g rama . 257

D.52 g rdf . 257

D.53 g rms . 258

D.54 g rmsdist . 260

D.55 g rmsf . 260

D.56 grompp . 261

D.57 g rotacf . 263

D.58 g saltbr . 264

D.59 g sas . 264

D.60 g sdf . 265

xvi Contents

D.61 g sgangle . 266

D.62 g sham . 267

D.63 g sorient . 268

D.64 g spatial . 269

D.65 g spol . 271

D.66 g tcaf . 271

D.67 g traj . 272

D.68 g vanhove . 274

D.69 g velacc . 275

D.70 g wham . 275

D.71 highway . 276

D.72 make edi . 276

D.73 make ndx . 278

D.74 mdrun . 279

D.75 mk angndx . 282

D.76 ngmx . 283

D.77 pdb2gmx . 283

D.78 protonate . 285

D.79 sigeps . 285

D.80 tpbconv . 286

D.81 trjcat . 287

D.82 trjconv . 287

D.83 trjorder . 290

D.84 wheel . 291

D.85 x2top . 291

D.86 xpm2ps . 292

D.87 xrama . 293

Bibliography 295

Index 303

Chapter 1

Introduction

1.1 Computational Chemistry and Molecular Modeling

GROMACS is an engine to perform molecular dynamics simulations and energy minimization.
These are two of the many techniques that belong to the realm of computational chemistry and
molecular modeling. Computational Chemistry is just a name to indicate the use of computational
techniques in chemistry, ranging from quantum mechanics of molecules to dynamics of large
complex molecular aggregates. Molecular modeling indicates the general process of describing
complex chemical systems in terms of a realistic atomic model, with the aim to understand and
predict macroscopic properties based on detailed knowledge on an atomic scale. Often molecular
modeling is used to design new materials, for which the accurate prediction of physical properties
of realistic systems is required.

Macroscopic physical properties can be distinguished in (a) static equilibrium properties, such as
the binding constant of an inhibitor to an enzyme, the average potential energy of a system, or
the radial distribution function in a liquid, and (b) dynamic or non-equilibrium properties, such
as the viscosity of a liquid, diffusion processes in membranes, the dynamics of phase changes,
reaction kinetics, or the dynamics of defects in crystals. The choice of technique depends on the
question asked and on the feasibility of the method to yield reliable results at the present state of
the art. Ideally, the (relativistic) time-dependent Schrödinger equation describes the properties of
molecular systems with high accuracy, but anything more complex than the equilibrium state of a
few atoms cannot be handled at this ab initio level. Thus approximations are necessary; the higher
the complexity of a system and the longer the time span of the processes of interest is, the more
severe the required approximations are. At a certain point (reached very much earlier than one
would wish) the ab initio approach must be augmented or replaced by empirical parameterization
of the model used. Where simulations based on physical principles of atomic interactions still
fail due to the complexity of the system molecular modeling is based entirely on a similarity
analysis of known structural and chemical data. The QSAR methods (Quantitative Structure-
Activity Relations) and many homology-based protein structure predictions belong to the latter
category.

Macroscopic properties are always ensemble averages over a representative statistical ensemble

2 Chapter 1. Introduction

(either equilibrium or non-equilibrium) of molecular systems. For molecular modeling this has
two important consequences:

• The knowledge of a single structure, even if it is the structure of the global energy min-
imum, is not sufficient. It is necessary to generate a representative ensemble at a given
temperature, in order to compute macroscopic properties. But this is not enough to compute
thermodynamic equilibrium properties that are based on free energies, such as phase equi-
libria, binding constants, solubilities, relative stability of molecular conformations, etc. The
computation of free energies and thermodynamic potentials requires special extensions of
molecular simulation techniques.

• While molecular simulations in principle provide atomic details of the structures and mo-
tions, such details are often not relevant for the macroscopic properties of interest. This
opens the way to simplify the description of interactions and average over irrelevant details.
The science of statistical mechanics provides the theoretical framework for such simpli-
fications. There is a hierarchy of methods ranging from considering groups of atoms as
one unit, describing motion in a reduced number of collective coordinates, averaging over
solvent molecules with potentials of mean force combined with stochastic dynamics [5],
to mesoscopic dynamics describing densities rather than atoms and fluxes as response to
thermodynamic gradients rather than velocities or accelerations as response to forces [6].

For the generation of a representative equilibrium ensemble two methods are available: (a) Monte
Carlo simulations and (b) Molecular Dynamics simulations. For the generation of non-equilibrium
ensembles and for the analysis of dynamic events, only the second method is appropriate. While
Monte Carlo simulations are more simple than MD (they do not require the computation of forces),
they do not yield significantly better statistics than MD in a given amount of computer time. There-
fore MD is the more universal technique. If a starting configuration is very far from equilibrium,
the forces may be excessively large and the MD simulation may fail. In those cases a robust en-
ergy minimization is required. Another reason to perform an energy minimization is the removal
of all kinetic energy from the system: if several ’snapshots’ from dynamic simulations must be
compared, energy minimization reduces the thermal noise in the structures and potential energies,
so that they can be compared better.

1.2 Molecular Dynamics Simulations

MD simulations solve Newton’s equations of motion for a system of N interacting atoms:

mi
∂2ri
∂t2

= F i, i = 1 . . . N. (1.1)

The forces are the negative derivatives of a potential function V (r1, r2, . . . , rN):

F i = −∂V
∂ri

(1.2)

The equations are solved simultaneously in small time steps. The system is followed for some
time, taking care that the temperature and pressure remain at the required values, and the coor-
dinates are written to an output file at regular intervals. The coordinates as a function of time

1.2. Molecular Dynamics Simulations 3

type of wavenumber
type of bond vibration (cm−1)
C-H, O-H, N-H stretch 3000–3500
C=C, C=O, stretch 1700–2000
HOH bending 1600
C-C stretch 1400–1600
H2CX sciss, rock 1000–1500
CCC bending 800–1000
O-H· · ·O libration 400– 700
O-H· · ·O stretch 50– 200

Table 1.1: Typical vibrational frequencies (wavenumbers) in molecules and hydrogen-bonded liq-
uids. Compare kT/h = 200 cm−1 at 300 K.

represent a trajectory of the system. After initial changes, the system will usually reach an equi-
librium state. By averaging over an equilibrium trajectory many macroscopic properties can be
extracted from the output file.

It is useful at this point to consider the limitations of MD simulations. The user should be aware
of those limitations and always perform checks on known experimental properties to assess the
accuracy of the simulation. We list the approximations below.

The simulations are classical
Using Newton’s equation of motion automatically implies the use of classical mechanics to
describe the motion of atoms. This is all right for most atoms at normal temperatures, but
there are exceptions. Hydrogen atoms are quite light and the motion of protons is sometimes
of essential quantum mechanical character. For example, a proton may tunnel through a
potential barrier in the course of a transfer over a hydrogen bond. Such processes cannot be
properly treated by classical dynamics! Helium liquid at low temperature is another example
where classical mechanics breaks down. While helium may not deeply concern us, the high
frequency vibrations of covalent bonds should make us worry! The statistical mechanics of a
classical harmonic oscillator differs appreciably from that of a real quantum oscillator, when
the resonance frequency ν approximates or exceeds kBT/h. Now at room temperature the
wavenumber σ = 1/λ = ν/c at which hν = kBT is approximately 200 cm−1. Thus all
frequencies higher than, say, 100 cm−1 may misbehave in classical simulations. This means
that practically all bond and bond-angle vibrations are suspect, and even hydrogen-bonded
motions as translational or librational H-bond vibrations are beyond the classical limit (see
Table 1.1). What can we do?

Well, apart from real quantum-dynamical simulations, we can do one of two things:
(a) If we perform MD simulations using harmonic oscillators for bonds, we should make
corrections to the total internal energyU = Ekin+Epot and specific heatCV (and to entropy
S and free energy A or G if those are calculated). The corrections to the energy and specific
heat of a one-dimensional oscillator with frequency ν are: [7]

UQM = U cl + kT

(
1
2
x− 1 +

x

ex − 1

)
(1.3)

4 Chapter 1. Introduction

CQMV = CclV + k

(
x2ex

(ex − 1)2
− 1

)
, (1.4)

where x = hν/kT . The classical oscillator absorbs too much energy (kT), while the high-
frequency quantum oscillator is in its ground state at the zero-point energy level of 1

2hν.
(b) We can treat the bonds (and bond angles) as constraints in the equation of motion. The
rational behind this is that a quantum oscillator in its ground state resembles a constrained
bond more closely than a classical oscillator. A good practical reason for this choice is
that the algorithm can use larger time steps when the highest frequencies are removed. In
practice the time step can be made four times as large when bonds are constrained than
when they are oscillators [8]. GROMACS has this option for the bonds and bond angles.
The flexibility of the latter is rather essential to allow for the realistic motion and coverage
of configurational space [8].

Electrons are in the ground state
In MD we use a conservative force field that is a function of the positions of atoms only.
This means that the electronic motions are not considered: the electrons are supposed to
adjust their dynamics instantly when the atomic positions change (the Born-Oppenheimer
approximation), and remain in their ground state. This is really all right, almost always. But
of course, electron transfer processes and electronically excited states can not be treated.
Neither can chemical reactions be treated properly, but there are other reasons to shy away
from reactions for the time being.

Force fields are approximate
Force fields provide the forces. They are not really a part of the simulation method and their
parameters can be user-modified as the need arises or knowledge improves. But the form
of the forces that can be used in a particular program is subject to limitations. The force
field that is incorporated in GROMACS is described in Chapter 4. In the present version
the force field is pair-additive (apart from long-range coulomb forces), it cannot incorporate
polarizabilities, and it does not contain fine-tuning of bonded interactions. This urges the
inclusion of some limitations in this list below. For the rest it is quite useful and fairly
reliable for bio macro-molecules in aqueous solution!

The force field is pair-additive
This means that all non-bonded forces result from the sum of non-bonded pair interactions.
Non pair-additive interactions, the most important example of which is interaction through
atomic polarizability, are represented by effective pair potentials. Only average non pair-
additive contributions are incorporated. This also means that the pair interactions are not
pure, i.e., they are not valid for isolated pairs or for situations that differ appreciably from the
test systems on which the models were parameterized. In fact, the effective pair potentials
are not that bad in practice. But the omission of polarizability also means that electrons in
atoms do not provide a dielectric constant as they should. For example, real liquid alkanes
have a dielectric constant of slightly more than 2, which reduce the long-range electrostatic
interaction between (partial) charges. Thus the simulations will exaggerate the long-range
Coulomb terms. Luckily, the next item compensates this effect a bit.

Long-range interactions are cutoff
In this version GROMACS always uses a cutoff radius for the Lennard-Jones interactions

1.3. Energy Minimization and Search Methods 5

and sometimes for the Coulomb interactions as well. Due to the minimum-image convention
(only one image of each particle in the periodic boundary conditions is considered for a pair
interaction), the cutoff range can not exceed half the box size. That is still pretty big for
large systems, and trouble is only expected for systems containing charged particles. But
then truly bad things can happen, like accumulation of charges at the cutoff boundary or
very wrong energies! For such systems you should consider using one of the implemented
long-range electrostatic algorithms, such as particle-mesh Ewald [9, 10].

Boundary conditions are unnatural
Since system size is small (even 10,000 particles is small), a cluster of particles will have a
lot of unwanted boundary with its environment (vacuum). This we must avoid if we wish
to simulate a bulk system. So we use periodic boundary conditions, to avoid real phase
boundaries. But liquids are not crystals, so something unnatural remains. This item is
mentioned last because it is the least of the evils. For large systems the errors are small,
but for small systems with a lot of internal spatial correlation, the periodic boundaries may
enhance internal correlation. In that case, beware and test the influence of system size. This
is especially important when using lattice sums for long-range electrostatics, since these are
known to sometimes introduce extra ordering.

1.3 Energy Minimization and Search Methods

As mentioned in sec. 1.1, in many cases energy minimization is required. GROMACS provides a
number of methods for local energy minimization, as detailed in sec. 3.10.

The potential energy function of a (macro)molecular system is a very complex landscape (or hyper
surface) in a large number of dimensions. It has one deepest point, the global minimum and a
very large number of local minima, where all derivatives of the potential energy function with
respect to the coordinates are zero and all second derivatives are nonnegative. The matrix of
second derivatives, which is called the Hessian matrix, has nonnegative eigenvalues; only the
collective coordinates that correspond to translation and rotation (for an isolated molecule) have
zero eigenvalues. In between the local minima there are saddle points, where the Hessian matrix
has only one negative eigenvalue. These points are the mountain passes through which the system
can migrate from one local minimum to another.

Knowledge of all local minima, including the global one, and of all saddle points would enable
us to describe the relevant structures and conformations and their free energies, as well as the
dynamics of structural transitions. Unfortunately, the dimensionality of the configurational space
and the number of local minima is so high that it is impossible to sample the space at a sufficient
number of points to obtain a complete survey. In particular, no minimization method exists that
guarantees the determination of the global minimum in any practical amount of time [Impractical
methods exist, some much faster than others [11]]. However, given a starting configuration, it
is possible to find the nearest local minimum. Nearest in this context does not always imply
nearest in a geometrical sense (i.e., the least sum of square coordinate differences), but means the
minimum that can be reached by systematically moving down the steepest local gradient. Finding
this nearest local minimum is all that GROMACS can do for you, sorry! If you want to find other
minima and hope to discover the global minimum in the process, the best advice is to experiment

6 Chapter 1. Introduction

with temperature-coupled MD: run your system at a high temperature for a while and then quench
it slowly down to the required temperature; do this repeatedly! If something as a melting or glass
transition temperature exists, it is wise to stay for some time slightly below that temperature and
cool down slowly according to some clever scheme, a process called simulated annealing. Since
no physical truth is required, you can use your imagination to speed up this process. One trick
that often works is to make hydrogen atoms heavier (mass 10 or so): although that will slow
down the otherwise very rapid motions of hydrogen atoms, it will hardly influence the slower
motions in the system while enabling you to increase the time step by a factor of 3 or 4. You can
also modify the potential energy function during the search procedure, e.g. by removing barriers
(remove dihedral angle functions or replace repulsive potentials by soft core potentials [12]), but
always take care to restore the correct functions slowly. The best search method that allows rather
drastic structural changes is to allow excursions into four-dimensional space [13], but this requires
some extra programming beyond the standard capabilities of GROMACS.

Three possible energy minimization methods are:

• Those that require only function evaluations. Examples are the simplex method and its
variants. A step is made on the basis of the results of previous evaluations. If derivative
information is available, such methods are inferior to those that use this information.

• Those that use derivative information. Since the partial derivatives of the potential energy
with respect to all coordinates are known in MD programs (these are equal to minus the
forces) this class of methods is very suitable as modification of MD programs.

• Those that use second derivative information as well. These methods are superior in their
convergence properties near the minimum: a quadratic potential function is minimized in
one step! The problem is that for N particles a 3N × 3N matrix must be computed, stored
and inverted. Apart from the extra programming to obtain second derivatives, for most
systems of interest this is beyond the available capacity. There are intermediate methods
building up the Hessian matrix on the fly, but they also suffer from excessive storage re-
quirements. So GROMACS will shy away from this class of methods.

The steepest descent method, available in GROMACS, is of the second class. It simply takes
a step in the direction of the negative gradient (hence in the direction of the force), without any
consideration of the history built up in previous steps. The step size is adjusted such that the search
is fast but the motion is always downhill. This is a simple and sturdy, but somewhat stupid, method:
its convergence can be quite slow, especially in the vicinity of the local minimum! The faster
converging conjugate gradient method (see e.g. [14]) uses gradient information from previous
steps. In general, steepest descents will bring you close to the nearest local minimum very quickly,
while conjugate gradients brings you very close to the local minimum, but performs worse far
away from the minimum. GROMACS also supports the L-BFGS minimizer, which is mostly
comparable to conjugate gradient method, but in some cases converges faster.

Chapter 2

Definitions and Units

2.1 Notation

The following conventions for mathematical typesetting are used throughout this document:
Item Notation Example
Vector Bold italic ri
Vector Length Italic ri

We define the lowercase subscripts i, j, k and l to denote particles: ri is the position vector of
particle i, and using this notation:

rij = rj − ri (2.1)

rij = |rij | (2.2)

The force on particle i is denoted by F i and

F ij = force on i exerted by j (2.3)

Please note that we changed notation as of ver. 2.0 to rij = rj − ri since this is the notation
commonly used. If you encounter an error, let us know.

2.2 MD units

GROMACS uses a consistent set of units that produce values in the vicinity of unity for most
relevant molecular quantities. Let us call them MD units. The basic units in this system are nm,
ps, K, electron charge (e) and atomic mass unit (u), see Table 2.1.

Consistent with these units are a set of derived units, given in Table 2.2.

The electric conversion factor f = 1
4πεo

= 138.935 485(9) kJ mol−1 nm e−2. It relates the
mechanical quantities to the electrical quantities as in

V = f
q2

r
or F = f

q2

r2
(2.4)

8 Chapter 2. Definitions and Units

Quantity Symbol Unit
length r nm = 10−9 m
mass m u (atomic mass unit) = 1.6605402(10)×10−27 kg

(1/12 the mass of a 12C atom)
1.6605402(10)× 10−27 kg

time t ps = 10−12 s
charge q e = electronic charge = 1.60217733(49)× 10−19 C
temperature T K

Table 2.1: Basic units used in GROMACS. Numbers in parentheses give accuracy.

Quantity Symbol Unit
energy E, V kJ mol−1

Force F kJ mol−1 nm−1

pressure p kJ mol−1 nm−3 = 1030/NAV Pa
1.660 54× 106 Pa = 16.6054 Bar

velocity v nm ps−1 = 1000 m/s
dipole moment µ e nm
electric potential Φ kJ mol−1 e−1 = 0.010 364 272(3) Volt
electric field E kJ mol−1 nm−1 e−1 = 1.036 427 2(3)× 107 V/m

Table 2.2: Derived units

Electric potentials Φ and electric fieldsE are intermediate quantities in the calculation of energies
and forces. They do not occur inside GROMACS. If they are used in evaluations, there is a choice
of equations and related units. We recommend strongly to follow the usual practice to include the
factor f in expressions that evaluate Φ and E:

Φ(r) = f
∑
j

qj
|r − rj |

(2.5)

E(r) = f
∑
j

qj
(r − rj)
|r − rj |3

(2.6)

With these definitions qΦ is an energy and qE is a force. The units are those given in Table 2.2:
about 10 mV for potential. Thus the potential of an electronic charge at a distance of 1 nm equals
f ≈ 140 units ≈ 1.4 V. (exact value: 1.439965 V)

Note that these units are mutually consistent; changing any of the units is likely to produce incon-
sistencies and is therefore strongly discouraged! In particular: if Å are used instead of nm, the unit
of time changes to 0.1 ps. If the kcal/mol (= 4.184 kJ/mol) is used instead of kJ/mol for energy,
the unit of time becomes 0.488882 ps and the unit of temperature changes to 4.184 K. But in both
cases all electrical energies go wrong, because they will still be computed in kJ/mol, expecting nm
as the unit of length. Although careful rescaling of charges may still yield consistency, it is clear
that such confusions must be rigidly avoided.

In terms of the MD units the usual physical constants take on different values, see Table 2.3. All
quantities are per mol rather than per molecule. There is no distinction between Boltzmann’s
constant k and the gas constant R: their value is 0.008 314 51 kJ mol−1 K−1.

2.3. Reduced units 9

Symbol Name Value
NAV Avogadro’s number 6.022 136 7(36)× 1023 mol−1

R gas constant 8.314 510(70)× 10−3 kJ mol−1 K−1

kB Boltzmann’s constant idem
h Planck’s constant 0.399 031 32(24) kJ mol−1 ps
h̄ Dirac’s constant 0.063 507 807(38) kJ mol−1 ps
c velocity of light 299 792.458 nm/ps

Table 2.3: Some Physical Constants

Quantity Symbol Relation to SI
Length r∗ r σ−1

Mass m∗ m M−1

Time t∗ t σ−1
√
ε/M

Temperature T∗ kBT ε−1

Energy E∗ E ε−1

Force F∗ F σ ε−1

Pressure P∗ P σ3ε−1

Velocity v∗ v
√
M/ε

Density ρ∗ N σ3 V −1

Table 2.4: Reduced Lennard-Jones quantities

2.3 Reduced units

When simulating Lennard-Jones (LJ) systems it might be advantageous to use reduced units (i.e.,
setting εii = σii = mi = kB = 1 for one type of atoms). This is possible. When specifying
the input in reduced units, the output will also be in reduced units. There is one exception: the
temperature, which is expressed in 0.008 314 51 reduced units. This is a consequence of the use
of Boltzmann’s constant in the evaluation of temperature in the code. Thus not T , but kBT is
the reduced temperature. A GROMACS temperature T = 1 means a reduced temperature of
0.008. . . units; if a reduced temperature of 1 is required, the GROMACS temperature should be
120.2717.

In Table 2.4 quantities are given for LJ potentials:

VLJ = 4ε

[(
σ

r

)12

−
(
σ

r

)6
]

(2.7)

10 Chapter 2. Definitions and Units

Chapter 3

Algorithms

3.1 Introduction

In this chapter we first give describe some general concepts used in GROMACS: periodic bound-
ary conditions (sec. 3.2) and the group concept (sec. 3.3). The MD algorithm is described in
sec. 3.4: first a global form of the algorithm is given, which is refined in subsequent subsections.
The (simple) EM (Energy Minimization) algorithm is described in sec. 3.10. Some other algo-
rithms for special purpose dynamics are described after this.

A few issues are of general interest. In all cases the system must be defined, consisting of
molecules. Molecules again consist of particles with defined interaction functions. The detailed
description of the topology of the molecules and of the force field and the calculation of forces is
given in chapter 4. In the present chapter we describe other aspects of the algorithm, such as pair
list generation, update of velocities and positions, coupling to external temperature and pressure,
conservation of constraints. The analysis of the data generated by an MD simulation is treated in
chapter 8.

3.2 Periodic boundary conditions

The classical way to minimize edge effects in a finite system is to apply periodic boundary condi-
tions. The atoms of the system to be simulated are put into a space-filling box, which is surrounded
by translated copies of itself (Fig. 3.1). Thus there are no boundaries of the system; the artifact
caused by unwanted boundaries in an isolated cluster is now replaced by the artifact of periodic
conditions. If a crystal is simulated, such boundary conditions are desired (although motions are
naturally restricted to periodic motions with wavelengths fitting into the box). If one wishes to
simulate non-periodic systems, as liquids or solutions, the periodicity by itself causes errors. The
errors can be evaluated by comparing various system sizes; they are expected to be less severe
than the errors resulting from an unnatural boundary with vacuum.

There are several possible shapes for space-filling unit cells. Some, as the rhombic dodecahedron
and the truncated octahedron [15] are closer to a sphere than a cube is and are therefore more

12 Chapter 3. Algorithms

j’ j’

i’ i’i’

i’

j’

i’ i’

y

x

y

x

j’ j’

i’

i’

i’i

j’

j’ j’j’

i’ii’

j’j’

j’

j

i’ i’i’

j’

i’ i’

j’

j’j’

j

Figure 3.1: Periodic boundary conditions in two dimensions.

economical for studying an (approximately spherical) macromolecule in solution, since fewer
solvent molecules are required to fill the box given a minimum distance between macromolecular
images. However, a periodic system based on the rhombic dodecahedron or truncated octahedron
is equivalent to a periodic system based on a triclinic unit cell. The latter shape is the most general
space-filling unit cell; it comprises all possible space-filling shapes [16]. Therefore GROMACS is
based on the triclinic unit cell.

GROMACS uses periodic boundary conditions, combined with the minimum image convention:
only one - the nearest - image of each particle is considered for short-range non-bonded inter-
action terms. For long-range electrostatic interactions this is not always accurate enough, and
GROMACS therefore also incorporates lattice sum methods like Ewald Sum, PME and PPPM.

Gromacs supports triclinic boxes of any shape. The box is defined by the 3 box vectors a,b and c.
The box vectors must satisfy the following conditions:

ay = az = bz = 0 (3.1)

ax > 0, by > 0, cz > 0 (3.2)

|bx| ≤
1
2
ax, |cx| ≤

1
2
ax, |cy| ≤

1
2
by (3.3)

Equations 3.1 can always be statisfied by rotating the box. Inequalities (3.2) and (3.3) can always
be statisfied by adding and subtracting box vectors.

Even when simulating using a triclinic box, GROMACS always puts the particles in a brick shaped
volume, for efficiency reasons. This is illustrated in Fig. 3.1 for a 2-dimensional system. So from
the output trajectory it might seem like the simulation was done in a rectangular box. The program
trjconv can be used to convert the trajectory to a different unit-cell representation.

3.2. Periodic boundary conditions 13

Figure 3.2: A rhombic dodecahedron and truncated octahedron (arbitrary orientations).

box type image box box vectors box vector angles
distance volume a b c 6 bc 6 ac 6 ab

d 0 0
cubic d d3 0 d 0 90◦ 90◦ 90◦

0 0 d

rhombic d 0 1
2 d

dodecahedron d 1
2

√
2 d3 0 d 1

2 d 60◦ 60◦ 90◦

(xy-square) 0.707 d3 0 0 1
2

√
2 d

rhombic d 1
2 d

1
2 d

dodecahedron d 1
2

√
2 d3 0 1

2

√
3 d 1

6

√
3 d 60◦ 60◦ 60◦

(xy-hexagon) 0.707 d3 0 0 1
3

√
6 d

truncated d 1
3 d −1

3 d

octahedron d 4
9

√
3 d3 0 2

3

√
2 d 1

3

√
2 d 71.53◦ 109.47◦ 71.53◦

0.770 d3 0 0 1
3

√
6 d

Table 3.1: The cubic box, the rhombic dodecahedron and the truncated octahedron.

It is also possible to simulate without periodic boundary conditions, but it is more efficient to
simulate an isolated cluster of molecules in a large periodic box, since fast grid searching can only
be used in a periodic system.

3.2.1 Some useful box types

The three most useful box types for simulations of solvated systems are described in Table 3.1.
The rhombic dodecahedron (Fig. 3.2) is the smallest and most regular space-filling unit cell. Each
of the 12 image cells is at the same distance. The volume is 71% of the volume of a cube having
the same image distance. This saves about 29% of CPU-time when simulating a spherical or
flexible molecule in solvent. There are two different orientations of a rhombic dodecahedron that
satisfy equations 3.1, 3.2 and 3.3. The program editconf produces the orientation which has
a square intersection with the xy-plane. This orientation was chosen because the first two box
vectors coincide with the x and y-axis, which is easier to comprehend. The other orientation can

14 Chapter 3. Algorithms

be useful for simulations of membrane proteins. In this case the cross-section with the xy-plane is
a hexagon, which has an area which is 14% smaller than the area of a square with the same image
distance. The height of the box (cz) should be changed to obtain an optimal spacing. This box
shape not only saves CPU-time, it also results in a more uniform arrangement of the proteins.

3.2.2 Cutoff restrictions

The minimum image convention implies that the cutoff radius used to truncate non-bonded inter-
actions must not exceed half the shortest box vector:

Rc <
1
2

min(‖a‖, ‖b‖, ‖c‖), (3.4)

otherwise more than one image would be within the cutoff distance of the force. When a macro-
molecule, such as a protein, is studied in solution, this restriction does not suffice. In principle a
single solvent molecule should not be able to ‘see’ both sides of the macromolecule. This means
that the length of each box vector must exceed the length of the macromolecule in the direction
of that edge plus two times the cutoff radius Rc. It is common to compromise in this respect, and
make the solvent layer somewhat smaller in order to reduce the computational cost. For efficiency
reasons the cutoff with triclinic boxes is more restricted. For grid search the extra restriction is
weak:

Rc < min(ax, by, cz) (3.5)

For simple search the extra restriction is stronger:

Rc <
1
2

min(ax, by, cz) (3.6)

Each unit cell (cubic, rectangular or triclinic) is surrounded by 26 translated images. Thus a
particular image can always be identified by an index pointing to one of 27 translation vectors and
constructed by applying a translation with the indexed vector (see 3.4.3). Restriction (3.5) ensures
that only 26 images need to be considered.

3.3 The group concept

In the GROMACS MD and analysis programs one uses groups of atoms to perform certain actions
on. The maximum number of groups is 256, but each atom can only belong to six different groups,
one each of the following:

T-coupling group The temperature coupling parameters (reference temperature, time constant,
number of degrees of freedom, see 3.4.4) can be defined for each T-coupling group sepa-
rately. For example, in a solvated macromolecule the solvent (that tends to generate more
heating by force and integration errors) can be coupled with a shorter time constant to a bath
than is a macromolecule, or a surface can be kept cooler than an adsorbing molecule. Many
different T-coupling groups may be defined. See also center of mass groups below.

3.4. Molecular Dynamics 15

Freeze group Atoms that belong to a freeze group are kept stationary in the dynamics. This is
useful during equilibration, e.g. to avoid badly placed solvent molecules giving unreasonable
kicks to protein atoms, although the same effect can also be obtained by putting a restraining
potential on the atoms that must be protected. The freeze option can be used, if desired, on
just one or two coordinates of an atom, thereby freezing the atoms in a plane or on a line.
When an atom is partially frozen, constraints will still be able to move it, even in a frozen
direction. A fully frozen atom can not be moved by constraints. Many freeze groups can
be defined. Frozen coordinates are unaffected by pressure scaling, in some cases this can
produce unwanted results, in particular when constraints are used as well (in this case you
will get very large pressures). Because of this it is recommended to not combine freeze
groups with constraints and pressure coupling. For the sake of equilibration it could suffice
to start with freezing in a constant volume simulation, and afterwards use position restraints
in conjunction with constant pressure.

Accelerate group On each atom in an ’accelerate group’ an acceleration ag is imposed. This
is equivalent to an external force. This feature makes it possible to drive the system into
a non-equilibrium state and enables the performance of non-equilibrium MD and hence to
obtain transport properties.

Energy monitor group Mutual interactions between all energy monitor groups are compiled dur-
ing the simulation. This is done separately for Lennard-Jones and Coulomb terms. In prin-
ciple up to 256 groups could be defined, but that would lead to 256×256 items! Better use
this concept sparingly.

All non-bonded interactions between pairs of energy monitor groups can be excluded (see
sec. 7.3.1). Pairs of particles from excluded pairs of energy monitor groups are not put
into the pair list. This can result in a significant speedup for simulations where interactions
within or between parts of the system are not required.

Center of mass group In GROMACS the center of mass (COM) motion can be removed, for
either the complete system or for groups of atoms. The latter is useful, e.g. for systems
where there is limited friction (e.g. gas systems) to prevent center of mass motion to occur.
It makes sense to use the same groups for Temperature coupling and center of mass motion
removal.

XTC output group In order to reduce the size of the XTC trajectory file, only a subset of all
particles can be stored. All XTC groups that are specified are saved, the rest is not. If no
XTC groups are specified, than all atoms are saved to the XTC file.

The use of groups in analysis programs is described in chapter 8.

3.4 Molecular Dynamics

A global flow scheme for MD is given in Fig. 3.3. Each MD or EM run requires as input a set of
initial coordinates and - optionally - initial velocities of all particles involved. This chapter does
not describe how these are obtained; for the setup of an actual MD run check the online manual at
www.gromacs.org.

http://www.gromacs.org

16 Chapter 3. Algorithms

THE GLOBAL MD ALGORITHM

1. Input initial conditions

Potential interaction V as a function of atom positions
Positions r of all atoms in the system
Velocities v of all atoms in the system

⇓

repeat 2,3,4 for the required number of steps:

2. Compute forces

The force on any atom

F i = −∂V
∂ri

is computed by calculating the force between non-bonded atom
pairs:

F i =
∑
j F ij

plus the forces due to bonded interactions (which may depend on 1,
2, 3, or 4 atoms), plus restraining and/or external forces.

The potential and kinetic energies and the pressure tensor are
computed.
⇓

3. Update configuration

The movement of the atoms is simulated by numerically solving
Newton’s equations of motion

d2ri
dt2

=
F i

mior
dri
dt

= vi;
dvi
dt

=
F i

mi

⇓
4. if required: Output step

write positions, velocities, energies, temperature, pressure, etc.

Figure 3.3: The global MD algorithm

3.4. Molecular Dynamics 17

Velocity

Figure 3.4: A Maxwellian velocity distribution, generated from random numbers.

3.4.1 Initial conditions

Topology and force field

The system topology, including a description of the force field, must be loaded. These items are
described in chapter 4. All this information is static; it is never modified during the run.

Coordinates and velocities

Then, before a run starts, the box size and the coordinates and velocities of all particles are re-
quired. The box size is determined by three vectors (nine numbers) b1, b2, b3, which represent the
three basis vectors of the periodic box. While in the present version of GROMACS only rectan-
gular boxes are allowed, three numbers suffice, but the use of three vectors already prepares for
arbitrary triclinic boxes to be implemented in a later version.

If the run starts at t = t0, the coordinates at t = t0 must be known. The leap-frog algorithm, used
to update the time step with ∆t (see 3.4.4), requires that the velocities at t = t0 − ∆t

2 are known.
If velocities are not available, the program can generate initial atomic velocities vi, i = 1 . . . 3N
with a Maxwellian distribution (Fig. 3.4) at a given absolute temperature T :

p(vi) =
√

mi

2πkT
exp(−miv

2
i

2kT
) (3.7)

18 Chapter 3. Algorithms

where k is Boltzmann’s constant (see chapter 2). To accomplish this, normally distributed random
numbers are generated by adding twelve random numbers Rk in the range 0 ≤ Rk < 1 and
subtracting 6.0 from their sum. The result is then multiplied by the standard deviation of the
velocity distribution

√
kT/mi. Since the resulting total energy will not correspond exactly to the

required temperature T , a correction is made: first the center-of-mass motion is removed and then
all velocities are scaled so that the total energy corresponds exactly to T (see eqn. 3.13).

Center-of-mass motion

The center-of-mass velocity is normally set to zero at every step. Normally there is no net external
force acting on the system and the center-of-mass velocity should remain constant. In practice,
however, the update algorithm develops a very slow change in the center-of-mass velocity, and
thus in the total kinetic energy of the system, specially when temperature coupling is used. If such
changes are not quenched, an appreciable center-of-mass motion develops eventually in long runs,
and the temperature will be significantly misinterpreted. The same may happen due to overall
rotational motion, but only when an isolated cluster is simulated. In periodic systems with filled
boxes, the overall rotational motion is coupled to other degrees of freedom and does not give any
problems.

3.4.2 Neighbor searching

As mentioned in chapter 4, internal forces are either generated from fixed (static) lists, or from
dynamics lists. The latter concern non-bonded interactions between any pair of particles. When
calculating the non-bonded forces, it is convenient to have all particles in a rectangular box. As
shown in Fig. 3.1, it is possible to transform a triclinic box into a rectangular box. The output
coordinates are always in a rectangular box, even when a dodecahedron or triclinic box was used
for the simulation. Equation 3.1 ensures that we can reset particles in a rectangular box by first
shifting them with box vector c, then with b and finally with a. Equations 3.3, 3.4 and 3.5 ensure
that we can find the 14 nearest triclinic images within a linear combination which does not involve
multiples of box vectors.

Pair lists generation

The non-bonded pair forces need to be calculated only for those pairs i, j for which the distance
rij between i and the nearest image of j is less than a given cutoff radius Rc. Some of the particle
pairs that fulfill this criterion are excluded, when their interaction is already fully accounted for by
bonded interactions. GROMACS employs a pair list that contains those particle pairs for which
non-bonded forces must be calculated. The pair list contains atoms i, a displacement vector for
atom i, and all particles j that are within rshort of this particular image of atom i. The list is
updated every nstlist steps, where nstlist is typically 10. There is an option to calculate
the total non-bonded force on each particle due to all particle in a shell around the list-cutoff, i.e.
at a distance between rshort and rlong. This force is calculated during the pair list update and
retained during nstlist steps.

To make the neighbor list all particles that are close (i.e. within the neighbor list cutoff) to a

3.4. Molecular Dynamics 19

� � � � �
� � � � �

� � � �
� � � �

� � � � � � � � �
� � � � � � � � �
� � � � � � � � �

� � � � � � � �
� � � � � � � �
� � � � � � � �

� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �

� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �� � � � � � �

� � � � � � �
� � � � � �
� � � � � �

� � �
� � �
	 	 	
	 	 	 j

i

i’

� � � � � � � � � � � � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �

Figure 3.5: Grid search in two dimensions. The arrows are the box vectors.

given particle must be found. This searching, usually called neighbor searching (NS), involves
periodic boundary conditions and determining the image (see sec. 3.2). Without periodic boundary
conditions a simple O(N2) algorithm must be used. With periodic boundary conditions a grid
search can be used, which is O(N).

To completely avoid cut-off artifacts, the non-bonded potentials can be switched exactly to zero
at some distance smaller than the neighbor list cut-off (there are several ways to do this in GRO-
MACS, see sec. 4.1.5). One then has a buffer with the size equal to the neighbor list cut-off minus
the longest interaction cut-off. In this case one can also choose to let mdrun only update the
neighbor list when required. That is when one or more particles have moved more than half the
buffer size from the center of geometry of the charge group they belong to (see sec. 3.4.2) as de-
termined at the previous neighbor search. This option guarantees that their are no cut-off artifacts.
Note that for larger systems this comes at a high computational cost, since the neighbor list update
frequency will be determined by just one or two particles moving slightly beyond the half buffer
length (which not even necessarily implies that the neighbor list is invalid), while 99.99% of the
particles are fine.

Simple search

Due to eqns. 3.1 and 3.6, the vector rij connecting images within the cutoff Rc can be found by
constructing:

r′′′ = rj − ri (3.8)

r′′ = r′′′ − c ∗ round(r′′′z /cz)) (3.9)

r′ = r′′ − b ∗ round(r′′y/by) (3.10)

rij = r′ − a ∗ round(r′x/ax) (3.11)

When distances between two particles in a triclinic box are needed that do not obey eqn. 3.1, many
shifts of combinations of box vectors need to be considered to find the nearest image.

20 Chapter 3. Algorithms

Grid search

The grid search is schematically depicted in Fig. 3.5. All particles are put on the NS grid, with the
smallest spacing ≥ Rc/2 in each of the directions. In the direction of each box vector, a particle
i has three images. For each direction the image may be -1,0 or 1, corresponding to a translation
over -1, 0 or +1 box vector. We do not search the surrounding NS grid cells for neighbors of
i and then calculate the image, but rather construct the images first and then search neighbors
corresponding to that image of i. As Fig. 3.5 shows, some grid cells may be searched more than
once for different images of i. This is not a problem, since, due to the minimum image convention,
at most one image will “see” the j-particle. For every particle, fewer than 125 (53) neighboring
cells are searched. Therefore, the algorithm scales linearly with the number of particles. Although
the prefactor is large, the scaling behavior makes the algorithm far superior over the standard
O(N2) algorithm when there are more than a few hundred particles. The grid search is equally
fast for rectangular and triclinic boxes. Thus for most protein and peptide simulations the rhombic
dodecahedron will be the preferred box shape.

Charge groups

Where applicable, neighbor searching is carried out on the basis of charge groups. A charge group
is a small set of nearby atoms with an integer net charge. Charge groups are defined in the molec-
ular topology. If the nearest image distance between the geometrical centers of the atoms of two
charge groups is less than the cutoff radius, all atom pairs between the charge groups are included
in the pair list. This procedure avoids the creation of charges due to the use of a cutoff (when one
charge of a dipole is within range and the other not), which can have disastrous consequences for
the behavior of the Coulomb interaction function at distances near the cutoff radius. If molecular
groups have full charges (ions), charge groups do not avoid adverse cutoff effects, and you should
consider using one of the lattice sum methods supplied by GROMACS [17].

If appropriately constructed shift functions are used for the electrostatic forces, no charge groups
are needed. Such shift functions are implemented in GROMACS (see chapter 4) but must be used
with care: in principle, they should be combined with a lattice sum for long-range electrostatics.

Charge groups also provide a speed up of the neighbor search. The neighbor searching for a water
system, for instance, is 32 = 9 times faster when each molecule is treated as a charge group.
Also the highly optimized water force loops (see sec. B.2.1) only work when all atoms in a water
molecule form a single charge group.

3.4.3 Compute forces

Potential energy

When forces are computed, the potential energy of each interaction term is computed as well.
The total potential energy is summed for various contributions, such as Lennard-Jones, Coulomb,
and bonded terms. It is also possible to compute these contributions for groups of atoms that are
separately defined (see sec. 3.3).

3.4. Molecular Dynamics 21

Kinetic energy and temperature

The temperature is given by the total kinetic energy of the N -particle system:

Ekin =
1
2

N∑
i=1

miv
2
i (3.12)

From this the absolute temperature T can be computed using:

1
2
NdfkT = Ekin (3.13)

where k is Boltzmann’s constant and Ndf is the number of degrees of freedom which can be
computed from:

Ndf = 3N −Nc −Ncom (3.14)

HereNc is the number of constraints imposed on the system. When performing molecular dynam-
ics Ncom = 3 additional degrees of freedom must be removed, because the three center-of-mass
velocities are constants of the motion, which are usually set to zero. When simulating in vacuo,
the rotation around the center of mass can also be removed, in this case Ncom = 6. When more
than one temperature coupling group is used, the number of degrees of freedom for group i is:

N i
df = (3N i −N i

c)
3N −Nc −Ncom

3N −Nc
(3.15)

The kinetic energy can also be written as a tensor, which is necessary for pressure calculation in a
triclinic system, or systems where shear forces are imposed:

Ekin =
1
2

N∑
i

mivi ⊗ vi (3.16)

Pressure and virial

The pressure tensor P is calculated from the difference between kinetic energy Ekin and the virial
Ξ

P =
2
V

(Ekin −Ξ) (3.17)

where V is the volume of the computational box. The scalar pressure P , which can be used for
pressure coupling in the case of isotropic systems, is computed as:

P = trace(P)/3 (3.18)

The virial Ξ tensor is defined as

Ξ = −1
2

∑
i<j

rij ⊗ F ij (3.19)

The GROMACS implementation of the virial computation is described in sec. B.1.

22 Chapter 3. Algorithms

1 20 t

x v x

Figure 3.6: The Leap-Frog integration method. The algorithm is called Leap-Frog because r and
v are leaping like frogs over each others back.

3.4.4 Update configuration

The GROMACS MD program utilizes the so-called leap-frog algorithm [18] for the integration
of the equations of motion. The leap-frog algorithm uses positions r at time t and velocities v at
time t− ∆t

2 ; it updates positions and velocities using the forces F (t) determined by the positions
at time t:

v(t+
∆t
2

) = v(t− ∆t
2

) +
F (t)
m

∆t (3.20)

r(t+ ∆t) = r(t) + v(t+
∆t
2

)∆t (3.21)

The algorithm is visualized in Fig. 3.6. It is equivalent to the Verlet [19] algorithm:

r(t+ ∆t) = 2r(t)− r(t−∆t) +
F (t)
m

∆t2 +O(∆t4) (3.22)

The algorithm is of third order in r and is time-reversible. See ref. [20] for the merits of this
algorithm and comparison with other time integration algorithms.

The equations of motion are modified for temperature coupling and pressure coupling, and ex-
tended to include the conservation of constraints, all of which are described below.

3.4.5 Temperature coupling

For several reasons (drift during equilibration, drift as a result of force truncation and integration
errors, heating due to external or frictional forces), it is necessary to control the temperature of the
system. GROMACS can use either the weak coupling scheme of Berendsen [21] or the extended
ensemble Nosé-Hoover scheme [22, 23].

Berendsen temperature coupling

The Berendsen algorithm mimics weak coupling with first-order kinetics to an external heat bath
with given temperature T0. See ref. [24] for a comparison with the Nosé-Hoover scheme. The
effect of this algorithm is that a deviation of the system temperature from T0 is slowly corrected
according to

dT
dt

=
T0 − T
τ

(3.23)

3.4. Molecular Dynamics 23

which means that a temperature deviation decays exponentially with a time constant τ . This
method of coupling has the advantage that the strength of the coupling can be varied and adapted
to the user requirement: for equilibration purposes the coupling time can be taken quite short (e.g.
0.01 ps), but for reliable equilibrium runs it can be taken much longer (e.g. 0.5 ps) in which case
it hardly influences the conservative dynamics.

The Berendsen thermostat suppresses the fluctuations of the kinetic energy. This means that,
strictly speaking, one does not generate a proper canonical ensemble. For very small systems the
sampling will indeed be incorrect. But for larger systems most properties will not be affected
significantly, except for the distribution of the kinetic energy itself. A similar thermostat which
does produce a correct ensemble is the velocity rescaling thermostat described below.

The heat flow into or out of the system is effected by scaling the velocities of each particle every
step with a time-dependent factor λ, given by

λ =

[
1 +

∆t
τT

{
T0

T (t− ∆t
2)
− 1

}]1/2

(3.24)

The parameter τT is close to, but not exactly equal to the time constant τ of the temperature
coupling (eqn. 3.23):

τ = 2CV τT /Ndfk (3.25)

where CV is the total heat capacity of the system, k is Boltzmann’s constant, and Ndf is the
total number of degrees of freedom. The reason that τ 6= τT is that the kinetic energy change
caused by scaling the velocities is partly redistributed between kinetic and potential energy and
hence the change in temperature is less than the scaling energy. In practice, the ratio τ/τT ranges
from 1 (gas) to 2 (harmonic solid) to 3 (water). When we use the term ’temperature coupling
time constant’, we mean the parameter τT . Note that in practice the scaling factor λ is limited
to the range of 0.8 <= λ <= 1.25, to avoid scaling by very large numbers which may crash the
simulation. In normal use, λ will always be much closer to 1.0.

Velocity rescaling thermostat

The velocity rescaling thermostat[25] is essentially a Berendsen thermostat (see above) with an
additional stochastic term which ensures a correct kinetic energy distribution:

dK = (K0 −K)
dt
τT

+ 2

√
KK0

Nf

dW
√
τT

(3.26)

where K is the kinetic energy, Nf the number of degrees of freedom and dW a Wiener process.
There are no additional parameters, except for a random seed. This thermostat produces a correct
canonical ensemble and still has the advantage of the Berendsen thermostat: first order decay
of temperature deviations and no oscillations. When an NV T ensemble is used, the conserved
energy quantity is written to the energy and log file.

Nosé-Hoover temperature coupling

The Berendsen weak coupling algorithm is extremely efficient for relaxing a system to the target
temperature, but once your system has reached equilibrium it might be more important to probe

24 Chapter 3. Algorithms

a correct canonical ensemble. This is unfortunately not the case for the weak coupling scheme,
although the difference is usually negligible.

To enable canonical ensemble simulations, GROMACS also supports the extended-ensemble ap-
proach first proposed by Nosé[22] and later modified by Hoover[23]. The system Hamiltonian is
extended by introducing a thermal reservoir and a friction term in the equations of motion. The
friction force is proportional to the product of each particle’s velocity and a friction parameter ξ.
This friction parameter (or ’heat bath’ variable) is a fully dynamic quantity with its own equation
of motion; the time derivative is calculated from the difference between the current kinetic energy
and the reference temperature.

In Hoover’s formulation, the particles’ equations of motion in Fig. 3.3 are replaced by

d2ri
dt2

=
F i

mi
− ξ dri

dt
, (3.27)

where the equation of motion for the heat bath parameter ξ is

dξ
dt

=
1
Q

(T − T0) . (3.28)

The reference temperature is denoted T0, while T is the current instantaneous temperature of the
system. The strength of the coupling is determined by the constant Q (usually called the ’mass
parameter’ of the reservoir) in combination with the reference temperature.

In our opinion, the mass parameter is a somewhat awkward way of describing coupling strength,
especially due to its dependence on reference temperature (and some implementations even in-
clude the number of degrees of freedom in your system when defining Q). To maintain the cou-
pling strength, one would have to change Q in proportion to the change in reference temperature.
For this reason, we prefer to let the GROMACS user work instead with the period τT of the oscil-
lations of kinetic energy between the system and the reservoir instead. It is directly related to Q
and T0 via

Q =
τ2
TT0

4π2
. (3.29)

This provides a much more intuitive way of selecting the Nosé-Hoover coupling strength (similar
to the weak coupling relaxation), and in addition τT is independent of system size and reference
temperature.

It is however important to keep the difference between the weak coupling scheme and the Nosé-
Hoover algorithm in mind: Using weak coupling you get a strongly damped exponential relax-
ation, while the Nosé-Hoover approach produces an oscillatory relaxation. The actual time it
takes to relax with Nosé-Hoover coupling is several times larger than the period of the oscillations
that you select. These oscillations (in contrast to exponential relaxation) also means that the time
constant normally should be 4–5 times larger than the relaxation time used with weak coupling,
but your mileage may vary.

3.4. Molecular Dynamics 25

Group temperature coupling

In GROMACS temperature coupling can be performed on groups of atoms, typically a protein and
solvent. The reason such algorithmes were introduced is that energy exchange between different
components is not perfect, due to different effects including cutoffs etc. If now the whole system
is coupled to one heat bath, water (which experiences the largest cutoff noise) will tend to heat
up and the protein will cool down. Typically 100 K differences can be obtained. With the use of
proper electrostatic methods (PME) these difference are much smaller but still not negligable. The
parameters for temperature coupling in groups are given in the mdp file. One special case should
be mentioned: it is possible to T-couple only part of the system (or nothing at all obviously). This
is done by specifying zero for the time constant τT for the group of interest.

3.4.6 Pressure coupling

In the same spirit as the temperature coupling, the system can also be coupled to a ’pressure
bath’. GROMACS supports both the Berendsen algorithm [21] that scales coordinates and box
vectors every step, and the extended ensemble Parrinello-Rahman approach. Both of these can be
combined with any of the temperature coupling methods above.

Berendsen pressure coupling

The Berendsen algorithm rescales the coordinates and box vectors every step with a matrix µ,
which has the effect of a first-order kinetic relaxation of the pressure towards a given reference
pressure P0:

dP
dt

=
P0 −P
τp

(3.30)

The scaling matrix µ is given by

µij = δij −
∆t
3 τp

βij{P0ij − Pij(t)} (3.31)

Here β is the isothermal compressibility of the system. In most cases this will be a diagonal
matrix, with equal elements on the diagonal, the value of which is generally not known. It suffices
to take a rough estimate because the value of β only influences the non-critical time constant of
the pressure relaxation without affecting the average pressure itself. For water at 1 atm and 300 K
β = 4.6× 10−10 Pa−1 = 4.6× 10−5 Bar−1, which is 7.6× 10−4 MD units (see chapter 2). Most
other liquids have similar values. When scaling completely anisotropically, the system has to be
rotated in order to obey eqn. 3.1. This rotation is approximated in first order in the scaling, which
is usually less than 10−4. The actual scaling matrix µ′ is:

µ′ =

 µxx µxy + µyx µxz + µzx
0 µyy µyz + µzy
0 0 µzz

 (3.32)

The velocities are neither scaled nor rotated.

In GROMACS, the Berendsen scaling can also be done isotropically, which means that instead
of P a diagonal matrix with elements of size trace(P)/3 is used. For systems with interfaces,

26 Chapter 3. Algorithms

semi-isotropic scaling can be useful. In this case the x/y-directions are scaled isotropically and
the z direction is scaled independently. The compressibility in the x/y or z-direction can be set to
zero, to scale only in the other direction(s).

If you allow full anisotropic deformations and use constraints you might have to scale more slowly
or decrease your timestep to avoid errors from the constraint algorithms.

Parrinello-Rahman pressure coupling

In cases where the fluctuations in pressure or volume are important per se (e.g. to calculate ther-
modynamic properties) it might at least theoretically be a problem that the exact ensemble is not
well-defined for the weak coupling scheme.

For this reason, GROMACS also supports constant-pressure simulations using the Parrinello-
Rahman approach[26, 27], which is similar to the Nosé-Hoover temperature coupling. With the
Parrinello-Rahman barostat, the box vectors as represented by the matrix b obey the matrix equa-
tion of motion1

db2

dt2
= VW−1b′−1 (P − P ref) . (3.33)

The volume of the box is denoted V , andW is a matrix parameter that determines the strength of
the coupling. The matrices P and P ref are the current and reference pressures, respectively.

The equations of motion for the particles are also changed, just as for the Nosé-Hoover coupling.
In most cases you would combine the Parrinello-Rahman barostat with the Nosé-Hoover thermo-
stat, but to keep it simple we only show the Parrinello-Rahman modification here:

d2ri
dt2

=
F i

mi
−M dri

dt
, (3.34)

M = b−1

[
b

db′

dt
+

db
dt
b′
]
b′−1. (3.35)

The (inverse) mass parameter matrix W−1 determines the strength of the coupling, and how the
box can be deformed. The box restriction (3.1) will be fulfilled automatically if the corresponding
elements of W−1 are zero. Since the coupling strength also depends on the size of your box,
we prefer to calculate it automatically in GROMACS. You only have to provide the approximate
isothermal compressibilities β and the pressure time constant τp in the input file (L is the largest
box matrix element):

(
W−1

)
ij

=
4π2βij
3τ2
pL

. (3.36)

Just as for the Nosé-Hoover thermostat, you should realize that the Parrinello-Rahman time con-
stant is not equivalent to the relaxation time used in the Berendsen pressure coupling algorithm.

1The box matrix representation b in GROMACS corresponds to the transpose of the box matrix representation h in
the paper by Nosé and Klein. Because of this, some of our equations will look slightly different.

3.4. Molecular Dynamics 27

In most cases you will need to use a 4–5 times larger time constant with Parrinello-Rahman cou-
pling. If your pressure is very far from equilibrium, the Parrinello-Rahman coupling may result in
very large box oscillations that could even crash your run. In that case you would have to increase
the time constant, or (better) use the weak coupling scheme to reach the target pressure, and then
switch to Parrinello-Rahman coupling once the system is in equilibrium.

Surface tension coupling

When a periodic system consists of more than one phase, separated by surfaces which are par-
allel to the xy-plane, the surface tension and the z-component of the pressure can be coupled to
a pressure bath. Presently, this only works with the Berendsen pressure coupling algorithm in
GROMACS. The average surface tension γ(t) can be calculated from the difference between the
normal and the lateral pressure:

γ(t) =
1
n

∫ Lz

0

{
Pzz(z, t)−

Pxx(z, t) + Pyy(z, t)
2

}
dz (3.37)

=
Lz
n

{
Pzz(t)−

Pxx(t) + Pyy(t)
2

}
(3.38)

where Lz is the height of the box and n is the number of surfaces. The pressure in the z-direction
is corrected by scaling the height of the box with µz:

∆Pzz =
∆t
τp
{P0zz − Pzz(t)} (3.39)

µzz = 1 + βzz∆Pzz (3.40)

This is similar to normal pressure coupling, except that the power of one third is missing. The
pressure correction in the z-direction is then used to get the correct convergence for the surface
tension to the reference value γ0. The correction factor for the box-length in the x/y-direction is:

µx/y = 1 +
∆t
2 τp

βx/y

(
nγ0

µzzLz
−
{
Pzz(t) + ∆Pzz −

Pxx(t) + Pyy(t)
2

})
(3.41)

The value of βzz is more critical than with normal pressure coupling. Normally an incorrect
compressibility will just scale τp, but with surface tension coupling it affects the convergence of
the surface tension. When βzz is set to zero (constant box height), ∆Pz is also set to zero, which
is necessary for obtaining the correct surface tension.

The complete update algorithm

The complete algorithm for the update of velocities and coordinates is given in Fig. 3.7. The
SHAKE algorithm of step 4 is explained below.

GROMACS has a provision to ”freeze” (prevent motion of) selected particles, which must be
defined as a ’freeze group’. This is implemented using a freeze factor fg, which is a vector, and
differs for each freezegroup (see sec. 3.3). This vector contains only zero (freeze) or one (don’t

28 Chapter 3. Algorithms

THE UPDATE ALGORITHM

Given:
Positions r of all atoms at time t

Velocities v of all atoms at time t− ∆t
2

Accelerations F /m on all atoms at time t.
(Forces are computed disregarding any constraints)

Total kinetic energy and virial
⇓

1. Compute the scaling factors λ and µ
according to eqns. 3.24 and 3.31

⇓
2. Update and scale velocities: v′ = λ(v + a∆t)

⇓
3. Compute new unconstrained coordinates: r′ = r + v′∆t

⇓
4. Apply constraint algorithm to coordinates: constrain(r

′ → r′′; r)
⇓

5. Correct velocities for constraints: v = (r′′ − r)/∆t
⇓

6. Scale coordinates and box: r = µr′′; b = µb

Figure 3.7: The MD update algorithm

3.5. Shell molecular dynamics 29

freeze). When we take this freeze factor and the external acceleration ah into account the update
algorithm for the velocities becomes:

v(t+
∆t
2

) = fg ∗ λ ∗
[
v(t− ∆t

2
) +

F (t)
m

∆t+ ah∆t
]

(3.42)

where g and h are group indices which differ per atom.

3.4.7 Output step

The important output of the MD run is the trajectory file name.trj which contains particle
coordinates and -optionally- velocities at regular intervals. Since the trajectory files are lengthy,
one should not save every step! To retain all information it suffices to write a frame every 15 steps,
since at least 30 steps are made per period of the highest frequency in the system, and Shannon’s
sampling theorem states that two samples per period of the highest frequency in a band-limited
signal contain all available information. But that still gives very long files! So, if the highest
frequencies are not of interest, 10 or 20 samples per ps may suffice. Be aware of the distortion of
high-frequency motions by the stroboscopic effect, called aliasing: higher frequencies are mirrored
with respect to the sampling frequency and appear as lower frequencies.

3.5 Shell molecular dynamics

GROMACS can simulate polarizability using the shell model of Dick and Overhauser [28]. In
such models a shell particle representing the electronic degrees of freedom is attached to a nucleus
by a spring. The potential energy is minimized with respect to the shell position at every step
of the simulation (see below). Succesfull applications of shell models in GROMACS have been
published for N2 [29] and water [30].

3.5.1 Optimization of the shell positions

The force F S on a shell particle S can be decomposed into two components:

F S = F bond + F nb (3.43)

where F bond denotes the component representing the polarization energy, usually represented by a
harmonic potential and F nb is the sum of Coulomb and Van der Waals interactions. If we assume
that F nb is almost constant we can analytically derive the optimal position of the shell, i.e. where
F S = 0. If we have the shell S connected to atom A we have

F bond = kb (xS − xA) (3.44)

In an iterative solver, we have positions xS(n) where n is the iteration count. We now have it
iteration n:

F nb = F S − kb (xS(n)− xA) (3.45)

and the optimal position for the shells xS(n+ 1) thus follows from

F S − kb (xS(n)− xA) + kb (xS(n+ 1)− xA) = 0 (3.46)

30 Chapter 3. Algorithms

if we write
∆xS = xS(n+ 1)− xS(n) (3.47)

we finally obtain
∆xS = F S/kb (3.48)

which then yields the algorithm to compute the next trial in the optimization of shell positions:

xS(n+ 1) = xS(n) + F S/kb (3.49)

3.6 Constraint algorithms

Constraints can be imposed in GROMACS using LINCS (default) or the traditional SHAKE
method.

3.6.1 SHAKE

The SHAKE [31] algorithm changes a set of unconstrained coordinates r
′

to a set of coordinates
r′′ that fulfill a list of distance constraints, using a set r as reference:

SHAKE(r
′ → r′′; r)

This action is consistent with solving a set of Lagrange multipliers in the constrained equations of
motion. SHAKE needs a tolerance TOL; it will continue until all constraints are satisfied within a
relative tolerance TOL. An error message is given if SHAKE cannot reset the coordinates because
the deviation is too large, or if a given number of iterations is surpassed.

Assume the equations of motion must fulfill K holonomic constraints, expressed as

σk(r1 . . . rN) = 0; k = 1 . . .K (3.50)

(e.g. (r1 − r2)2 − b2 = 0). Then the forces are defined as

− ∂

∂ri

(
V +

K∑
k=1

λkσk

)
(3.51)

where λk are Lagrange multipliers which must be solved to fulfill the constraint equations. The
second part of this sum determines the constraint forcesGi, defined by

Gi = −
K∑
k=1

λk
∂σk
∂ri

(3.52)

The displacement due to the constraint forces in the leap frog or Verlet algorithm is equal to
(Gi/mi)(∆t)2. Solving the Lagrange multipliers (and hence the displacements) requires the so-
lution of a set of coupled equations of the second degree. These are solved iteratively by SHAKE.
For the special case of rigid water molecules, that often make up more than 80% of the simulation
system we have implemented the SETTLE algorithm [32] (sec. 5.5).

3.6. Constraint algorithms 31

���
�

���
�

������������

���
�

	�		�	
�

�

������������

�
�
�
���������������������

��

��

unconstrained
update

correction for
rotational

lengthening

projecting out
forces working

along the bonds

θ

d

l d

pd

Figure 3.8: The three position updates needed for one time step. The dashed line is the old bond
of length d, the solid lines are the new bonds. l = d cos θ and p = (2d2 − l2)

1
2 .

3.6.2 LINCS

The LINCS algorithm

LINCS is an algorithm that resets bonds to their correct lengths after an unconstrained update [33].
The method is non-iterative, as it always uses two steps. Although LINCS is based on matrices, no
matrix-matrix multiplications are needed. The method is more stable and faster than SHAKE, but
it can only be used with bond constraints and isolated angle constraints, such as the proton angle
in OH. Because of its stability LINCS is especially useful for Brownian dynamics. LINCS has
two parameters, which are explained in the subsection parameters. The parallel version of LINCS,
P-LINCS, is described in subsection 3.17.3.

The LINCS formulas

We consider a system of N particles, with positions given by a 3N vector r(t). For molecular
dynamics the equations of motion are given by Newton’s law

d2r

dt2
= M−1F (3.53)

where F is the 3N force vector and M is a 3N × 3N diagonal matrix, containing the masses of
the particles. The system is constrained by K time-independent constraint equations

gi(r) = |ri1 − ri2 | − di = 0 i = 1, . . . ,K (3.54)

In a numerical integration scheme LINCS is applied after an unconstrained update, just like
SHAKE. The algorithm works in two steps (see figure Fig. 3.8). In the first step the projections of
the new bonds on the old bonds are set to zero. In the second step a correction is applied for the
lengthening of the bonds due to rotation. The numerics for the first step and the second step are
very similar. A complete derivation of the algorithm can be found in [33]. Only a short description
of the first step is given here.

32 Chapter 3. Algorithms

A new notation is introduced for the gradient matrix of the constraint equations which appears on
the right hand side of the equation

Bhi =
∂gh
∂ri

(3.55)

Notice thatB is aK×3N matrix, it contains the directions of the constraints. The following equa-
tion shows how the new constrained coordinates rn+1 are related to the unconstrained coordinates
runcn+1

rn+1 = (I − T nBn)runcn+1 + T nd =

runcn+1 −M−1Bn(BnM
−1BT

n)−1(Bnr
unc
n+1 − d)

(3.56)

where T = M−1BT (BM−1BT)−1. The derivation of this equation from eqns. 3.53 and 3.54
can be found in [33].

This first step does not set the real bond lengths to the prescribed lengths, but the projection of the
new bonds onto the old directions of the bonds. To correct for the rotation of bond i, the projection
of the bond on the old direction is set to

pi =
√

2d2
i − l2i (3.57)

where li is the bond length after the first projection. The corrected positions are

r∗n+1 = (I − T nBn)rn+1 + T np (3.58)

This correction for rotational effects is actually an iterative process, but during MD only one
iteration is applied. The relative constraint deviation after this procedure will be less than 0.0001
for every constraint. In energy minimization this might not be accurate enough, so the number of
iterations is equal to the order of the expansion (see below).

Half of the CPU time goes to inverting the constraint coupling matrix BnM
−1BT

n , which has to
be done every time step. ThisK×K matrix has 1/mi1 +1/mi2 on the diagonal. The off-diagonal
elements are only non-zero when two bonds are connected, then the element is cosφ/mc, where
mc is the mass of the atom connecting the two bonds and φ is the angle between the bonds.

The matrix T is inverted through a power expansion. A K ×K matrix S is introduced which is
the inverse square root of the diagonal ofBnM

−1BT
n . This matrix is used to convert the diagonal

elements of the coupling matrix to one

(BnM
−1BT

n)−1 = SS−1(BnM
−1BT

n)−1S−1S

= S(SBnM
−1BT

nS)−1S = S(I −An)−1S
(3.59)

The matrixAn is symmetric and sparse and has zeros on the diagonal. Thus a simple trick can be
used to calculate the inverse

(I −An)−1 = I +An +A2
n +A3

n + . . . (3.60)

This inversion method is only valid if the absolute values of all the eigenvalues of An are smaller
than one. In molecules with only bond constraints the connectivity is so low that this will always
be true, even if ring structures are present. Problems can arise in angle-constrained molecules. By

3.7. Simulated Annealing 33

constraining angles with additional distance constraints multiple small ring structures are intro-
duced. This gives a high connectivity, leading to large eigenvalues. Therefore LINCS should NOT
be used with coupled angle-constraints.

For molecules with all bonds constrained the eigenvalues of A are around 0.4. This means that
with each additional order in the expansion eqn. 3.60 the deviations decrease by a factor 0.4. But
for relatively isolated triangles of constraints the largest eigenvalue is around 0.7. Such triangles
can occur when removing hydrogen angle vibrations with an additional angle constraint in alcohol
groups or when constraining water molecules with LINCS, for instance with flexible constraints.
The constraints in such triangles converge twice as slow as the other constraints. Therefore, start-
ing with GROMACS 4, additional terms are added to the expansion for such triangles:

(I −An)−1 ≈ I +An + . . .+ANi
n +

(
A∗n + . . .+A∗n

Ni
)
ANi
n (3.61)

whereNi is the normal order of the expansion andA∗ only contains the elements ofA that couple
constraints within rigid triangles, all other elements are zero. In this manner the accuracy of angle
constraints comes close to that of the other constraints, while the series of matrix vector multi-
plications required for determining the expansion only needs to be extended for a few constraint
couplings. This procedure is described in the P-LINCS paper[34].

The LINCS Parameters

The accuracy of LINCS depends on the number of matrices used in the expansion eqn. 3.60. For
MD calculations a fourth order expansion is enough. For Brownian dynamics with large time steps
an eighth order expansion may be necessary. The order is a parameter in the input file for mdrun.
The implementation of LINCS is done in such a way that the algorithm will never crash. Even
when it is impossible to to reset the constraints LINCS will generate a conformation which fulfills
the constraints as well as possible. However, LINCS will generate a warning when in one step a
bond rotates over more than a predefined angle. This angle is set by the user in the input file for
mdrun.

3.7 Simulated Annealing

The well known simulated annealing (SA) protocol is supported in GROMACS, and you can even
couple multiple groups of atoms separately with an arbitrary number of reference temperatures
that change during the simulation. The annealing is implemented by simply changing the current
reference temperature for each group in the temperature coupling, so the actual relaxation and
coupling properties depends on the type of thermostat you use and how hard you are coupling it.
Since we are changing the reference temperature it is important to remember that the system will
NOT instantaneously reach this value - you need to allow for the inherent relaxation time in the
coupling algorithm too. If you are changing the annealing reference temperature faster than the
temperature relaxation you will probably end up with a crash when the difference becomes too
large.

The annealing protocol is specified as a series of corresponding times and reference temperatures
for each group, and you can also choose whether you only want a single sequence (after which the

34 Chapter 3. Algorithms

temperature will be coupled to the last reference value), or if the annealing should be periodic and
restart at the first reference point once the sequence is completed. You can mix and match both
types of annealing and non-annealed groups in your simulation.

3.8 Stochastic Dynamics

Stochastic or velocity Langevin dynamics adds a friction and a noise term to Newton’s equations
of motion:

mi
d2ri
dt2

= −miξi
dri
dt

+ F i(r)+
◦
ri (3.62)

where ξi is the friction constant [1/ps] and
◦
ri (t) is a noise process with 〈◦ri (t)

◦
rj (t + s)〉 =

2miξikBTδ(s)δij . When 1/ξi is large compared to the time scales present in the system, one
could see stochastic dynamics as molecular dynamics with stochastic temperature-coupling. The
advantage compared to MD with Berendsen temperature-coupling is that in case of SD the gen-
erated ensemble is known. For simulating a system in vacuum there is the additional advantage
that there is no accumulation of errors for the overall translational and rotational degrees of free-
dom. When 1/ξi is small compared to the time scales present in the system, the dynamics will be
completely different from MD, but the sampling is still correct.

In GROMACS there are two algorithm ot integrate equation (3.62). An efficient one, where the
relative error in the temperature is 1

2∆t ξ. And a more complex leap frog algorithm [35], which
has third-order accuracy for any value of ∆t ξ. In this complex algorithm four Gaussian random
number are required per integration step per degree of freedom and with constraints the coordinates
needs to be constrained twice per integration step. Depending on the computational cost of the
force calculation, this can take a significant part of the simulation time. Exact continuation of a
stochastic dynamics simulation is not possible, because the state of the random number generator
is not stored. When using SD as a thermostat, an appropriate value for ξ is 0.5 ps−1, since this
results in a friction that is lower than the internal friction of water, while it is high enough to
remove excess heat (unless plain cut-off or reaction-field electrostatics is used). With this value of
ξ the efficient algorithm will usually be accurate enough.

3.9 Brownian Dynamics

In the limit of high friction stochastic dynamics reduces to Brownian dynamics, also called posi-
tion Langevin dynamics. This applies to over-damped systems, i.e. systems in which the inertia
effects are negligible. The equation is:

dri
dt

=
1
γi
F i(r)+

◦
ri (3.63)

where γi is the friction coefficient [amu/ps] and
◦
ri(t) is a noise process with 〈◦ri(t)

◦
rj(t + s)〉 =

2δ(s)δijkBT/γi. In GROMACS the equations are integrated with a simple, explicit scheme:

ri(t+ ∆t) = ri(t) +
∆t
γi
F i(r(t)) +

√
2kBT

∆t
γi
rGi (3.64)

3.10. Energy Minimization 35

where rGi is Gaussian distributed noise with µ = 0, σ = 1. The friction coefficients γi can be
chosen the same for all particles or as γi = mi/ξi, where the friction constants ξi can be different
for different groups of atoms. Because the system is assumed to be over damped, large time-steps
can be used. LINCS should be used for the constraints since SHAKE will not converge for large
atomic displacements. BD is an option of the mdrun program.

3.10 Energy Minimization

Energy minimization in GROMACS can be done using steepest descent, conjugate gradients, or l-
bfgs (limited-memory Broyden-Fletcher-Goldfarb-Shanno quasi-Newtonian minimizer... we pre-
fer the abbreviation). EM is just an option of the mdrun program.

3.10.1 Steepest Descent

Although steepest descent is certainly not the most efficient algorithm for searching, it is robust
and easy to implement.

We define the vector r as the vector of all 3N coordinates. Initially a maximum displacement h0

(e.g. 0.01 nm) must be given.

First the forces F and potential energy are calculated. New positions are calculated by

rn+1 = rn +
F n

max(|F n|)
hn (3.65)

where hn is the maximum displacement and F n is the force, or the negative gradient of the poten-
tial V . The notation max(|F n|) means the largest of the absolute values of the force components.
The forces and energy are again computed for the new positions
If (Vn+1 < Vn) the new positions are accepted and hn+1 = 1.2hn.
If (Vn+1 ≥ Vn) the new positions are rejected and hn = 0.2hn.

The algorithm stops when either a user specified number of force evaluations has been performed
(e.g. 100), or when the maximum of the absolute values of the force (gradient) components is
smaller than a specified value ε. Since force truncation produces some noise in the energy evalua-
tion, the stopping criterion should not be made too tight to avoid endless iterations. A reasonable
value for ε can be estimated from the root mean square force f a harmonic oscillator would exhibit
at a temperature T This value is

f = 2πν
√

2mkT (3.66)

where ν is the oscillator frequency, m the (reduced) mass, and k Boltzmann’s constant. For a
weak oscillator with a wave number of 100 cm−1 and a mass of 10 atomic units, at a temperature
of 1 K, f = 7.7 kJ mol−1 nm−1. A value for ε between 1 and 10 is acceptable.

3.10.2 Conjugate Gradient

Conjugate gradient is slower than steepest descent in the early stages of the minimization, but
becomes more efficient closer to the energy minimum. The parameters and stop criterion are the

36 Chapter 3. Algorithms

same as for steepest descent. In GROMACS conjugate gradient can not be used with constraints,
including the SETTLE algorithm for water [32], as this has not been implemented. If water is
present it must be of a flexible model, which can be specified in the mdp file by define =
-DFLEXIBLE
This is not really a restriction, since the accuracy of conjugate gradient is only required for mini-
mization prior to a normal mode analysis, which can not be performed with constraints. For most
other purposes steepest descent is efficient enough.

3.10.3 L-BFGS

The original BFGS algorithm works by successively creating better approximations of the inverse
Hessian matrix, and moving the system to the currently estimated minimum. The memory re-
quirements for this are proportional to the square of the number of particles, so it is not practical
for large systems like biomolecules. Instead, we use the L-BFGS algorithm of Nocedal [36, 37],
which approximates the inverse Hessian by a fixed number of corrections from previous steps.
This sliding-window technique is almost as efficient as the original method, but the memory re-
quirements are much lower - proportional to the number of particles multiplied with the correction
steps. In practice we have found it to converge faster than conjugate gradients, but due to the
correction steps it is not yet parallelized. It is also noteworthy that switched or shifted interac-
tions usually improve the convergence, since sharp cut-offs means the potential function at the
current coordinates is slightly different from the previous steps used to build the inverse Hessian
approximation.

3.11 Normal Mode Analysis

Normal mode analysis [38, 39, 40] can be performed using GROMACS, by diagonalization of the
mass-weighted Hessian H:

RTM−1/2HM−1/2R = diag(λ1, . . . , λ3N) (3.67)

λi = (2πωi)2 (3.68)

where M contains the atomic masses, R is a matrix that contains the eigenvectors as columns, λi
are the eigenvalues and ωi are the corresponding frequencies.

First the Hessian matrix, which is a 3N × 3N matrix where N is the number of atoms, needs to
be calculated:

Hij =
∂2V

∂xi∂xj
(3.69)

where xi and xj denote the atomic x, y or z coordinates. In practice, this equation is not used, but
the Hessian is calculated numerically from the force as:

Hij = −fi(x + hej)− fi(x− hej)
2h

(3.70)

fi = −∂V
∂xi

(3.71)

3.12. Free energy calculations 37

I

E’E

I

E E’

G1∆ ∆G2

∆G4

∆G3

A

G1∆ ∆G2

∆G3

I I’

E

I

E

I’

∆G4

B

Figure 3.9: Free energy cycles. A: to calculate ∆G12, the free energy difference between the bind-
ing of inhibitor I to enzymes E respectively E′. B: to calculate ∆G12, the free energy difference
for binding of inhibitors I respectively I′ to enzyme E.

where ej is the unit vector in direction j. It should be noted that for a usual Normal Mode calcula-
tion, it is necessary to completely minimize the energy prior to computation of the Hessian. What
tolerance is required depends on the type of system, but a rough indication is 0.001 kJ mol−1. This
should be done with conjugate gradients or l-bfgs in double precision.

A number of GROMACS programs are involved in these calculations. First the energy should be
minimized using mdrun. Then mdrun computes the Hessian, note that for generating the run
input file one should use the minimized conformation from the full precision trajectory file, as
the structure file is not accurate enough. g nmeig does the diagonalization and the sorting of
the normal modes according to their frequencies. Both mdrun and g nmeig should be run in
double precision. The normal modes can be analyzed with the program g anaeig. Ensembles of
structures at any temperature and for any subset of normal modes can be generated with g nmens.
An overview of normal mode analysis and the related principal component analysis (see sec. 8.10)
can be found in [41].

3.12 Free energy calculations

Free energy calculations can be performed in GROMACS using slow-growth methods. An exam-
ple problem might be: calculate the difference in free energy of binding of an inhibitor I to an
enzyme E and to a mutated enzyme E′. It is not feasible with computer simulations to perform a
docking calculation for such a large complex, or even releasing the inhibitor from the enzyme in a
reasonable amount of computer time with reasonable accuracy. However, if we consider the free
energy cycle in (Fig. 3.9A) we can write

∆G1 −∆G2 = ∆G3 −∆G4 (3.72)

If we are interested in the left-hand term we can equally well compute the right-hand term.

If we want to compute the difference in free energy of binding of two inhibitors I and I′ to an
enzyme E (Fig. 3.9B) we can again use eqn. 3.72 to compute the desired property.

38 Chapter 3. Algorithms

Free energy differences between two molecular species can be calculated in GROMACS using the
“slow-growth” method. In fact, such free energy differences between different molecular species
are physically meaningless, but they can be used to obtain meaningful quantities employing a
thermodynamic cycle. The method requires a simulation during which the Hamiltonian of the
system changes slowly from that describing one system (A) to that describing the other system
(B). The change must be so slow that the system remains in equilibrium during the process; if that
requirement is fulfilled, the change is reversible and a slow-growth simulation from B to A will
yield the same results (but with a different sign) as a slow-growth simulation from A to B. This is
a useful check, but the user should be aware of the danger that equality of forward and backward
growth results does not guarantee correctness of the results.

The required modification of the Hamiltonian H is realized by making H a function of a coupling
parameter λ : H = H(p, q;λ) in such a way that λ = 0 describes system A and λ = 1 describes
system B:

H(p, q; 0) = HA(p, q); H(p, q; 1) = HB(p, q). (3.73)

In GROMACS, the functional form of the λ-dependence is different for the various force-field
contributions and is described in section sec. 4.5.

The Helmholtz free energy A is related to the partition function Q of an N,V, T ensemble, which
is assumed to be the equilibrium ensemble generated by a MD simulation at constant volume and
temperature. The generally more useful Gibbs free energy G is related to the partition function
∆ of an N, p, T ensemble, which is assumed to be the equilibrium ensemble generated by a MD
simulation at constant pressure and temperature:

A(λ) = −kBT lnQ (3.74)

Q = c

∫ ∫
exp[−βH(p, q;λ)] dp dq (3.75)

G(λ) = −kBT ln ∆ (3.76)

∆ = c

∫ ∫ ∫
exp[−βH(p, q;λ)− βpV] dp dq dV (3.77)

G = A+ pV, (3.78)

where β = 1/(kBT) and c = (N !h3N)−1. These integrals over phase space cannot be evaluated
from a simulation, but it is possible to evaluate the derivative with repect to λ as an ensemble
average:

dA

dλ
=
∫∫

(∂H/∂λ) exp[−βH(p, q;λ)] dp dq∫∫
exp[−βH(p, q;λ)] dp dq

=
〈
∂H

∂λ

〉
NV T ;λ

, (3.79)

with a similar relation for dG/dλ in the N, p, T ensemble. The difference in free energy between
A and B can be found by integrating the derivative over λ:

AB(V, T)−AA(V, T) =
∫ 1

0

〈
∂H

∂λ

〉
NV T ;λ

dλ (3.80)

GB(p, T)−GA(p, T) =
∫ 1

0

〈
∂H

∂λ

〉
NpT ;λ

dλ. (3.81)

If one wishes to evaluate GB(p, T) − GA(p, T), the natural choice is a constant-pressure simu-
lation. However, this quantity can also be obtained from a slow-growth simulation at constant

3.13. Replica exchange 39

volume, starting with system A at pressure p and volume V and ending with system B at pressure
pB , by applying the following small correction:

GB(p)−GA(p) = AB(V)−AA(V)−
∫ pB

p
[V B(p′)− V] dp′ (3.82)

Here we omitted the constant T from the notation. This correction is roughly equal to −1
2(pB −

p)∆V = (∆V)2/(2κV), where ∆V is the volume change at p and κ is the isothermal compress-
ibility. This is usually negligible. For example, the growth of a water molecule from nothing in a
bath of 1000 water molecules at constant volume would produce an additional pressure of 22 bar
and a correction to the Helmholtz free energy of -20 J/mol.

In cartesian coordinates, the kinetic energy term in the Hamiltonian depends only on the momenta,
and can be separately integrated and in fact removed from the equations. When masses do not
change, there is no contribution from the kinetic energy at all; otherwise the integrated contribution
to the free energy is −3

2kBT ln(mB/mA). This is no longer true in the presence of constraints.

GROMACS offers the possibility to integrate eq. 3.80 or eq. 3.81 in one simulation over the full
range from A to B. However, if the change is large and sampling insufficiency can be expected,
the user may prefer to determine the value of 〈dG/dλ〉 accurately at a number of well-chosen
intermediate values of λ. This can be easily done by setting the stepsize delta lambda to zero.
Each simulation can be equilibrated first, and a proper error estimate can be made for each value of
dG/dλ from the fluctuation of ∂H/∂λ. The total free energy change is then determined afterwards
by an appropriate numerical integration procedure.

The λ-dependence for the force-field contributions is described in section sec. 4.5.

3.13 Replica exchange

Replica exchange molecular dynamics (REMD) is a method which can be used to speed up the
sampling of any type of simulation, especially if conformations are separated by relatively high
energy barriers. It involves simulating multiple replicas of the same system at different temper-
atures and randomly exchanging the complete state of two replicas at regular intervals with the
probability:

P (1↔ 2) = min
(

1, exp
[(

1
kBT1

− 1
kBT2

)
(U1 − U2)

])
(3.83)

where T1 and T2 are the reference temperatures and U1 and U2 are the instantaneous potential
energies of replicas 1 and 2 respectively. After exchange the velocities are scaled by (T1/T2)±0.5

and a neighbor search is performed the next step. This combines the fast sampling and frequent
barrier-crossing of the highest temperature with correct Boltzmann sampling at all the different
temperatures [42, 43]. We only attempt exchanges for neighboring temperatures as the probability
decreases very rapidly with the temperature difference. One should not attempt exchanges for
all possible pairs in one step. If, for instance, replicas 1 and 2 would exchange, the chance of
exchange for replicas 2 and 3 not only depends on the energies of replicas 2 and 3, but also on the
energy of replica 1. In GROMACS this is solved by attempting exchange for all ’odd’ pairs on
’odd’ attempts and for all ’even’ pairs on ’even’ attempts. If we have four replicas: 0, 1, 2 and 3,
ordered in temperature and we attempt exchange every 1000 steps, pairs 0-1 and 2-3 will be tried
at steps 1000, 3000 etc. and pair 1-2 at steps 2000, 4000 etc.

40 Chapter 3. Algorithms

How should one choose the temperatures? The energy difference can be written as:

U1 − U2 = Ndf
c

2
kB(T1 − T2) (3.84)

where Ndf is the total number of degrees of freedom of one replica and c is 1 for harmonic poten-
tials and around 2 for protein/water systems. If T2 = (1 + ε)T1 the probability becomes:

P (1↔ 2) = exp

(
− ε2cNdf

2(1 + ε)

)
≈ exp

(
−ε2 c

2
Ndf

)
(3.85)

Thus for a probability of e−2 ≈ 0.135 one obtaines ε ≈ 2/
√
cNdf . With all bonds constrainted

one has Ndf ≈ 2Natoms and thus for c = 2 one should choose ε as 1/
√
Natoms. However there

is one problem when using pressure coupling. The density at higher temperatures will decrease,
leading to higher energy[44] and this should be taken into account. The GROMACS website
features a so-called “REMD” - calculator, that lets you type in the temperature range and the
number of atoms, and based on that proposes a set of temperatures.

An extension to the REMD for the isobaric-isothermal ensemble was proposed by Okabe et
al. [45]. In this work the exchange probability is modified to:

P (1↔ 2) = min
(

1, exp
[(

1
kBT1

− 1
kBT2

)
(U1 − U2) +

(
P1

kBT1
− P2

kBT2

)
(V1 − V2)

])
(3.86)

where P1 and P2 are the respective reference pressures and V1 and V2 are the respective instanta-
neous volumes in the simulations. In most cases the differences in volume are so small that the
second term is negligible. It only plays a role when the difference between P1 and P2 is large or
in phase transitions.

Replica exchange is an option of the mdrun program. It will only work when MPI is installed,
due to the inherent parallellism in the algorithm. For efficiency each replica can run on a separate
node. See the manual page of mdrun on how to use it.

3.14 Essential Dynamics Sampling

The results from Essential Dynamics (see sec. 8.10) of a protein can be used to guide MD sim-
ulations. The idea is that from an initial MD simulation (or from other sources) a definition of
the collective fluctuations with largest amplitude is obtained. The position along one or more of
these collective modes can be constrained in a (second) MD simulation in a number of ways for
several purposes. For example, the position along a certain mode may be kept fixed to monitor
the average force (free-energy gradient) on that coordinate in that position. Another application
is to enhance sampling efficiency with respect to usual MD [46, 47]. In this case, the system is
encouraged to sample its available configuration space more systematically than in a diffusion-like
path that proteins usually take.

Another possiblity to enhance sampling is flooding. Here a flooding potential is added to certain
(collective) degrees of freedom to expell the system out of a region of phase space [48].

The procedure for essential dynamics sampling or flooding is as follows. First the eigenvectors and
eigenvalues need to be determined using covariance analysis (g covar) or normal modes analysis

3.15. Parallelization 41

(g nmeig). This information is fed into make edi which has many options for selecting vectors
and setting parameters, see Appendix D for the manual page of make edi. The generated edi
input file is then passed to mdrun.

3.15 Parallelization

The CPU time required for a simulation can be reduced by running the simulation in parallel over
more than one processor or processor core. Ideally one would want to have linear scaling: running
on N processors/cores makes the simulation N times faster. In practice this can only be achieved
for a small number of processors. The scaling will depend a lot on the algorithms used. Also
different algorithms can have different restrictions on the interaction ranges between atoms. In
GROMACS we have two types of parallelization: particle decomposition and domain decomposi-
tion. Particle decomposition is only useful for a few special cases. Domain decomposition, which
is the default algorithm, will always be faster and scale better.

3.16 Particle decomposition

Particle decomposition, also called force decomposition, is the simplest type of decomposition.
Here at the start of the simulation particles are assigned to processors. Then forces between
particles need to be assigned to processors such that the force load is evenly balanced. This
decomposition requires that each processor knows the coordinates of at least half of the particles
in the system. Thus for a high number of processors N , about N × N/2 coordinates need to be
communicated. Because of this quadratic relation particle decomposition does not scale well.

Particle decomposition was the only method available before version 4 of GROMACS. Now it
is only useful in cases where domain decomposition does not work. This is for systems with
long-range bonded interactions, especially NMR distance or orientation restraints. With particle
decomposition only whole molecules can be assigned to a processor.

3.17 Domain decomposition

Since most interactions in molecular simulations are local, domain decomposition is a natural
way to decompose the system. In domain decomposition a spatial domain is assigned to each
processor. Each processor will integrate the equations of motion for the particles that currently
reside in its local domain. With domain decomposition there are two choices that have to be made:
the division of the unit cell into domains and the assignment of the forces to processors. Most
molecular simulation packages use the half-shell method for assigning the forces. But there are
two methods which always require less communication: the eighth shell[49] and the midpoint[50]
method. GROMACS currently uses the eighth shell method, but for certain systems or hardware
architectures it might be advantageous to use the midpoint method. Therefore we might implement
the midpoint method in the future. Most of the details of the domain decomposition can be found
in the GROMACS 4 paper[51].

42 Chapter 3. Algorithms

����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������

����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������

��������
��������
��������
��������

��������
��������
��������
��������

�����
�����
�����

�����
�����
�����

������
������
������
������
������
������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������
������
������
������
������
������

���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

����
����
����
����
����
����
����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����
����
����
����
����
����

������
������
������
������
������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������
������
������
������
������

����
����
����
����
����
����
����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����
����
����
����
����
����

������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

7

3
0

4
cr

1

65

Figure 3.10: A non-staggered domain decomposition grid of 3×2×2 cells. Coordinates in zones
1 to 7 are communicated to the corner cell that has its home particles in zone 0. rc is the cut-off
radius.

3.17.1 Coordinate and force communication

In the most general case of a triclinic unit cell, the space in divided with a 1, 2 or 3-D grid in
parallelepipeds which we call domain decomposition cells. Each cell is assigned to a processor.
The system is partitioned over the processors at the beginning of each MD step where neighbor
searching is performed. Since the neighbor searching is based on charge groups, charge groups
are also the units for the domain decomposition. Charge groups are assigned to the cell where
their center of geometry resides. Before the forces can be calculated, the coordinates from some
neighboring cells need to be communicated and after the forces are calculated the forces need to
be communicated in the other direction. The communication and force assignment is based on
zones which can cover one or multiple cells. An example of a zone setup is shown in Fig. 3.10.

The coordinates are communicated by moving data along the “negative” direction in x, y or z
to the next neighbor. This can be done in one or multiple pulses. In Fig. 3.10 two pulses in x
are required, then one in y and then one in z. The forces are communicated by reversing this
procedure. See the GROMACS 4 paper[51] for details on determining which non-bonded and
bonded forces should be calculated on which node.

3.17.2 Dynamic load balancing

When different processors have a different computational load (load imbalance), all processors
will have to wait for the one that takes the most time. One would like to avoid such a situation.
Load imbalance can occur due to three reasons:

• inhomogeneous particle distribution

• inhomogeneous interaction cost distribution (charged/uncharged, water/non-water due to
GROMACS water innerloops)

3.17. Domain decomposition 43

���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������

���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������

�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������

�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������

���
���
���
���
���
���

���
���
���
���
���
���

���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������

�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������

�
�
�
�
�
�

�
�
�
�
�
�

�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������

����
����
����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����
����

1
1

2
d

0

3 2

3’

rc

rb
2’

Figure 3.11: The zones to communicate to the processor of zone 0, see the text for details. rc and
rb are the non-bonded and bonded cut-off radii respectively, d is an example of a distance between
following, staggered boundaries of cells.

• statistical fluctuation (only with small particle numbers)

So we need a dynamic load balancing algorithm where the volume of each domain decomposition
cell can be adjusted independently. To achieve this the 2 or 3-D domain decomposition grids
need to be staggered. Fig. 3.11 shows the most general case in 2-D. Due to the staggering one
might require two distance checks for deciding if a charge group needs to be communicated: a
non-bonded distance and a bonded distance check.

By default mdrun automatically turns on the dynamic load balancing during a simulation when
the total performance loss due to the force calculation imbalance is 5% or more. Note that the
reported force load imbalance numbers might be higher, since the force calculation is only part of
work that needs to be done during an integration step. The load imbalance is reported in the log
file at log output steps and when the -v option is used also on screen. The average load imbalance
and the total performance loss due to load imbalance are reported at the end of the log file.

There is one important parameter for the dynamic load balancing which is the minimum allowed
scaling. By default each dimension of the domain decomposition cell can scale down by at least
a factor of 0.8. For 3-D domain decomposition this allows cells to change their volume by about
a factor of 0.5, which should allow for compensation of a load imbalance of 100%. The required
scaling can be changed with the -dds option of mdrun.

3.17.3 Constraints in parallel

Since with domain decomposition parts of molecules can reside on different processors, bond
constraints can cross cell boundaries. Therefore a parallel constraint algorithm is required. GRO-
MACS uses the P-LINCS algorithm[34], which is the parallel version of the LINCS algorithm[33]
(see 3.6.2). The P-LINCS procedure is illustrated in Fig. 3.12. When molecules cross the cell
boundaries, atoms in such molecules up to LINCS order plus one bonds away are communicated
over the cell boundaries. Then the normal LINCS algorithm can be applied to the local bonds
plus the communicated ones. After this procedure the local bonds are correctly constrained, even

44 Chapter 3. Algorithms

Figure 3.12: Example of the parallel setup of P-LINCS with one molecule split over three domain
decomposition cells, using a matrix expansion order of 3. The top part shows which atom coordi-
nates need to be communicated to which cells. The bottom parts show the local constraints (solid)
and the non-local constraints (dashed) for each of the three cells.

interaction range option default
non-bonded rc = max(rlist,rV dW ,rCoul) mdp file

two-body bonded max(rmb,rc) mdrun -rdd starting conf. + 10%
multi-body bonded rmb mdrun -rdd starting conf. + 10%

constraints rcon mdrun -rcon est. from bond lengths
virtual sites rcon mdrun -rcon 0

Table 3.2: The interaction ranges with domain decomposition.

though the extra communicated ones are not. One coordinate communication step is required for
the initial LINCS step and one for each iteration. Forces do not need to be communicated.

3.17.4 Interaction ranges

Domain decomposition takes advantage of the locality of interactions. This means that there will
be limitations on the range of interactions. By default mdrun tries to find the optimal balance
between interaction range and efficiency. But it can happen that a simulation stops with an error
message about missing interactions, or that a simulation might run slightly faster with shorter
interaction ranges. A list of interaction ranges and their default values is given in Table 3.2.

In most cases the defaults of mdrun should not cause the simulation to stop with an error message
of missing interactions. The range for the bonded interactions is determined from the distance
between bonded charge-groups in the starting configuration, 10% is added for headroom. For the

3.17. Domain decomposition 45

6 PP nodes 2 PME nodes8 PP/PME nodes

Figure 3.13: Example of 8 nodes without (left) and with (right) MPMD. The PME communication
(red arrows) is much higher on the left than on the right. For MPMD additional PP - PME coordi-
nate and force communication (blue arrows) is required, but the total communication complexity
is lower.

constraints the rcon is determined by taking the maximum distance that LINCS order plus one
bonds can cover when they all connect at angles of 120 degrees. The actual constraint commu-
nication is not limited by rcon, but by the minimum cell size LC , which has the following lower
limit:

LC ≥ max(rmb, rcon) (3.87)

Without domain decomposition the system is actually allowed to scale beyond this limit when
pressure scaling is used. Note that for triclinic boxes LC is not simply the box diagonal component
divided by the number of cells in that direction, but it is the shortest distance between the triclinic
cells borders. For rhombic dodecahedra this is a factor of

√
3/2 shorter along x and y.

When rmb > rc, mdrun employs a smart algorithm to reduce the communication. Simply
communicating all charge groups within rmb would increase the amount of communication enor-
mously. Therefore only charge-groups that are connected by bonded interactions to charge groups
which are not locally present are communicated. This leads to little extra communication, but also
to a slightly increased cost for the domain decomposition setup. In some cases, e.g. coarse-grained
simulations with a very short cut-off, one might want to set rmb by hand to reduce this cost.

3.17.5 Multiple-Program, Multiple-Data PME parallelization

Electrostatics interactions are long range, therefore special algorithms are used to avoid summation
over many atom pairs. In GROMACS this is usually PME (sec. 4.9.2). Since with PME all
particles interact with each other, global communication is required. This will usually be the
limiting factor on the scaling with domain decomposition. To reduce the effect of this problem, we
have come up with a Multiple-Program, Multiple-Data approach[51]. Here some processors are
selected to do only the PME mesh calculation, while the other processors, called particle-particle
(PP) nodes, do all the rest of the work. For rectangular boxes the optimal PP to PME node ratio
is usually 3:1, for rhombic dodecahedra usually 2:1. When the number of PME nodes is reduced
by a factor of 4, the number of communication calls is reduced by about a factor of 16. Or put
differently, we can now scale to 4 times more nodes. In addition, for modern 4 or 8 core machines
in a network the effective network bandwidth for PME is quadrupled, since only a quarter of the
cores will be using the network connection on each machine during the PME calculations.

46 Chapter 3. Algorithms

mdrun will by default interleave the PP and PME nodes. If the processors are not number consec-
utively inside the machines, one might want to use mdrun -ddorder pp pme. For machines
with a real 3-D torus and proper communication software that assigns the processors accordingly
one should use mdrun -ddorder cartesian.

To optimize the performance one should usually set up the cut-off’s and the PME grid such that the
PME load is 25 to 33% of the total calculation load. grompp will print an estimate for this load
at the end and also mdrun calculates the same estimate to determine the optimal number of PME
nodes to use. For high parallelization it might be worth to optimize the PME load with the mdp
settings and/or the number of PME nodes with the -npme option of mdrun. For changing the
electrostatics settings it is useful to know the accuracy of the electrostatics remains nearly constant
when the Coulomb cut-off and the PME grid spacing are scaled by the same factor. Note that it is
usually better to overestimate than to underestimate the number of PME nodes, since the number
of PME nodes is smaller than the number of PP nodes, which leads to less total waiting time.

Currently the PME domain decomposition is 1-D along the x axis. To avoid superfluous com-
munication of coordinates and forces between the PP and PME nodes, the number of DD cells in
the x direction should ideally be the same or a multiple of the number of PME nodes. By default
mdrun takes care of this issue. In the future we will support better parallelizable electrostatics
implementations.

3.17.6 Domain decomposition flow chart

In Fig. 3.14 a flow chart is shown for domain decomposition with all possible communication for
different algorithms. For simpler simulations the same flow chart applies, but simply without the
algorithms and communication for the algorithms which are not used.

3.17. Domain decomposition 47

Figure 3.14: Flow chart showing the algorithms and communication (arrows) for a standard MD
simulation with virtual sites, constraints and separate PME-mesh nodes.

48 Chapter 3. Algorithms

Chapter 4

Interaction function and force
field

To accommodate the potential functions used in some popular force fields (see 4.10), GROMACS
offers a choice of functions, both for non-bonded interaction and for dihedral interactions. They
are described in the appropriate subsections.

The potential functions can be subdivided into three parts

1. Non-bonded: Lennard-Jones or Buckingham, and Coulomb or modified Coulomb. The non-
bonded interactions are computed on the basis of a neighbor list (a list of non-bonded atoms
within a certain radius), in which exclusions are already removed.

2. Bonded: covalent bond-stretching, angle-bending, improper dihedrals, and proper dihedrals.
These are computed on the basis of fixed lists.

3. Restraints: position restraints, angle restraints, distance restraints, orientation restraints and
dihedral restraints, all based on fixed lists.

4.1 Non-bonded interactions

Non-bonded interactions in GROMACS are pair-additive and centro-symmetric:

V (r1, . . . rN) =
∑
i<j

Vij(rij); (4.1)

F i = −
∑
j

dVij(rij)
drij

rij
rij

= −F j (4.2)

The non-bonded interactions contain a repulsion term, a dispersion term, and a Coulomb term.
The repulsion and dispersion term are combined in either the Lennard-Jones (or 6-12 interaction),
or the Buckingham (or exp-6 potential). In addition, (partially) charged atoms act through the
Coulomb term.

50 Chapter 4. Interaction function and force field

0.3 0.4 0.5 0.6 0.7 0.8
r (nm)

0.0

0.5

1.0

1.5

2.0

V
LJ

 (
kJ

 m
ol

e-1
)

Figure 4.1: The Lennard-Jones interaction.

4.1.1 The Lennard-Jones interaction

The Lennard-Jones potential VLJ between two atoms equals

VLJ(rij) =
C

(12)
ij

r12
ij

−
C

(6)
ij

r6
ij

(4.3)

see also Fig. 4.1 The parameters C(12)
ij and C(6)

ij depend on pairs of atom types; consequently they
are taken from a matrix of LJ-parameters.

The force derived from this potential is:

F i(rij) =

12
C

(12)
ij

r13
ij

− 6
C

(6)
ij

r7
ij

 rij
rij

(4.4)

The LJ potential may also be written in the following form :

VLJ(rij) = 4εij

(σij
rij

)12

−
(
σij
rij

)6
 (4.5)

In constructing the parameter matrix for the non-bonded LJ-parameters, two types of combination
rules can be used within GROMACS: only geometric averages

C
(6)
ij =

(
C

(6)
ii C

(6)
jj

)1/2

C
(12)
ij =

(
C

(12)
ii C

(12)
jj

)1/2 (4.6)

or, alternatively the Lorentz-Bertelot rules can be used. An arithmetic average is used for the
sigma’s, while a geometric average is used for the epsilon’s,

σij = 1
2(σii + σjj)

εij = (εii εjj)
1/2 (4.7)

4.1. Non-bonded interactions 51

0.2 0.3 0.4 0.5 0.6 0.7 0.8
r (nm)

0.0

0.5

1.0

1.5

2.0

V
 (

kJ
 m

ol
e-1

)

Figure 4.2: The Buckingham interaction.

4.1.2 Buckingham potential

The Buckingham potential has a more flexible and realistic repulsion term than the Lennard-Jones
interaction, but is also more expensive to compute. The potential form is:

Vbh(rij) = Aij exp(−Bijrij)−
Cij
r6
ij

(4.8)

see also Fig. 4.2, the force derived from this is:

F i(rij) =

[
AijBij exp(−Bijrij)− 6

Cij
r7
ij

]
rij
rij

(4.9)

There is only one set of combination rules for Buckingham potentials:

Aij = (AiiAjj)
1/2

Bij = 1
2(Bii +Bjj)

Cij = (CiiCjj)
1/2

(4.10)

4.1.3 Coulomb interaction

The Coulomb interaction between two charge particles is given by:

Vc(rij) = f
qiqj
εrrij

(4.11)

see also Fig. 4.3, where f = 1
4πε0

= 138.935 485 (see chapter 2)

The force derived from this potential is:

F i(rij) = f
qiqj
εrr2

ij

rij
rij

(4.12)

In GROMACS the relative dielectric constant εr may be set in the in the input for grompp.

52 Chapter 4. Interaction function and force field

0.0 0.2 0.4 0.6 0.8
r (nm)

0

500

1000

1500

V
c (

kJ
 m

ol
-1

)

Coulomb
With RF
RF - C

Figure 4.3: The Coulomb interaction (for particles with equal signed charge) with and without
reaction field. In the latter case εr was 1, εrf was 78, and rc was 0.9 nm. The dot-dashed line is
the same as the dashed line, except for a constant.

4.1.4 Coulomb interaction with reaction field

The coulomb interaction can be modified for homogeneous systems, by assuming a constant di-
electric environment beyond the cutoff rc with a dielectric constant of εrf . The interaction then
reads:

Vcrf = f
qiqj
εrrij

[
1 +

εrf − εr
2εrf + εr

r3
ij

r3
c

]
− f qiqj

εrrc

3εrf
2εrf + εr

(4.13)

in which the constant expression on the right makes the potential zero at the cutoff rc. For charged
cut-off spheres this corresponds to neutralization with a homogeneous background charge. We can
rewrite eqn. 4.13 for simplicity as

Vcrf = f
qiqj
εr

[
1
rij

+ krf r
2
ij − crf

]
(4.14)

with

krf =
1
r3
c

εrf − εr
(2εrf + εr)

(4.15)

crf =
1
rc

+ krf r
2
c =

1
rc

3εrf
(2εrf + εr)

(4.16)

For large εrf the krf goes to r−3
c /2, while for εrf = εr the correction vanishes. In Fig. 4.3 the

modified interaction is plotted, and it is clear that the derivative with respect to rij (= -force) goes
to zero at the cutoff distance. The force derived from this potential reads:

F i(rij) = f
qiqj
εr

[
1
r2
ij

− 2krfrij

]
rij
rij

(4.17)

The reaction-field correction should also be applied to all excluded atoms pairs, including self
pairs, in which case the normal Coulomb term in eqns. 4.13 and 4.17 is absent.

4.1. Non-bonded interactions 53

Tironi et al. have introduced a generalized reaction field in which the dielectric continuum beyond
the cutoff rc also has an ionic strength I [52]. In this case we can rewrite the constants krf and
crf using the inverse Debye screening length κ:

κ2 =
2I F 2

ε0εrfRT
=

F 2

ε0εrfRT

K∑
i=1

ciz
2
i (4.18)

krf =
1
r3
c

(εrf − εr)(1 + κrc) + 1
2εrf (κrc)2

(2εrf + εr)(1 + κrc) + εrf (κrc)2
(4.19)

crf =
1
rc

3εrf (1 + κrc + 1
2(κrc)2)

(2εrf + εr)(1 + κrc) + εrf (κrc)2
(4.20)

where F is Faraday’s constant, R is the ideal gas constant, T the absolute temperature, ci the
molar concentration for species i and zi the charge number of species i where we haveK different
species. In the limit of zero ionic strength (κ = 0) eqns. 4.19 and 4.20 reduce to the simple forms
of eqns. 4.15 and 4.16 respectively.

4.1.5 Modified non-bonded interactions

In the GROMACS force field the non-bonded potentials can be modified by a shift function. The
purpose of this is to replace the truncated forces by forces that are continuous and have continuous
derivatives at the cutoff radius. With such forces the time-step integration produces much smaller
errors and there are no such complications as creating charges from dipoles by the truncation
procedure. In fact, by using shifted forces there is no need for charge groups in the construction of
neighbor lists. However, the shift function produces a considerable modification of the Coulomb
potential. Unless the ’missing’ long-range potential is properly calculated and added (through the
use of PPPM, Ewald, or PME), the effect of such modifications must be carefully evaluated. The
modification of the Lennard-Jones dispersion and repulsion is only minor, but it does remove the
noise caused by cutoff effects.

There is no fundamental difference between a switch function (which multiplies the potential with
a function) and a shift function (which adds a function to the force or potential) [53]. The switch
function is a special case of the shift function, which we apply to the force function F (r), related
to the electrostatic or Van der Waals force acting on particle i by particle j as

F i = cF (rij)
rij
rij

(4.21)

For pure Coulomb or Lennard-Jones interactions F (r) = Fα(r) = r−(α+1). The shifted force
Fs(r) can generally be written as:

Fs(r) = Fα(r) r < r1

Fs(r) = Fα(r) + S(r) r1 ≤ r < rc

Fs(r) = 0 rc ≤ r

(4.22)

When r1 = 0 this is a traditional shift function, otherwise it acts as a switch function. The
corresponding shifted coulomb potential then reads:

Vs(rij) = fΦs(rij)qiqj (4.23)

54 Chapter 4. Interaction function and force field

where Φ(r) is the potential function

Φs(r) =
∫ ∞
r

Fs(x) dx (4.24)

The GROMACS shift function should be smooth at the boundaries, therefore the following bound-
ary conditions are imposed on the shift function:

S(r1) = 0
S′(r1) = 0
S(rc) = −Fα(rc)
S′(rc) = −F ′α(rc)

(4.25)

A 3rd degree polynomial of the form

S(r) = A(r − r1)2 +B(r − r1)3 (4.26)

fulfills these requirements. The constants A and B are given by the boundary condition at rc:

A = −(α+ 4)rc − (α+ 1)r1

rα+2
c (rc − r1)2

B =
(α+ 3)rc − (α+ 1)r1

rα+2
c (rc − r1)3

(4.27)

Thus the total force function is

Fs(r) =
α

rα+1
+A(r − r1)2 +B(r − r1)3 (4.28)

and the potential function reads

Φ(r) =
1
rα
− A

3
(r − r1)3 − B

4
(r − r1)4 − C (4.29)

where

C =
1
rαc
− A

3
(rc − r1)3 − B

4
(rc − r1)4 (4.30)

When r1 = 0, the modified Coulomb force function is

Fs(r) =
1
r2
− 5r2

r4
c

+
4r3

r5
c

(4.31)

identical to the parabolic force function recommended to be used as a short-range function in
conjunction with a Poisson solver for the long-range part [17]. The modified Coulomb potential
function is

Φ(r) =
1
r
− 5

3rc
+

5r3

3r4
c

− r4

r5
c

(4.32)

see also Fig. 4.4.

4.2. Bonded interactions 55

0.0 1.0 2.0 3.0 4.0 5.0
r�

−0.5

0.0

0.5

1.0

1.5

f(
r)

Normal Force
Shifted Force
Shift Function

Figure 4.4: The Coulomb Force, Shifted Force and Shift Function S(r), using r1 = 2 and rc = 4.

4.1.6 Modified short-range interactions with Ewald summation

When Ewald summation or particle-mesh Ewald is used to calculate the long-range interactions,
the short-range coulomb potential must also be modified, similar to the switch function above. In
this case the short range potential is given by

V (r) = f
erfc(βrij)

rij
qiqj , (4.33)

where β is a parameter that determines the relative weight between the direct space sum and the
reciprocal space sum and erfc(x) is the complementary error function. For further details on long-
range electrostatics, see sec. 4.9.

4.2 Bonded interactions

Bonded interactions are based on a fixed list of atoms. They are not exclusively pair interac-
tions, but include 3- and 4-body interactions as well. There are bond stretching (2-body), bond
angle (3-body), and dihedral angle (4-body) interactions. A special type of dihedral interaction
(called improper dihedral) is used to force atoms to remain in a plane or to prevent transition to a
configuration of opposite chirality (a mirror image).

56 Chapter 4. Interaction function and force field

b0

0.08 0.09 0.10 0.11 0.12
r (nm)

0

50

100

150

200

V
b (

kJ
 m

ol
e-1

)

Figure 4.5: Principle of bond stretching (left), and the bond stretching potential (right).

4.2.1 Bond stretching

Harmonic potential

The bond stretching between two covalently bonded atoms i and j is represented by a harmonic
potential

Vb (rij) =
1
2
kbij(rij − bij)2 (4.34)

see also Fig. 4.5, with the force

F i(rij) = kbij(rij − bij)
rij
rij

(4.35)

Fourth power potential

In the GROMOS-96 force field [54] the covalent bond potential is written for reasons of compu-
tational efficiency as:

Vb (rij) =
1
4
kbij

(
r2
ij − b2ij

)2
(4.36)

the corresponding force is:
F i(rij) = kbij(r

2
ij − b2ij) rij (4.37)

The force constants for this form of the potential is related to the usual harmonic force constant
kb,harm (sec. 4.2.1) as

2kbb2ij = kb,harm (4.38)

The force constants are mostly derived from the harmonic ones used in GROMOS-87 [55]. Al-
though this form is computationally more efficient (because no square root has to be evaluated), it
is conceptually more complex. One particular disadvantage is that since the form is not harmonic,
the average energy of a single bond is not equal to 1

2kT as it is for the normal harmonic potential.

4.2. Bonded interactions 57

4.2.2 Morse potential bond stretching

For some systems that require an anharmonic bond stretching potential, the Morse potential [56]
between two atoms i and j is available in GROMACS. This potential differs from the harmonic po-
tential in having an asymmetric potential well and a zero force at infinite distance. The functional
form is:

Vmorse(rij) = Dij [1− exp(−βij(rij − bij))]2, (4.39)

see also Fig. 4.6, and the corresponding force is:

Fmorse(rij) = 2Dijβijrij exp(−βij(rij − bij))∗
[1− exp(−βij(rij − bij))]

rij
rij ,

(4.40)

where Dij is the depth of the well in kJ/mol, βij defines the steepness of the well (in nm−1), and
bij is the equilibrium distance in nm. The steepness parameter βij can be expressed in terms of
the reduced mass of the atoms i and j, the fundamental vibration frequency ωij and the well depth
Dij :

βij = ωij

√
µij

2Dij
(4.41)

and because ω =
√
k/µ, one can rewrite βij in terms of the harmonic force constant kij

βij =

√
kij

2Dij
(4.42)

For small deviations (rij − bij), one can approximate the exp-term to first-order using a Taylor
expansion:

exp(−x) ≈ 1− x (4.43)

and substituting eqn. 4.42 and eqn. 4.43 in the functional from,

Vmorse(rij) = Dij [1− exp(−βij(rij − bij))]2

= Dij [1− (1−
√

kij
2Dij

(rij − bij))]2

= 1
2kij(rij − bij))

2,

(4.44)

we recover the harmonic bond stretching potential.

4.2.3 Cubic bond stretching potential

Another anharmonic bond stretching potential that is slightly simpler than the Morse potential
adds a cubic term in the distance to the simple harmonic form:

Vb (rij) = kbij(rij − bij)2 + kbijk
cub
ij (rij − bij)3 (4.45)

A flexible water model (based on the SPC water model [57]) including a cubic bond stretching
potential for the O-H bond was developed by Ferguson [58]. This model was found to yield a
reasonable infrared spectrum. The Ferguson water model is available in the GROMACS library.

58 Chapter 4. Interaction function and force field

0.0 0.1 0.2 0.3 0.4 0.5
r (nm)

0

50

100

150

200

V
M

or
se

 (
kJ

 /
m

ol
)

Figure 4.6: The Morse potential well, with bond length 0.15 nm.

It should be noted that the potential is asymmetric: overstretching leads to infinitely low energies.
The integration timestep is therefore limited to 1 fs.

The force corresponding to this potential is:

F i(rij) = 2kbij(rij − bij)
rij
rij

+ 3kbijk
cub
ij (rij − bij)2 rij

rij
(4.46)

4.2.4 FENE bond stretching potential

In coarse-grained polymer simulations the beads are often connected by a FENE (finitely ex-
tendible nonlinear elastic) potential [59]:

VFENE(rij) = −1
2
kbijb

2
ij log

(
1−

r2
ij

b2ij

)
(4.47)

The potential looks complicated, but the expression for the force is simpler:

FFENE(rij) = −kbij

(
1−

r2
ij

b2ij

)−1

rij (4.48)

At short distances the potential asymptotically goes to a harmonic potential with force constant
kb, while it diverges at distance b.

4.2.5 Harmonic angle potential

The bond angle vibration between a triplet of atoms i - j - k is also represented by a harmonic
potential on the angle θijk

Va(θijk) =
1
2
kθijk(θijk − θ0

ijk)
2 (4.49)

As the bond-angle vibration is represented by a harmonic potential, the form is the same as the
bond stretching (Fig. 4.5).

4.2. Bonded interactions 59

θ0

100 110 120 130 140
θ

0

10

20

30

40

50

V
θ (

kJ
 m

ol
e-1

)

Figure 4.7: Principle of angle vibration (left) and the bond angle potential (right).

The force equations are given by the chain rule:

F i = − dVa(θijk)
dri

F k = − dVa(θijk)
drk

F j = − F i − F k

where θijk = arccos
(rij · rkj)
rijrkj

(4.50)

The numbering i, j, k is in sequence of covalently bonded atoms. Atom j is in the middle; atoms
i and k are at the ends (see Fig. 4.7). Note that in the input in topology files, angles are given in
degrees and force constants in kJ/mol/rad2.

4.2.6 Cosine based angle potential

In the GROMOS-96 force field a simplified function is used to represent angle vibrations:

Va(θijk) =
1
2
kθijk

(
cos(θijk)− cos(θ0

ijk)
)2

(4.51)

where

cos(θijk) =
rij · rkj
rijrkj

(4.52)

The corresponding force can be derived by partial differentiation with respect to the atomic posi-
tions. The force constants in this function are related to the force constants in the harmonic form
kθ,harm (sec. 4.2.5) by:

kθ sin2(θ0
ijk) = kθ,harm (4.53)

In the GROMOS-96 manual there is a much more complicated conversion formula which is tem-
perature dependent. The formulas are equivalent at 0 K and the differences at 300 K are on the
order of 0.1 to 0.2%. Note that in the input in topology files, angles are given in degrees and force
constants in kJ/mol.

60 Chapter 4. Interaction function and force field

4.2.7 Urey-Bradley potential

The bond Urey-Bradley angle vibration between a triplet of atoms i - j - k is represented by a
harmonic potential on the angle θijk and a harmonic correction term on the distance between the
atoms i and k. Although this can be easily written as a simple sum of two terms, it is convenient
to have it as a single entry in the topology file and in the output as a separate energy term. It is
used mainly in the CHARMm force field [60]. The energy is given by:

Va(θijk) =
1
2
kθijk(θijk − θ0

ijk)
2 +

1
2
kUBijk (rik − r0

ik)
2 (4.54)

The force equations can be deduced from sections 4.2.1 and 4.2.5.

4.2.8 Bond-Bond cross term

The bond-bond cross term for three particles i, j, k forming bonds i− j and k− j is given by [61]:

Vrr′ = krr′ (|ri − rj | − r1e) (|rk − rj | − r2e) (4.55)

where krr′ is the force constant, and r1e and r2e are the equilibrium bond lengths of the i− j and
k − j bonds respectively. The force associated with this potential on particle i is:

F i = −krr′ (|rk − rj | − r2e)
ri − rj
|ri − rj |

(4.56)

the force on atom k can be obtained by swapping i and k in the above equation. Finally the force
on atom j follows from the fact that the sum of internal forces should be zero: F j = −F i − F k.

4.2.9 Bond-Angle cross term

The bond-angle cross term for three particles i, j, k forming bonds i−j and k−j is given by [61]:

Vrθ = krθ (|ri − rk| − r3e) (|ri − rj | − r1e + |rk − rj | − r2e) (4.57)

where krθ is the force constant, r3e is the i − k distance, and the other constants are the same as
in Eqn. 4.55. The force associated with the potential on atom i is:

F i = − krθ

[
(|ri − rk| − r3e)

ri − rj
|ri − rj |

+ (|ri − rj | − r1e + |rk − rj | − r2e)
ri − rk
|ri − rk|

]
(4.58)

4.2.10 Quartic angle potential

For special purposes there is an angle potential that uses a fourth order polynomial:

Vq(θijk) =
5∑

n=0

Cn(θijk − θ0
ijk)

n (4.59)

4.2. Bonded interactions 61

k

li

j

i

kj

l

k

i

j

l

Figure 4.8: Principle of improper dihedral angles. Out of plane bending for rings (left), sub-
stituents of rings (middle), out of tetrahedral (right). The improper dihedral angle ξ is defined as
the angle between planes (i,j,k) and (j,k,l) in all cases.

-20 -10 0 10 20
ξ

0

5

10

15

20

25

V
ξ (

kJ
 m

ol
e-1

)

Figure 4.9: Improper dihedral potential.

4.2.11 Improper dihedrals

Improper dihedrals are meant to keep planar groups planar (e.g. aromatic rings) or to prevent
molecules from flipping over to their mirror images, see Fig. 4.8.

Vid(ξijkl) =
1
2
kξ(ξijkl − ξ0)2 (4.60)

This is also a harmonic potential; it is plotted in Fig. 4.9. Since the potential is harmonic it is
discontinuous, but since the discontinuity is chosen at 180◦ distance from ξ0 this will never cause
problems. Note that in the input in topology files, angles are given in degrees and force constants
in kJ/mol/rad2.

4.2.12 Proper dihedrals

For the normal dihedral interaction there is a choice of either the GROMOS periodic function or a
function based on expansion in powers of cosφ (the so-called Ryckaert-Bellemans potential). This
choice has consequences for the inclusion of special interactions between the first and the fourth
atom of the dihedral quadruple. With the periodic GROMOS potential a special 1-4 LJ-interaction
must be included; with the Ryckaert-Bellemans potential for alkanes the 1-4 interactions must be

62 Chapter 4. Interaction function and force field

j

k

l

i

0 90 180 270 360
φ

0

10

20

30

40

50

60

70

V
φ (

kJ
 m

ol
e-1

)

Figure 4.10: Principle of proper dihedral angle (left, in trans form) and the dihedral angle potential
(right).

C0 9.28 C2 -13.12 C4 26.24
C1 12.16 C3 -3.06 C5 -31.5

Table 4.1: Constants for Ryckaert-Bellemans potential (kJ mol−1).

excluded from the non-bonded list. Note: Ryckaert-Bellemans potentials are also used in e.g. the
OPLS force field in combination with 1-4 interactions. You should therefore not modify topologies
generated by pdb2gmx in this case.

Proper dihedrals: periodic type

Proper dihedral angles are defined according to the IUPAC/IUB convention, where φ is the angle
between the ijk and the jkl planes, with zero corresponding to the cis configuration (i and l on
the same side).

Vd(φijkl) = kφ(1 + cos(nφ− φs)) (4.61)

Proper dihedrals: Ryckaert-Bellemans function

For alkanes, the following proper dihedral potential is often used (see Fig. 4.11)

Vrb(φijkl) =
5∑

n=0

Cn(cos(ψ))n, (4.62)

where ψ = φ− 180◦.
Note: A conversion from one convention to another can be achieved by multiplying every coeffi-
cient Cn by (−1)n.

An example of constants for C is given in Table 4.1.

4.2. Bonded interactions 63

0 90 180 270 360
φ

0

10

20

30

40

50

V
φ (

kJ
 m

ol
e-1

)

Figure 4.11: Ryckaert-Bellemans dihedral potential.

(Note: The use of this potential implies exclusion of LJ interactions between the first and the last
atom of the dihedral, and ψ is defined according to the ’polymer convention’ (ψtrans = 0).)

The RB dihedral function can also be used to include Fourier dihedrals (see below):

Vrb(φijkl) =
1
2

[F1(1 + cos(φ)) + F2(1− cos(2φ)) + F3(1 + cos(3φ) + F4(1− cos(4φ))]
(4.63)

Because of the equalities cos(2φ) = 2 cos2(φ)−1, cos(3φ) = 4 cos3(φ)−3 cos(φ) and cos(4φ) =
8 cos4(φ)− 8 cos2(φ) + 1 one can translate the OPLS parameters to Ryckaert-Bellemans param-
eters as follows:

C0 = F2 + 1
2(F1 + F3)

C1 = 1
2(−F1 + 3F3)

C2 = −F2 + 4F4

C3 = −2F3

C4 = −4F4

C5 = 0

(4.64)

with OPLS parameters in protein convention and RB parameters in polymer convention (this yields
a minus sign for the odd powers of cos(φ)).
Note: Mind the conversion from kcal mol−1 for literature OPLS and RB parameters to kJ mol−1

in GROMACS.

Proper dihedrals: Fourier function

The OPLS potential function is given as the first three or four [62] cosine terms of a Fourier series.
In GROMACS the four term function is implemented:

VF (φijkl) =
1
2

[C1(1 + cos(φ)) + C2(1− cos(2φ)) + C3(1 + cos(3φ) + C4(1 + cos(4φ))] ,
(4.65)

64 Chapter 4. Interaction function and force field

Internally GROMACS uses the Ryckaert-Bellemans code to compute Fourier dihedrals (see above),
because this is more efficient.
Note: Mind the conversion from kcal mol−1 for literature OPLS parameters to kJ mol−1 in GRO-
MACS.

4.2.13 Tabulated interaction functions

For full flexibility, any functional shape can be used for bonds, angles and dihedrals through user
supplied tabulated functions. The functional shapes are:

Vb(rij) = k f bn(rij) (4.66)

Va(θijk) = k fan(θijk) (4.67)

Vd(φijkl) = k fdn(φijkl) (4.68)

where k is a force constant in units of energy and f is a cubic spline function, for details see 6.7.1.
For each interaction the force constant k and the table number n are specified in the topology. The
are two different types of bonds, one that generates exclusions and one that does not. For details
see Table 5.4. The table files are supplied to the mdrun program. After the table file name an
underscore, the letter ’b’ for bonds, ’a’ for angles or ’d’ for dihedrals and the table number are
appended. For example, for a bond with n = 0 (and using the default table file name) the table is
read from the file table b0.xvg. The format for the table files is three columns with x, f(x),
−f ′(x), where x should be uniformly spaced. The setup of the tables is as follows:
bonds: x is the distance in nanometers, for distances beyond the table length cause mdrun to quit
with an error message
angles: x is the angle in degrees, the table should go from 0 up to and including 180 degrees, the
derivative is taken in degrees
dihedrals: x is the dihedral angle in degrees, the table should go from -180 up to and including
180 degrees, the IUPAC/IUB convention is used, i.e. zero is cis, the derivative is taken in degrees

4.3 Restraints

Special potentials are used for imposing restraints on the motion of the system, either to avoid
disastrous deviations, or to include knowledge from experimental data. In either case they are not
really part of the force field and the reliability of the parameters is not important. The potential
forms, as implemented in GROMACS, are mentioned just for the sake of completeness.

4.3.1 Position restraints

These are used to restrain particles to fixed reference positions Ri. They can be used during
equilibration in order to avoid too drastic rearrangements of critical parts (e.g. to restrain motion in
a protein that is subjected to large solvent forces when the solvent is not yet equilibrated). Another
application is the restraining of particles in a shell around a region that is simulated in detail, while
the shell is only approximated because it lacks proper interaction from missing particles outside

4.3. Restraints 65

0 0.02 0.04 0.06 0.08 0.1
r (nm)

0

2

4

6

8

10

V
po

sr
e (

kJ
 m

ol
e-1

)

Figure 4.12: Position restraint potential.

the shell. Restraining will then maintain the integrity of the inner part. For spherical shells it is a
wise procedure to make the force constant depend on the radius, increasing from zero at the inner
boundary to a large value at the outer boundary. This feature has not, however, been implemented
in GROMACS.

The following form is used:

Vpr(ri) =
1
2
kpr|ri −Ri|2 (4.69)

The potential is plotted in Fig. 4.12.

The potential form can be rewritten without loss of generality as:

Vpr(ri) =
1
2

[
kxpr(xi −Xi)2 x̂ + kypr(yi − Yi)2 ŷ + kzpr(zi − Zi)2 ẑ

]
(4.70)

Now the forces are:
F xi = −kxpr (xi −Xi)
F yi = −kypr (yi − Yi)
F zi = −kzpr (zi − Zi)

(4.71)

Using three different force constants the position restraints can be turned on or off in each spatial
dimension; this means that atoms can be harmonically restrained to a plane or a line. Position
restraints are applied to a special fixed list of atoms. Such a list is usually generated by the
pdb2gmx program.

4.3.2 Angle restraints

These are used to restrain the angle between two pairs of particles or between one pair of particles
and the Z-axis. The functional form is similar to that of a proper dihedral. For two pairs of atoms:

Var(ri, rj , rk, rl) = kar(1− cos(n(θ − θ0))), where θ = arccos

(
rj − ri
‖rj − ri‖

· rl − rk
‖rl − rk‖

)
(4.72)

66 Chapter 4. Interaction function and force field

For one pair of atoms and the Z-axis:

Var(ri, rj) = kar(1− cos(n(θ − θ0))), where θ = arccos

 rj − ri
‖rj − ri‖

·

 0
0
1


 (4.73)

A multiplicity (n) of 2 is useful when you do not want to distinguish between parallel and anti-
parallel vectors. The equilibrium angle θ should be between 0 and 180 degrees for multiplicity 1
and between 0 and 90 degrees for multiplicity 2.

4.3.3 Dihedral restraints

These are used to restrain the dihedral angle φ defined by four particles as in an improper dihedral
(sec. 4.2.11) but with a slightly modified potential. Using

φ′ = (φ− φ0) MOD 2π (4.74)

where φ0 is the reference angle, the potential is defined as:

Vdihr(φ′) =


1
2kdihr(φ

′ − φ0 −∆φ)2 for φ′ > ∆φ

0 for φ′ ≤ ∆φ
(4.75)

where ∆φ is a user defined angle and kdihr is the force constant. Note that in the input in topology
files, angles are given in degrees and force constants in kJ/mol/rad2.

4.3.4 Distance restraints

Distance restraints add a penalty to the potential when the distance between specified pairs of
atoms exceeds a threshold value. They are normally used to impose experimental restraints, as
from experiments in nuclear magnetic resonance (NMR), on the motion of the system. Thus
MD can be used for structure refinement using NMR data. If one just wants to the restrain the
distance between two particles using a harmonic potential one should use [bonds] type 6 (see
sec. 5.4). The potential form for distance restraints is quadratic below a specified lower bound and
between two specified upper bounds and linear beyond the largest bound (see Fig. 4.13).

Vdr(rij) =



1
2kdr(rij − r0)2 for rij < r0

0 for r0 ≤ rij < r1

1
2kdr(rij − r1)2 for r1 ≤ rij < r2

1
2kdr(r2 − r1)(2rij − r2 − r1) for r2 ≤ rij

(4.76)

The forces are

F i =



−kdr(rij − r0)rijrij for rij < r0

0 for r0 ≤ rij < r1

−kdr(rij − r1)rijrij for r1 ≤ rij < r2

−kdr(r2 − r1)rijrij for r2 ≤ rij

(4.77)

4.3. Restraints 67

0 0.1 0.2 0.3 0.4 0.5
r (nm)

0

5

10

15

20

V
di

sr
e (

kJ
 m

ol
-1

)

r0 r1 r2

Figure 4.13: Distance Restraint potential.

Time averaging

Distance restraints based on instantaneous distances can potentially reduce the fluctuations in a
molecule significantly. This problem can be overcome by restraining to a time averaged dis-
tance [63]. The forces with time averaging are:

F i =



−kadr(r̄ij − r0)rijrij for r̄ij < r0

0 for r0 ≤ r̄ij < r1

−kadr(r̄ij − r1)rijrij for r1 ≤ r̄ij < r2

−kadr(r2 − r1)rijrij for r2 ≤ r̄ij

(4.78)

where r̄ij is given by an exponential running average with decay time τ :

r̄ij = < r−3
ij >−1/3 (4.79)

and the force constant kadr is switched on slowly to compensate for the lack of history at the
beginning of the simulation:

kadr = kdr

(
1− exp

(
− t
τ

))
(4.80)

Because of the time averaging we can no longer speak of a distance restraint potential.

This way an atom can satisfy two incompatible distance restraints on average by moving between
two positions. An example would be an amino-acid side-chain which is rotating around its χ
dihedral angle, thereby coming close to various other groups. Such a mobile side chain can give
rise to multiple NOEs that can not be fulfilled by a single structure.

The computation of the time averaged distance in the mdrun program is done in the following
fashion:

r−3
ij(0) = rij(0)−3

r−3
ij(t) = r−3

ij(t−∆t) exp
(
−∆t

τ

)
+ rij(t)−3

[
1− exp

(
−∆t

τ

)] (4.81)

68 Chapter 4. Interaction function and force field

When a pair is within the bounds it can still feel a force, because the time averaged distance can
still be beyond a bound. To prevent the protons from being pulled too close together a mixed
approach can be used. In this approach the penalty is zero when the instantaneous distance is
within the bounds, otherwise the violation is the square root of the product of the instantaneous
violation and the time averaged violation:

F i =


kadr

√
(rij − r0)(r̄ij − r0)rijrij for rij < r0 and r̄ij < r0

−kadr min
(√

(rij − r1)(r̄ij − r1), r2 − r1

)
rij
rij

for rij > r1 and r̄ij > r1

0 else
(4.82)

Averaging over multiple pairs

Sometimes it is unclear from experimental data which atom pair gives rise to a single NOE, in
other occasions it can be obvious that more than one pair contributes due to the symmetry of the
system, e.g. a methyl group with three protons. For such a group it is not possible to distinguish
between the protons, therefore they should all be taken into account when calculating the distance
between this methyl group and another proton (or group of protons). Due to the physical nature of
magnetic resonance, the intensity of the NOE signal is inversely proportional to the sixth power
of the interatomic distance. Thus, when combining atom pairs, a fixed list of N restraints may be
taken together, where the apparent “distance” is given by:

rN (t) =

[
N∑
n=1

r̄n(t)−6

]−1/6

(4.83)

where we use rij or eqn. 4.79 for the r̄n. The rN of the instantaneous and time-averaged distances
can be combined to do a mixed restraining as indicated above. As more pairs of protons contribute
to the same NOE signal, the intensity will increase, and the summed “distance” will be shorter
than any of its components due to the reciprocal summation.

There are two options for distributing the forces over the atom pairs. In the conservative option
the force is defined as the derivative of the restraint potential with respect to the coordinates. This
results in a conservative potential when time averaging is not used. The force distribution over the
pairs is proportional to r−6. This means that a close pair feels a much larger force than a distant
pair, which might lead to a ’too rigid’ molecule. The other option is an equal force distribution.
In this case each pair feels 1/N of the derivative of the restraint potential with respect to rN . The
advantage of this method is that more conformations might be sampled, but the non-conservative
nature of the forces can lead to local heating of the protons.

It is also possible to use ensemble averaging using multiple (protein) molecules. In this case the
bounds should be lowered as in:

r1 = r1 ∗M−1/6

r2 = r2 ∗M−1/6 (4.84)

where M is the number of molecules. The GROMACS preprocessor grompp can do this auto-
matically when the appropriate option is given. The resulting “distance” is then used to calculate

4.3. Restraints 69

the scalar force according to:

F i = 0 rN < r1

= − kdr(rN − r1)rijrij r1 ≤ rN < r2

= − kdr(r2 − r1)rijrij rN ≥ r2

(4.85)

where i and j denote the atoms of all the pairs that contribute to the NOE signal.

Using distance restraints

A list of distance restrains based on NOE data can be added to a molecule definition in your
topology file, like in the following example:

[distance restraints]
; ai aj type index type’ low up1 up2 fac
10 16 1 0 1 0.0 0.3 0.4 1.0
10 28 1 1 1 0.0 0.3 0.4 1.0
10 46 1 1 1 0.0 0.3 0.4 1.0
16 22 1 2 1 0.0 0.3 0.4 2.5
16 34 1 3 1 0.0 0.5 0.6 1.0

In this example a number of features can be found. In columns ai and aj you find the atom
numbers of the particles to be restrained. The type column should always be 1. As explained
in sec. 4.3.4, multiple distances can contribute to a single NOE signal. In the topology this can
be set using the index column. In our example, the restraints 10-28 and 10-46 both have index
1, therefore they are treated simultaneously. An extra requirement for treating restraints together,
is that the restraints should be on successive lines, without any other intervening restraint. The
type’ column will usually be 1, but can be set to 2 to obtain a distance restraint which will never
be time and ensemble averaged; this can be useful for restraining hydrogen bonds. The columns
low, up1 and up2 hold the values of r0, r1 and r2 from eqn. 4.76. In some cases it can be useful
to have different force constants for some restraints; this is controlled by the column fac. The
force constant in the parameter file is multiplied by the value in the column fac for each restraint.

Some parameters for NMR refinement can be specified in the grompp.mdp file:

disre: type of distance restraining. The disre variable sets the type of distance restraint.
no/simple turns the distance restraints off/on. When multiple proteins or peptides are
present in one simulation box, ensemble averaging can be turned on by setting disre =
ensemble. Normally one would perform ensemble averaging over multiple subsystems,
each in a separate box, using mdrun -multi; supply topol0.tpr, topol1.tpr, ...
with different coordiates and/or velocities.

disre weighting: force-weighting in restraints with multiple pairs. By default, the force
due to the distance restraint is distributed equally over all the pairs involved in the restraint.
This can also be explicitly selected with disre weighting = equal. If you instead
set this option to disre weighting = conservative you get conservative forces
when disre tau = 0.

70 Chapter 4. Interaction function and force field

disre mixed: how to calculate the violations. disre mixed = no gives normal time-averaged
violations. When disre mixed = yes the square root of the product of the time-
averaged and the instantaneous violations is used.

disre fc: force constant kdr for distance restraints. kdr (eqn. 4.76) can be set as variable
disre fc = 1000 for a force constant of 1000 kJ mol−1 nm−2. This value is multi-
plied by the value in the fac column in the distance restraint entries in the topology file.

disre tau: time constant for restraints. τ (eqn. 4.81) can be set as variable disre tau =
10 for a time constant of 10 ps. Time averaging can be turned off by setting disre tau
to 0.

nstdisreout: pair distance output frequency. Determines how often the time-averaged and
instantaneous distances of all atom pairs involved in distance restraints are written to the
energy file.

4.3.5 Orientation restraints

This section describes how orientations between vectors, as measured in certain NMR experi-
ments, can be calculated and restrained in MD simulations. The presented refinement method-
ology and a comparision of results with and without time and ensemble averaging have been
published [64].

Theory

In an NMR experiment orientations of vectors can be measured when a molecule does not tum-
ble completely isotropically in the solvent. Two examples of such orientation measurements are
residual dipolar couplings (between two nuclei) or chemical shift anisotropies. An observable for
a vector ri can be written as follows:

δi =
2
3

tr(SDi) (4.86)

where S is the dimensionless order tensor of the molecule. The tensor Di is given by:

Di =
ci
‖ri‖α

 3xx− 1 3xy 3xz
3xy 3yy − 1 3yz
3xz 3yz 3zz − 1

 (4.87)

with: x =
ri,x
‖ri‖

, y =
ri,y
‖ri‖

, z =
ri,z
‖ri‖

(4.88)

For a dipolar coupling ri is the vector connecting the two nuclei, α = 3 and the constant ci is
given by:

ci =
µ0

4π
γi1γ

i
2

h̄

4π
(4.89)

where γi1 and γi2 are the gyromagnetic ratios of the two nuclei.

4.3. Restraints 71

The order tensor is symmetric and has trace zero. Using a rotation matrix T it can be transformed
into the following form:

TTST = s

 −1
2(1− η) 0 0

0 −1
2(1 + η) 0

0 0 1

 (4.90)

where −1 ≤ s ≤ 1 and 0 ≤ η ≤ 1. s is called the order parameter and η the asymmetry
of the order tensor S. When the molecule tumbles isotropically in the solvent s is zero and no
orientational effects can be observed as all δi are zero.

Calculating orientations in a simulation

For reasons which are explained below, the D matrices are calculated which respect to a reference
orientation of the molecule. The orientation is defined by a rotation matrix R which is needed to
least-squares fit the current coordinates of a selected set of atoms onto a reference conformation.
The reference conformation is the starting conformation of the simulation. In case of ensemble av-
eraging, which will be treated later, the structure is taken from the first subsystem. The calculated
Dc
i matrix is given by:

Dc
i (t) = R(t)Di(t)RT (t) (4.91)

The calculated orientation for vector i is given by:

δci (t) =
2
3

tr(S(t)Dc
i (t)) (4.92)

The order tensor S(t) is usually unknown. A reasonable choice for the order tensor is the tensor
which minimizes the (weighted) mean square difference between the calculated and the observed
orientations:

MSD(t) =

(
N∑
i=1

wi

)−1 N∑
i=1

wi(δci (t)− δ
exp
i)2 (4.93)

To properly combine different types of measurements the unit of wi should be such that all terms
are dimensionless. This means the unit of wi is the unit of δi to the power −2. Note that scaling
all wi with a constant factor does not influence the order tensor.

Time averaging

Since the tensors Di fluctuate rapidly in time, much faster than can be observed in experiment,
they should be time averaged in the simulation. However, in a simulation the time as well as the
number of copies of a molecule is limited. Usually one can not obtain a converged average of the
Di tensors over all orientations of the molecule. If one assumes that the average orientations of the
ri vectors within the molecule converge much faster than the tumbling time of the molecule, the
tensor can be averaged in an axis system which rotates with the molecule, as expressed by equa-
tion (4.91). The time averaged tensors are calculated using an exponentially decaying memory
function:

Da
i (t) =

∫ t

u=t0
Dc
i (u) exp

(
− t− u

τ

)
du∫ t

u=t0
exp

(
− t− u

τ

)
du

(4.94)

72 Chapter 4. Interaction function and force field

Assuming that the order tensor S fluctuates slower than the Di, the time averaged orientation can
be calculated as:

δai (t) =
2
3

tr(S(t)Da
i (t)) (4.95)

where the order tensor S(t) is calculated using expression (4.93) with δci (t) replaced by δai (t).

Restraining

The simulated structure can be restrained by applying a force proportional to the difference be-
tween the calculated and the experimental orientations. When no time averaging is applied a
proper potential can be defined as:

V =
1
2
k

N∑
i=1

wi(δci (t)− δ
exp
i)2 (4.96)

where the unit of k is the unit of energy. Thus the effective force constant for restraint i is kwi.
The forces are given by minus the gradient of V . The force Fi working on vector ri is:

Fi(t) = −dV
dri

= −kwi(δci (t)− δ
exp
i)

dδi(t)
dri

= −kwi(δci (t)− δ
exp
i)

2ci
‖r‖2+α

(
2RTSRri −

2 + α

‖r‖2
tr(RTSRrirTi)ri

)

Ensemble averaging

Ensemble averaging can be applied by simulating a system of M subsystems which each contain
an identical set of orientation restraints. The systems only interact via the orientation restraint
potential which is defined as:

V = M
1
2
k

N∑
i=1

wi〈δci (t)− δ
exp
i 〉

2 (4.97)

The force on vector ri,m in subsystem m is given by:

Fi,m(t) = − dV
dri,m

= −kwi〈δci (t)− δ
exp
i 〉

dδci,m(t)
dri,m

(4.98)

Time averaging

When using time averaging it is not possible to define a potential. We can still define a quantity
which gives a rough idea of the energy stored in the restraints:

V = M
1
2
ka

N∑
i=1

wi〈δai (t)− δexpi 〉
2 (4.99)

4.3. Restraints 73

The force constant ka is switched on slowly to compensate for the lack of history at times close to
t0. It is exactly proportional to the amount of average which has been accumulated:

ka = k
1
τ

∫ t

u=t0
exp

(
− t− u

τ

)
du (4.100)

What really matters is the definition of the force. It is chosen to be proportional to the square root
of the product of the time averaged and the instantaneous deviation. Using only the time averaged
deviation induces large oscillations. The force is given by:

Fi,m(t) =


0 for a b ≤ 0

kawi
a

|a|
√
a b

dδci,m(t)
dri,m

for a b > 0
(4.101)

a = 〈δai (t)− δexpi 〉
b = 〈δci (t)− δ

exp
i 〉

Using orientation restraints

Orientation restraints can be added to a molecule definition in the topology in the section [
orientation restraints]. Here we give an example section containing five N-H resid-
ual dipolar coupling restraints:

[orientation restraints]
; ai aj type exp. label alpha const. obs. weight
; Hz nm3 Hz 1/Hz2

31 32 1 1 3 3 6.083 -6.73 1.0
43 44 1 1 4 3 6.083 -7.87 1.0
55 56 1 1 5 3 6.083 -7.13 1.0
65 66 1 1 6 3 6.083 -2.57 1.0
73 74 1 1 7 3 6.083 -2.10 1.0

The unit of the observable is Hz, but one can choose any other unit. In columns ai and aj you
find the atom numbers of the particles to be restrained. The type column should always be 1. The
exp. column denotes the experiment number, this starts numbering at 1. For each experiment
a separate order tensor S is optimized. The label should be a unique number larger than zero
for each restraint. The alpha column contains the power α which is used in equation (4.87) to
calculate the orientation. The const. column contains the constant ci used in the same equation.
The constant should have the unit of the observable times nmα. The column obs. contains the
observable, in any unit you like. The last column contains the weights wi, the unit should be the
inverse of the square of the unit of the observable.

Some parameters for orientation restraints can be specified in the grompp.mdp file, for a study
of the effect of different force constants and averaging times and ensemble averaging see [64].

orire: use orientation restraining. no/yes turns the distance restraints off/on. Ensemble av-
eraging can be performed using mdrun -multi, which simulates multiple subsystems in
separate boxes; supply topol0.tpr, topol1.tpr, ... with different coordiates and/or
velocities.

74 Chapter 4. Interaction function and force field

orire fc: force constant k for orientation restraints. The unit of k is kJ mol−1. Note that the
force constant for a restraint is this force constant times the weight of the restraint. When
set to zero one obtain the calculated orientation without affecting the simulation.

orire tau: time constant τ for restraints. Set orire tau = 10 for a time constant of 10
ps. Time averaging can be turned off by setting orire tau to 0.

orire fitgrp: the fit group for the restraints. This group of atoms is used to determine the
rotation R of the system with respect to the reference orientation. The reference orientation
is the starting conformation of the first subsystem. For a protein backbone should be a
reasonable choice.

nstorireout: orientation output frequency. Determines how often the orientations for all
restraints and the order tensor(s) S are written to the energy file. When using time and/or
ensemble averaging, the time and ensemble averaged orientations as well as the instan-
taneous non-ensemble averaged orientations are written to the energy file. These can be
analyzed using g energy.

4.4 Polarization

Polarization can be treated by GROMACS by attaching shell (drude) particles to atoms and/or
virtual sites. The energy of the shell particle is then minimized at each time step in order to remain
on the Born-Oppenheimer surface.

4.4.1 Simple polarization

This is merely a harmonic potential with equilibrium distance 0.

4.4.2 Water polarization

A special potential for water that allows anisotropic polarization of a single shell particle [30].

4.4.3 Thole polarization

Based on early work by Thole [65] Roux and coworkers have implemented potentials for molecules
like ethanol [66, 67, 68]. Within such molecules there are intramolecular interactions between
shell particles, however these must be screened because full Coulomb would be too strong. The
potential between two shell particles i and j is:

Vthole =
qiqj
rij

[
1−

(
1 +

r̄ij
2

)
exp−r̄ij

]
(4.102)

(note that there is a sign error in Eqn. 1 of Noskov et al. [68]), where

r̄ij = a
rij

(αiαj)1/6
(4.103)

4.5. Free energy interactions 75

where a is a magic (dimensionless) constant, usually chosen to be 2.6 [68] and αi, αj are the
polarizabilities of the respective shell particles.

4.5 Free energy interactions

This section describes the λ-dependence of the potentials used for free energy calculations (see
sec. 3.12). All common types of potentials and constraints can be interpolated smoothly from state
A (λ = 0) to state B (λ = 1) and vice versa. All bonded interactions are interpolated by linear
interpolation of the interaction parameters. Non-bonded interactions can be interpolated linearly
or via soft-core interactions.

Harmonic potentials

The example given here is for the bond potential, which is harmonic in GROMACS. However,
these equations apply to the angle potential and the improper dihedral potential as well.

Vb =
1
2

((1− λ)kAb + λkBb)(b− (1− λ)bA0 − λbB0)2 (4.104)

∂Vb
∂λ

=
1
2

(kBb − kAb)
[
b− (1− λ)bA0 + λbB0)2 + (bA0 − bB0)(b− (1− λ)bA0 − λbB0)

]
(4.105)

GROMOS-96 bonds and angles

Fourth power bond stretching and cosine based angle potentials are interpolated by linear interpo-
lation of the force constant and the equilibrium position. Formulas are not given here.

Proper dihedrals

For the proper dihedrals, the equations are somewhat more complicated:

Vd = ((1− λ)kAd + λkBd)(1 + cos(nφφ− ((1− λ)φAs + λφBs)) (4.106)
∂Vd
∂λ

= (kBd − kAd)
[
1 + cos(nφφ− [(1− λ)φAs + λφBs])−

((1− λ)kAd + λkBd)(φAs − φBs) sin(nφφ− [(1− λ)φAs + λφBs]
]

(4.107)

Note: that the multiplicity nφ can not be parameterized because the function should remain peri-
odic on the interval [0, 2π].

Tabulated bonded interactions

For tabulated bonded interactions only the force constant can interpolated:

V = ((1− λ)kA + λkB) f (4.108)

76 Chapter 4. Interaction function and force field

∂V

∂λ
= (kB − kA) f (4.109)

Coulomb interaction

The Coulomb interaction between two particles of which the charge varies with λ is:

Vc =
f

εrfrij

[
(1− λ)qAi q

A
j + λ qBi q

B
j

]
(4.110)

∂Vc
∂λ

=
f

εrfrij

[
−qAi qAj + qBi q

B
j

]
(4.111)

where f = 1
4πε0

= 138.935 485 (see chapter 2)

Coulomb interaction with reaction field

The coulomb interaction including a reaction field, between two particles of which the charge
varies with λ is:

Vc = f

[
1
rij

+ krf r
2
ij − crf

] [
(1− λ)qAi q

A
j + λ qBi q

B
j

]
(4.112)

∂Vc
∂λ

= f

[
1
rij

+ krf r
2
ij − crf

] [
−qAi qAj + qBi q

B
j

]
(4.113)

Note that the constants krf and crf are defined using the dielectric constant εrf of the medium
(see sec. 4.1.4).

Lennard-Jones interaction

For the Lennard-Jones interaction between two particles of which the atom type varies with λ we
can write:

VLJ =
((1− λ)CA12 + λCB12)

r12
ij

− (1− λ)CA6 + λCB6
r6
ij

(4.114)

∂VLJ
∂λ

=
CB12 − CA12

r12
ij

− CB6 − CA6
r6
ij

(4.115)

It should be noted that it is also possible to express a pathway from state A to state B using σ and
ε (see eqn. 4.5). It may seem to make sense physically, to vary the forcefield parameters σ and ε
rather than the derived parameters C12 and C6. However, the difference between the pathways in
parameter space is not large, and the free energy itself does not depend on the pathway, so we use
the simple formulation presented above.

4.5. Free energy interactions 77

Kinetic Energy

When the mass of a particle changes, there is also a contribution of the kinetic energy to the free
energy (note that we can not write the momentum p as mv, since that would result in the sign of
∂Ek
∂λ being incorrect [69]):

Ek =
1
2

p2

(1− λ)mA + λmB
(4.116)

∂Ek

∂λ
= −1

2
p2(mB −mA)

((1− λ)mA + λmB)2
(4.117)

after taking the derivative, we can insert p = mv, such that:

∂Ek

∂λ
= − 1

2
v2(mB −mA) (4.118)

Constraints

The constraints are formally part of the Hamiltonian, and therefore they give a contribution to the
free energy. In GROMACS this can be calculated using the LINCS or the SHAKE algorithm. If
we have a number of constraint equations gk:

gk = rk − dk (4.119)

where rk is the distance vector between two particles and dk is the constraint distance between
the two particles, we can write this using a λ-dependent distance as

gk = rk −
(
(1− λ)dAk + λdBk

)
(4.120)

the contribution Cλ to the Hamiltonian using Lagrange multipliers λ:

Cλ =
∑
k

λkgk (4.121)

∂Cλ
∂λ

=
∑
k

λk
(
dBk − dAk

)
(4.122)

4.5.1 Soft-core interactions

The linear interpolation of the Lennard-Jones and Coulomb potentials gives problems when grow-
ing particles out of nothing or when making particles disappear (λ close to 0 or 1). To circumvent
these problems, the singularities in the potentials need to be removed. This is done with soft-core
potentials. In GROMACS the soft-core potential Vsc is:

Vsc(r) = (1− λ)V A(rA) + λV B(rB) (4.123)

rA =
(
ασ6

Aλ
p + r6

) 1
6 (4.124)

78 Chapter 4. Interaction function and force field

0 1 2 3 4
r

0

2

4

6

8

10

V
sc

LJ, α=0
LJ, α=1.5
LJ, α=2
3/r, α=0
3/r, α=1.5
3/r, α=2

Figure 4.14: Soft-core interactions at λ = 0.5, with p = 2 and CA6 = CA12 = CB6 = CB12 = 1.

rB =
(
ασ6

B(1− λ)p + r6
) 1

6 (4.125)

where V A and V B are the normal “hard core” Van der Waals or electrostatic potentials in state A
(λ = 0) and state B (λ = 1) respectively, α is the soft-core parameter, p is the soft-core λ power, σ
is the radius of the interaction, which is (C12/C6)1/6 or a predefined value whenC6 orC12 is zero.
For intermediate λ, rA and rB alter the interactions very little when r > α1/6σ and they quickly
switch the soft-core interaction to an almost constant value when r becomes smaller (Fig. 4.14).
The force is:

Fsc(r) = −∂Vsc(r)
∂r

= (1− λ)FA(rA)
(
r

rA

)5

+ λFB(rB)
(
r

rB

)5

(4.126)

where FA and FB are the ’hard core’ forces. The contribution to the derivative of the free energy
is:

∂Vsc(r)
∂λ

= −V A(rA) + V B(rB) +

α
p

6

(
−(1− λ)λp−1FA(rA)σ6

Ar
−5
A + λ(1− λ)p−1FB(rB)σ6

Br
−5
B

)
(4.127)

The original Gromos Lennard-Jones soft-core function [70] uses p=2, but p=1 gives a smoother
∂H/∂λ curve. When the changes between the two states involve both the disappearing and ap-
pearing of atoms, it is important that the overlapping of atoms happens around λ=0.5. This can
usually be achieved with α≈0.7 for p=1 and α≈1.5 for p=2. Another issue which should be con-
sidered is the soft-core effect of hydrogens without Lennard-Jones interaction. Their soft-core σ is
set with sc-sigma in the .mdp file. These hydrogens produce peaks in ∂H/∂λ at λ is 0 and/or
1 for p=1 and close to 0 and/or 1 with p=2. Lowering sc-sigma will decrease this effect, but it
will also increase the interactions with hydrogens relative to the other interactions in the soft-core
state.

4.6. Methods 79

i+1 i+3

i i+2 i+4

Figure 4.15: Atoms along an alkane chain.

4.6 Methods

4.6.1 Exclusions and 1-4 Interactions.

Atoms within a molecule that are close by in the chain, i.e. atoms that are covalently bonded, or
linked by one respectively two atoms are so-called first neighbors, second neighbors and third
neighbors, (see Fig. 4.15). Since the interactions of atom i with atoms i+1 and i+2

are mainly quantum mechanical, they can not be modeled by a Lennard-Jones potential. Instead it
is assumed that these interactions are adequately modeled by a harmonic bond term or constraint
(i, i+1) and a harmonic angle term (i, i+2). The first and second neighbors (atoms i+1 and i+2) are
therefore excluded from the Lennard-Jones interaction list of atom i; atoms i+1 and i+2 are called
exclusions of atom i.

For third neighbors the normal Lennard-Jones repulsion is sometimes still too strong, which means
that when applied to a molecule the molecule would deform or break due to the internal strain.
This is especially the case for carbon-carbon interactions in a cis-conformation (e.g. cis-butane).
Therefore for some of these interactions the Lennard-Jones repulsion has been reduced in the
GROMOS force field, which is implemented by keeping a separate list of 1-4 and normal Lennard-
Jones parameters. In other force fields, such as OPLS [71], the standard Lennard-Jones parameters
are reduced by a factor of two, but in that case also the dispersion (r−6) and the coulomb interaction
are scaled. GROMACS can use either of these methods.

4.6.2 Charge Groups.

In principle the force calculation in MD is an O(N2) problem. Therefore we apply a cutoff for
non-bonded force (NBF) calculations: only the particles within a certain distance of each other
are interacting. This reduces the cost to O(N) (typically 100N to 200N) of the NBF. It also
introduces an error, which is, in most cases, acceptable, except when applying the cutoff implies
the creation of charges, in which case you should consider using the lattice sum methods provided
by GROMACS.

Consider a water molecule interacting with another atom. When we would apply the cutoff on an
atom-atom basis we might include the atom-Oxygen interaction (with a charge of -0.82) without
the compensating charge of the protons and so induce a large dipole moment over the system.
Therefore we have to keep groups of atoms with total charge 0 together. These groups are called
charge groups.

80 Chapter 4. Interaction function and force field

4.6.3 Treatment of Cutoffs

GROMACS is quite flexible in treating cutoffs, which implies there can be quite a number of
parameters to set. These parameters are set in the input file for grompp. There are two sort of
parameters that affect the cutoff interactions; you can select which type of interaction to use in
each case, and which cutoffs should be used in the neighborsearching.

For both Coulomb and van der Waals interactions there are interaction type selectors (termed
vdwtype and coulombtype) and two parameters, for a total of six nonbonded interaction
parameters. See sec. 7.3.1 for a complete description of these parameters.

The neighbor searching (NS) can be performed using a single-range, or a twin-range approach.
Since the former is merely a special case of the latter we will discuss the more general twin-range.
In this case NS is described by two radii rlist and max(rcoulomb,rvdw). Usually one builds
the neighbor list every 10 time steps or every 20 fs (parameter nstlist). In the neighbor list all
interaction pairs that fall within rlist are stored. Furthermore, the interactions between pairs
that do not fall within rlist but do fall within max(rcoulomb,rvdw) are computed during
NS, and the forces and energy are stored separately, and added to short-range forces at every time
step between successive NS. If rlist = max(rcoulomb,rvdw), no forces are evaluated during
neighbor list generation. The virial is calculated from the sum of the short- and long-range forces.
This means that the virial can be slightly asymmetrical at non-NS steps. In single precision the
virial is almost always asymmetrical, because the off-diagonal elements are about as large as each
element in the sum. In most cases this is not really a problem, since the fluctuations in de virial
can be 2 orders of magnitude larger than the average.

Except for the plain cutoff, all of the interaction functions in Table 4.2 require that neighbor
searching is done with a larger radius than the rc specified for the functional form, because of the
use of charge groups. The extra radius is typically of the order of 0.25 nm (roughly the largest
distance between two atoms in a charge group plus the distance a charge group can diffuse within
neighbor list updates).

Type Parameters
Coulomb Plain cutoff rc, εr

Reaction field rc, εrf
Shift function r1, rc, εr
Switch function r1, rc, εr

VdW Plain cutoff rc
Shift function r1, rc
Switch function r1, rc

Table 4.2: Parameters for the different functional forms of the non-bonded interactions.

4.7 Virtual interaction-sites

Virtual interaction-sites (called dummy atoms in GROMACS versions before 3.3) can be used in
GROMACS in a number of ways. We write the position of the virtual site rs as a function of the
positions of other particles ri: rs = f(r1..rn). The virtual site, which may carry charge, or can

4.7. Virtual interaction-sites 81

�����
�����
�������������������������� ����������

���������� | |

3fd

| || |
1-a

a

b

a

1-a

a
��������������
�����
����� 	�	�	�	

	�	�	�	

�
�

�
�

2 3fad 3out 4fd

cb

3

��������������
�����
�����

θ

d

�
�

�
�

�����
�����

�������
�������
�����
�����

�������
�������
�����
�����

��������������
�����
������������

�������
�����
�����

����������
�����
����� �����

�����
�����
����� �������

�������
�����
�����

�����
�����
�����
�����

Figure 4.16: The six different types of virtual site construction in GROMACS. The constructing
atoms are shown as black circles, the virutal sites in grey.

be involved in other interactions can now be used in the force calculation. The force acting on the
virtual site must be redistributed over the particles with mass in a consistent way. A good way to
do this can be found in ref. [72]. We can write the potential energy as

V = V (rs, r1, . . . , rn) = V ∗(r1, . . . , rn) (4.128)

The force on the particle i is then

F i = −∂V
∗

∂ri
= −∂V

∂ri
− ∂V

∂rs

∂rs
∂ri

= F direct
i + F ′i (4.129)

the first term of which is the normal force. The second term is the force on particle i due to the
virtual site, which can be written in tensor notation:

F ′i =



∂xs
∂xi

∂ys
∂xi

∂zs
∂xi

∂xs
∂yi

∂ys
∂yi

∂zs
∂yi

∂xs
∂zi

∂ys
∂zi

∂zs
∂zi

F s (4.130)

where F s is the force on the virtual site and xs, ys and zs are the coordinates of the virtual site. In
this way the total force and the total torque are conserved [72].

As a further note, the computation of the virial (eqn. 3.19) is non-trivial when virtual sites are used.
Since the virial involves a summation over all the atoms (rather than virtual sites) the forces most
be redistributed from the virtual sites to the atoms (using eqn. 4.130) before computation of the
virial. In some special cases where the forces on the atoms can be written as a linear combination
of the forces on the virtual sites (types 2 and 3 below) there is no difference between computing
the virial before and after the redistribution of forces. However, in the general case redistribution
should be done first.

There are six ways to construct virtual sites from surrounding atoms in GROMACS, which we
classify by the number of constructing atoms. Note that all site types mentioned can be constructed
from types 3fd (normalized, in-plane) and 3out (non-normalized, out of plane). However, the
amount of computation involved increases sharply along this list, so we strongly recommended
using the first adequate virtual site type that will be sufficient for a certain purpose. Fig. 4.16
depicts 6 of the available virtual site constructions. The conceptually simplest construction types
are linear combinations:

rs =
N∑
i=1

wi ri (4.131)

82 Chapter 4. Interaction function and force field

The force is then redistributed using the same weights:

F ′i = wi F s (4.132)

The types of virtual sites supported in GROMACS are given in the list below. Constructing atoms
in virtual sites can be virtual sites themselves, but only if they are higher in the list, i.e. virtual
sites can be constructed from “particles” that are simpler virtual sites.

2. As a linear combination of two atoms (Fig. 4.16 2):

wi = 1− a , wj = a (4.133)

In this case the virtual site is on the line through atoms i and j.

3. As a linear combination of three atoms (Fig. 4.16 3):

wi = 1− a− b , wj = a , wk = b (4.134)

In this case the virtual site is in the plane of the other three particles.

3fd. In the plane of three atoms, with a fixed distance (Fig. 4.16 3fd):

rs = ri + b
rij + arjk
|rij + arjk|

(4.135)

In this case the virtual site is in the plane of the other three particles at a distance of |b| from
i. The force on particles i, j and k due to the force on the virtual site can be computed as:

F ′i = F s − γ(F s − p)

F ′j = (1− a)γ(F s − p)

F ′k = aγ(F s − p)

where
γ =

b

|rij + arjk|

p =
ris · F s

ris · ris
ris

(4.136)

3fad. In the plane of three atoms, with a fixed angle and distance (Fig. 4.16 3fad):

rs = ri + d cos θ
rij
|rij |

+ d sin θ
r⊥
|r⊥|

where r⊥ = rjk −
rij · rjk
rij · rij

rij (4.137)

In this case the virtual site is in the plane of the other three particles at a distance of |d| from
i at an angle of α with rij . Atom k defines the plane and the direction of the angle. Note
that in this case b and α must be specified, instead of a and b (see also sec. 5.2.2). The force
on particles i, j and k due to the force on the virtual site can be computed as (with r⊥ as
defined in eqn. 4.137):

F ′i = F s −
d cos θ
|rij |

F 1 +
d sin θ
|r⊥|

(
rij · rjk
rij · rij

F 2 + F 3

)

F ′j =
d cos θ
|rij |

F 1 − d sin θ
|r⊥|

(
F 2 +

rij · rjk
rij · rij

F 2 + F 3

)

F ′k =
d sin θ
|r⊥|

F 2

where F 1 = F s −
rij · F s

rij · rij
rij , F 2 = F 1 −

r⊥ · F s

r⊥ · r⊥
r⊥ and F 3 =

rij · F s

rij · rij
r⊥

(4.138)

4.7. Virtual interaction-sites 83

3out. As a non-linear combination of three atoms, out of plane (Fig. 4.16 3out):

rs = ri + arij + brik + c(rij × rik) (4.139)

This enables the construction of virtual sites out of the plane of the other atoms. The force
on particles i, j and k due to the force on the virtual site can be computed as:

F ′j =

 a −c zik c yik

c zik a −c xik
−c yik c xik a

F s

F ′k =

 b c zij −c yij
−c zij b c xij

c yij −c xij b

F s

F ′i = F s − F ′j − F ′k

(4.140)

4fd. From four atoms, with a fixed distance (Fig. 4.16 4fd):

rs = ri + c
rij + arjk + brjl
|rij + arjk + brjl|

(4.141)

In this case the virtual site is at a distance of |c| from i. The force on particles i, j, k and l
due to the force on the virtual site can be computed as:

F ′i = F s − γ(F s − p)

F ′j = (1− a− b)γ(F s − p)

F ′k = aγ(F s − p)

F ′l = bγ(F s − p)

where
γ =

c

|rij + arjk + brjl|

p =
ris · F s

ris · ris
ris

(4.142)

N. A linear combination of N atoms with relative weights ai. The weight for atom i is:

wi = ai

 N∑
j=1

aj

−1

(4.143)

There are three options for setting the weights:

COG center of geometry: equal weights

COM center of mass: ai is the mass of atom i; when in free-energy simulations the mass of
the atom is changed, only the mass of the A-state is used for the weight

COW center of weights: ai is defined by the user

84 Chapter 4. Interaction function and force field

4.8 Dispersion correction

In this section we derive long range corrections due to the use of a cut-off for Lennard Jones
or Buckingham interactions. We assume that the cut-off is so long that the repulsion term can
safely be neglected, and therefore only the dispersion term is taken into account. Due to the
nature of the dispersion interaction, energy and pressure corrections both are negative. While the
energy correction is usually small, it may be important for free energy calculations. The pressure
correction in contrast is very large and can not be neglected. Although it is in principle possible to
parameterize a force field such that the pressure is close to 1 bar even without correction, such a
method makes the parameterization dependent on the cut-off and is therefore undesirable. Please
note that it is not consistent to use the long range correction to the dispersion without using either
a reaction field method or a proper long range electrostatics method such as Ewald summation or
PPPM.

4.8.1 Energy

The long range contribution of the dispersion interaction to the virial can be derived analytically, if
we assume a homogeneous system beyond the cut-off distance rc. The dispersion energy between
two particles is written as:

V (rij) = − C6 r
−6
ij (4.144)

and the corresponding force is
F ij = − 6C6 r

−8
ij rij (4.145)

In a periodic system it is not easy to calculate the full potentials, so usually a cut-off is applied,
which can be abrupt or smooth. We will call the potential and force with cut-off Vc and F c. The
long-range contribution to the dispersion energy in a system with N particles and particle density
ρ = N/V is:

Vlr =
1
2
Nρ

∫ ∞
0

4πr2g(r) (V (r)− Vc(r)) dr (4.146)

We will integrate this for the shift function, which is the most general form of Van der Waals
interaction available in Gromacs. The shift function has a constant difference S from 0 to r1 and
is 0 beyond the cut-off distance rc. We can integrate eqn. 4.146 assuming that the density in the
sphere within r1 is equal to the global density and the radial distribution function g(r) is 1 beyond
r1:

Vlr =
1
2
N

(
ρ

∫ r1

0
4πr2g(r)C6 S dr + ρ

∫ rc

r1
4πr2 (V (r)− Vc(r)) dr + ρ

∫ ∞
rc

4πr2V (r) dr
)

=
1
2
N

((
4
3
πρr3

1 − 1
)
C6 S + ρ

∫ rc

r1
4πr2 (V (r)− Vc(r)) dr − 4

3
πNρC6 r

−3
c

)
(4.147)

where the term −1 corrects for the self-interaction. For a plain cut-off we only need to assume
that g(r) is 1 beyond rc and the correction reduces to [73]:

Vlr = −2
3
πNρC6 r

−3
c (4.148)

If we consider for example a box of pure water, simulated with a cut-off of 0.9 nm and a density
of 1 g cm−3 this correction is -0.75 kJ mol−1 per molecule.

4.8. Dispersion correction 85

For a homogeneous mixture we need to define an average dispersion constant:

〈C6〉 =
2

N(N − 1)

N∑
i

N∑
j>i

C6(i, j) (4.149)

In GROMACS excluded pairs of atoms do not contribute to the average.

In the case of inhomogeneous simulation systems, e.g. a system with a lipid interface, the energy
correction can be applied if 〈C6〉 for both components is comparable.

4.8.2 Virial and pressure

The scalar virial of the system due to the dispersion interaction between two particles i and j is
given by:

Ξ = − 1
2
rij · F ij = 3C6 r

−6
ij (4.150)

The pressure is given by:

P =
2

3V
(Ekin − Ξ) (4.151)

The long-range correction to the virial is given by:

Ξlr =
1
2
Nρ

∫ ∞
0

4πr2g(r)(Ξ− Ξc) dr (4.152)

We can again integrate the long range contribution to the virial assuming g(r) is 1 beyond r1:

Ξlr =
1
2
Nρ

(∫ rc

r1
4πr2(Ξ− Ξc) dr +

∫ ∞
rc

4πr23C6 r
−6
ij dr

)
=

1
2
Nρ

(∫ rc

r1
4πr2(Ξ− Ξc) dr + 4πC6 r

−3
c

)
(4.153)

For a plain cut-off the correction to the pressure is [73]:

Plr = − 4
3
πC6 ρ

2r−3
c (4.154)

Using the same example of a water box, the correction to the virial is 0.75 kJ mol−1 per molecule,
the corresponding correction to the pressure for SPC water is approximately -280 bar.

For homogeneous mixtures we can again use the average dispersion constant 〈C6〉 (eqn. 4.149):

Plr = − 4
3
π 〈C6〉 ρ2r−3

c (4.155)

For inhomogeneous systems eqn. 4.155 can be applied under the same restriction as holds for the
energy (see sec. 4.8.1).

86 Chapter 4. Interaction function and force field

4.9 Long Range Electrostatics

4.9.1 Ewald summation

The total electrostatic energy of N particles and the periodic images are given by

V =
f

2

∑
nx

∑
ny

∑
nz∗

N∑
i

N∑
j

qiqj
rij,n

. (4.156)

(nx, ny, nz) = n is the box index vector, and the star indicates that terms with i = j should be
omitted when (nx, ny, nz) = (0, 0, 0). The distance rij,n is the real distance between the charges
and not the minimum-image. This sum is conditionally convergent, but very slow.

Ewald summation was first introduced as a method to calculate long-range interactions of the pe-
riodic images in crystals [74]. The idea is to convert the single slowly-converging sum eqn. 4.156
into two quickly-converging terms and a constant term:

V = Vdir + Vrec + V0 (4.157)

Vdir =
f

2

N∑
i,j

∑
nx

∑
ny

∑
nz∗

qiqj
erfc(βrij,n)

rij,n
(4.158)

Vrec =
f

2πV

N∑
i,j

qiqj
∑
mx

∑
my

∑
mz∗

exp
(
−(πm/β)2 + 2πim · (ri − rj)

)
m2

(4.159)

V0 = − fβ√
π

N∑
i

q2
i , (4.160)

where β is a parameter that determines the relative weight of the direct and reciprocal sums and
m = (mx,my,mz). In this way we can use a short cutoff (of the order of 1 nm) in the direct
space sum and a short cutoff in the reciprocal space sum (e.g. 10 wave vectors in each direction).
Unfortunately, the computational cost of the reciprocal part of the sum increases as N2 (or N3/2

with a slightly better algorithm) and it is therefore not realistic for use in large systems.

Using Ewald

Don’t use Ewald unless you are absolutely sure this is what you want - for almost all cases the PME
method below will perform much better. If you still want to employ classical Ewald summation
enter this in your .mdp file, if the side of your box is about 3 nm:

coulombtype = Ewald
rvdw = 0.9
rlist = 0.9
rcoulomb = 0.9
fourierspacing = 0.6
ewald rtol = 1e-5

4.9. Long Range Electrostatics 87

The fourierspacing parameter times the box dimensions determines the highest magnitude
of wave vectors mx,my,mz to use in each direction. With a 3 nm cubic box this example would
use 11 wave vectors (from −5 to 5) in each direction. The ewald rtol parameter is the relative
strength of the electrostatic interaction at the cutoff. Decreasing this gives you a more accurate
direct sum, but a less accurate reciprocal sum.

4.9.2 PME

Particle-mesh Ewald is a method proposed by Tom Darden [9, 10] to improve the performance
of the reciprocal sum. Instead of directly summing wave vectors, the charges are assigned to a
grid using cardinal B-spline interpolation. This grid is then Fourier transformed with a 3D FFT
algorithm and the reciprocal energy term obtained by a single sum over the grid in k-space.

The potential at the grid points is calculated by inverse transformation, and by using the interpo-
lation factors we get the forces on each atom.

The PME algorithm scales as N log(N), and is substantially faster than ordinary Ewald summa-
tion on medium to large systems. On very small systems it might still be better to use Ewald
to avoid the overhead in setting up grids and transforms. For the parallelization of PME see the
section on MPMD PME (3.17.5).

Using PME

To use Particle-mesh Ewald summation in GROMACS, specify the following lines in your .mdp
file:

coulombtype = PME
rvdw = 0.9
rlist = 0.9
rcoulomb = 0.9
fourierspacing = 0.12
pme order = 4
ewald rtol = 1e-5

In this case the fourierspacing parameter determines the maximum spacing for the FFT grid
and pme order controls the interpolation order. Using 4th order (cubic) interpolation and this
spacing should give electrostatic energies accurate to about 5 · 10−3. Since the Lennard-Jones
energies are not this accurate it might even be possible to increase this spacing slightly.

Pressure scaling works with PME, but be aware of the fact that anisotropic scaling can introduce
artificial ordering in some systems.

4.9.3 PPPM

The Particle-Particle Particle-Mesh methods of Hockney & Eastwood can also be applied in GRO-
MACS for the treatment of long range electrostatic interactions [75, 9, 76]. With this algorithm the
charges of all particles are spread over a grid of dimensions (nx,ny,nz) using a weighting function

88 Chapter 4. Interaction function and force field

called the triangle-shaped charged distribution:

W (r) = W (x) W (y) W (z)

W (ξ) =


3
4 −

(
ξ
h

)2
|ξ| ≤ h

2

1
2

(
3
2 −

|ξ|
h

)2
h
2 < |ξ| <

3h
2

0 3h
2 ≤ |ξ|

(4.161)

where ξ (is x, y or z) is the distance to a grid point in the corresponding dimension. Only the 27
closest grid points need to be taken into account for each charge.

Then, this charge distribution is Fourier transformed using a 3D inverse FFT routine. In Fourier
space a convolution with function Ĝ is performed:

Ĝ(k) =
ĝ(k)
ε0k2

(4.162)

where ĝ is the Fourier transform of the charge spread function g(r). This yield the long range
potential φ̂(k) on the mesh, which can be transformed using a forward FFT routine into the real
space potential. Finally the potential and forces are retrieved using interpolation [76]. It is not easy
to calculate the full long-range virial tensor with PPPM, but it is possible to obtain the trace. This
means that the sum of the pressure components is correct (and therefore the isotropic pressure) but
not necessarily the individual pressure components!

Using PPPM

To use the PPPM algorithm in GROMACS, specify the following lines in your .mdp file:

coulombtype = PPPM
rlist = 1.0
rcoulomb = 0.85
rcoulomb switch = 0.0
rvdw = 1.0
fourierspacing = 0.075

For details on the switch parameters see the section on modified long-range interactions in this
manual. When using PPPM we recommend to take at most 0.075 nm per gridpoint (e.g. 20 grid-
points for 1.5 nm). PPPM does not provide the same accuracy as PME but can be slightly faster
in some cases. Due to the problem with the pressure tensor you shouldn’t use it with pressure
coupling.

We’re somewhat ambivalent about PPPM, so if you use it please contact us - otherwise it might be
removed from future relases so we can concentrate our efforts on PME.

4.9.4 Optimizing Fourier transforms

To get the best possible performance you should try to avoid large prime numbers for grid dimen-
sions. The FFT code used in GROMACS is optimized for grid sizes of the form 2a3b5c7d11e13f ,

4.10. Force field 89

where e+ f is 0 or 1 and the other exponents arbitrary. (See further the documentation of the FFT
algorithms at www.fftw.org.

It is also possible to optimize the transforms for the current problem by performing some calcula-
tions at the start of the run. This is not done per default since it takes a couple of minutes, but for
large runs it will save time. Turn it on by specifying

optimize fft = yes
in your .mdp file.

When running in parallel the grid must be communicated several times and thus hurting scaling
performance. With PME you can improve this by increasing grid spacing while simultaneously
increasing the interpolation to e.g. 6th order. Since the interpolation is entirely local a this will
improve the scaling in most cases.

4.10 Force field

A force field is built up from two distinct components:

• The set of equations (called the potential functions) used to generate the potential energies
and their derivatives, the forces. These are described in detail in the previous chapter.

• The parameters used in this set of equations. These are not given in this manual, but in the
data files corresponding to your GROMACS distribution.

Within one set of equations various sets of parameters can be used. Care must be taken that the
combination of equations and parameters form a consistent set. It is in general dangerous to make
ad hoc changes in a subset of parameters, because the various contributions to the total force are
usually interdependent. This means in principle that every change should be documented, verified
by comparison to experimental data and published in a peer-reviewd journal before it can be used.

GROMACS 4.0 includes several force fields, and additional ones are available on the website.
If you do not know which one to select we recommend Gromos96 for united-atom setups and
OPLS-AA/L for all-atom parameters. That said, we describe the availabe options in some detail.

4.10.1 GROMOS87

The GROMOS-87 suite of programs and corresponding force field[55] formed the basis for the de-
velopment of GROMACS in the early 1990s. The original GROMOS87 force field is not available
in GROMACS. In previous versions (< 3.3.2) there used to be the so-called GROMACS force field
which was based on GROMOS-87 [55], with a small modification concerning the interaction be-
tween water-oxygens and carbon atoms [77, 78], as well as 10 extra atom types [79, 80, 77, 78, 81].
Whenever using this force field, please cite the above references, and do not call it GROMACS
force field, instead name it GROMOS-87 [55] with corrections as detailed in [77, 78].

http://www.fftw.org

90 Chapter 4. Interaction function and force field

All-hydrogen force-field

The GROMACS all-hydrogen force-field is almost identical to the normal GROMACS forcefield,
since the extra hydrogens have no Lennard-Jones interaction and zero charge. The only differences
are in the bond angle and improper dihedral angle terms. This forcefield is only useful when
you need the exact hydrogen positions, for instance for distance restraints derived from NMR
measurements. When citing this force field please read the previous paragraph.

4.10.2 GROMOS-96

GROMACS supports the GROMOS-96 force fields [54]. All parameters for the 43a1, 43a2 (de-
velopment, improved alkane dihedrals) and 43b1 (vacuum) force fields are included. All stan-
dard building blocks are included and topologies can be build automatically by pdb2gmx. The
GROMOS-96 force field is a further development of the GROMOS-87 force field on which the
GROMACS forcefield is based. The GROMOS-96 force field has improvements over the GRO-
MACS force field for proteins and small molecules. It is not, however, recommended for use with
long alkanes and lipids. The GROMOS-96 force field differs from the GROMACS force field in a
few aspects:

• the force field parameters

• the parameters for the bonded interactions are not linked to atom types

• a fourth power bond stretching potential (sec. 4.2.1)

• an angle potential based on the cosine of the angle (sec. 4.2.5)

There are two differences in implementation between GROMACS and GROMOS-96 which can
lead to slightly different results when simulating the same system with both packages:

• in GROMOS-96 neighbor searching for solvents is performed on the first atom of the solvent
molecule, this is not implemented in GROMACS, but the difference with searching with
centers of charge groups is very small

• the virial in GROMOS-96 is molecule-based. This is not implemented in GROMACS,
which uses atomic virials

The GROMOS-96 force field was parameterized with a Lennard-Jones cutoff of 1.4 nm, so be sure
to use a Lennard-Jones cutoff of at least 1.4. A larger cutoff is possible, because the Lennard-Jones
potential and forces are almost zero beyond 1.4 nm.

GROMOS-96 files

GROMACS can read and write GROMOS-96 coordinate and trajectory files. These files should
have the extension .g96. Such a file can be a GROMOS-96 initial/final configuration file or a
coordinate trajectory file or a combination of both. The file is fixed format; all floats are written
as 15.9 (files can get huge). GROMACS supports the following data blocks in the given order:

4.10. Force field 91

• Header block: TITLE (mandatory)

• Frame blocks: TIMESTEP (optional)
POSITION/POSITIONRED (mandatory)
VELOCITY/VELOCITYRED (optional)
BOX (optional)

See the GROMOS-96 manual [54] for a complete description of the blocks. Note that all GRO-
MACS programs can read compressed (.Z) or gzipped (.gz) files.

4.10.3 OPLS/AA

4.10.4 Amber

4.10.5 CHARMM

4.10.6 Martini

92 Chapter 4. Interaction function and force field

Chapter 5

Topologies

5.1 Introduction

GROMACS must know on which atoms and combinations of atoms the various contributions to
the potential functions (see chapter 4) must act. It must also know what parameters must be
applied to the various functions. All this is described in the topology file *.top, which lists the
constant attributes of each atom. There are many more atom types than elements, but only atom
types present in biological systems are parameterized in the force field, plus some metals, ions and
silicon. The bonded and special interactions are determined by fixed lists that are included in the
topology file. Certain non-bonded interactions must be excluded (first and second neighbors), as
these are already treated in bonded interactions. In addition there are dynamic attributes of atoms:
their positions, velocities and forces, but these do not strictly belong to the molecular topology.

This Chapter describes the set up of the topology file, the *.top file and the database files:
what the parameters stand for and how/where to change them if needed. First all file formats are
explained. Section 5.8.1 describes the organization of the force-field files.

Note: if you construct your own topologies, we encourage you to upload them to our topology
archive at www.gromacs.org! Just imagine how thankful you’d have been if your topology had
been available there before you started. The same goes for new force field or modified versions of
the standard force fields - contribute them to the force field archive!

5.2 Particle type

In GROMACS there are 5 types of particles, see Table 5.1. Only regular atoms and virtual
interaction-sites are used in GROMACS; shells are necessary for polarizable models like the Shell-
Water models [30].

94 Chapter 5. Topologies

Particle Symbol
atoms A
shells S
virtual interaction-sites V (or D)

Table 5.1: Particle types in GROMACS

5.2.1 Atom types

Depending on the force field GROMACS uses different atom types, a sample from the deprecated
“gromacs” force field is listed below, with their corresponding masses (in a.m.u.). This is the same
listing as in the file ff???.atp (.atp = atom type parameter file), therefore in this file you can
change and/or add an atom type.

O 15.99940 ; carbonyl oxygen (C=O)
OM 15.99940 ; carboxyl oxygen (CO-)
OA 15.99940 ; hydroxyl oxygen (OH)
OW 15.99940 ; water oxygen
N 14.00670 ; peptide nitrogen (N or NH)
NT 14.00670 ; terminal nitrogen (NH2)
NL 14.00670 ; terminal nitrogen (NH3)
NR5 14.00670 ; aromatic N (5-ring,2 bonds)
NR5* 14.00670 ; aromatic N (5-ring,3 bonds)
NP 14.00670 ; porphyrin nitrogen
C 12.01100 ; bare carbon (peptide,C=O,C-N)
CH1 13.01900 ; aliphatic CH-group
CH2 14.02700 ; aliphatic CH2-group
CH3 15.03500 ; aliphatic CH3-group

Atomic detail is used except for hydrogen atoms bound to (aliphatic) carbon atoms, which are
treated as united atoms. No special hydrogen-bond term is included. Note that other force field
like OPLS/AA and Amber99 use all atoms.

For backward compatibility we retain here some reference to parameters present in the “gromacs”
force field. The last 10 atom types were not part of the original GROMOS-87 force field [55] and
when you use them you can refer to one or more of the following papers:

• F was taken from ref. [80],

• CP2 and CP3 from ref. [77] and references cited therein,

• CR5, CR6 and HCR from ref. [82]

• OWT3 from ref. [79]

• SD, OD and CD from ref. [81]

Note that we recommend against using these parameters in new projects since they are not
well-tested.

Note: GROMACS makes use of the atom types as a name, not as a number (as e.g. in GROMOS).

5.2. Particle type 95

5.2.2 Virtual sites

Some force fields use virtual interaction-sites (interaction sites that are constructed from other
particle postions) on which certain interactions are located (e.g. on benzene rings, to reproduce the
correct quadrupole). This is described in sec. 4.7.

To make virtual sites in your system, you should include a section [virtual sites?] (for
backward compatibility the old name [dummies?] can also be used) in your topology file,
where the ‘?’ stands for the number constructing particles for the virtual site. This will be ‘2’ for
type 2, ‘3’ for types 3, 3fd, 3fad and 3out and ‘4’ for type 4fd (the different types are explained
in sec. 4.7).

Parameters for type 2 should look like this:
[virtual sites2]

; Site from funct a

5 1 2 1 0.7439756

for type 3 like this:
[virtual sites3]

; Site from funct a b

5 1 2 3 1 0.7439756 0.128012

for type 3fd like this:
[virtual sites3]

; Site from funct a d

5 1 2 3 2 0.5 -0.105

for type 3fad like this:
[virtual sites3]

; Site from funct theta d

5 1 2 3 3 120 0.5

for type 3out like this:
[virtual sites3]

; Site from funct a b c

5 1 2 3 4 -0.4 -0.4 6.9281

for type 4fd like this:
[virtual sites4]

; Site from funct a b d

5 1 2 3 4 1 0.33333 0.33333 -0.105

This will result in the construction of a virtual site, number 5 (first column ‘Site’), based on the
positions of 1 and 2 or 1, 2 and 3 or 1, 2, 3 and 4 (next two, three or four columns ‘from’) fol-
lowing the rules determined by the function number (next column ‘funct’) with the parameters

96 Chapter 5. Topologies

Property Symbol Unit
Type - -
Mass m a.m.u.
Charge q electron
epsilon ε kJ/mol
sigma σ nm

Table 5.2: Static atom type properties in GROMACS

specified (last one, two or three columns ‘a b . .’).

Note that if any constant bonded interactions defined between virtual sites and/or normal atoms
will be removed by grompp, this happens after the exclusions have been generated. This way,
exclusions will not be affected by an atom being defined as virtual site or not, but by the bonding
configuration of the atom.

5.3 Parameter files

5.3.1 Atoms

A number of static properties are assigned to the atom types in the GROMACS force field: Type,
Mass, Charge, ε and σ (see Table 5.2 The mass is listed in ff???.atp (see 5.2.1), whereas the
charge is listed in ff???.rtp (.rtp = residue topology parameter file, see 5.6.1). This implies
that the charges are only defined in the building blocks of amino acids or user defined building
blocks. When generating a topology (*.top) using the pdb2gmx program the information from
these files is combined.

The following dynamic quantities are associated with an atom

• Position x

• Velocity v

These quantities are listed in the coordinate file, *.gro (see section File format, 5.7.6).

5.3.2 Bonded parameters

The bonded parameters (i.e. bonds, bond angles, improper and proper dihedrals) are listed in
ff???bon.itp. The term func is 1 for harmonic and 2 for GROMOS-96 bond and angle
potentials. For the dihedral, this is explained after this listing.

[bondtypes]
; i j func b0 kb
C O 1 0.12300 502080.
C OM 1 0.12500 418400.
......

5.3. Parameter files 97

[angletypes]
; i j k func th0 cth
HO OA C 1 109.500 397.480
HO OA CH1 1 109.500 397.480
......

[dihedraltypes]
; i l func q0 cq
NR5* NR5 2 0.000 167.360
NR5* NR5* 2 0.000 167.360
......

[dihedraltypes]
; j k func phi0 cp mult
C OA 1 180.000 16.736 2
C N 1 180.000 33.472 2
......

[dihedraltypes]
;
; Ryckaert-Bellemans Dihedrals
;
; aj ak funct
CP2 CP2 3 9.2789 12.156 -13.120 -3.0597 26.240 -31.495

Also in this file are the Ryckaert-Bellemans [83] parameters for the CP2-CP2 dihedrals in alkanes
or alkane tails with the following constants:

(kJ/mol)
C0 = 9.28 C2 = −13.12 C4 = 26.24
C1 = 12.16 C3 = − 3.06 C5 = −31.5

(Note: The use of this potential implies the exclusion of LJ interactions between the first and the
last atom of the dihedral, and ψ is defined according to the ’polymer convention’ (ψtrans = 0)).

So there are three types of dihedrals in the GROMACS force field:

• proper dihedral : funct = 1, with mult = multiplicity, so the number of possible angles

• improper dihedral : funct = 2

• Ryckaert-Bellemans dihedral : funct = 3

In the file ff???bon.itp you can add bonded parameters. If you want to include parameters
for new atom types, make sure you define this new atom type in ff???.atp as well.

98 Chapter 5. Topologies

5.3.3 Non-bonded parameters

The non-bonded parameters consist of the Van der Waals parameters V (c6) and W (c12), as
listed in the file ff???nb.itp, where ptype is the particle type (see Table 5.1):

[atomtypes]
;name mass charge ptype c6 c12
O 15.99940 0.000 A 0.22617E-02 0.74158E-06
OM 15.99940 0.000 A 0.22617E-02 0.74158E-06
.....

[nonbond params]
; i j func c6 c12
O O 1 0.22617E-02 0.74158E-06
O OA 1 0.22617E-02 0.13807E-05
.....

[pairtypes]
; i j func cs6 cs12 ; THESE ARE 1-4 INTERACTIONS
O O 1 0.22617E-02 0.74158E-06
O OM 1 0.22617E-02 0.74158E-06
.....

The parameters V and W can be defined in two different ways, depending on the combination rule
that was chosen in the [defaults] section op the topology file (see 5.7.1):

for combination rule 1 :
Vii = C

(6)
i = 4 εiσ6

i [kJ mol−1 nm6]
Wii = C

(12)
i = 4 εiσ12

i [kJ mol−1 nm12]
(5.1)

for combination rules 2 and 3 :
Vii = σi [nm]
Wii = εi [kJ mol−1]

(5.2)

Some or all combinations for different atom-types can be given in the [nonbond params]
section. Any combination that is not given will be computed according to the combination rule:

for combination rules 1 and 3 :
C

(6)
ij =

(
C

(6)
i C

(6)
j

) 1
2

C
(12)
ij =

(
C

(12)
i C

(12)
j

) 1
2

(5.3)

for combination rule 2 :
σij = 1

2(σi + σj)
εij = √

εi εj
(5.4)

5.3.4 Pair interactions

Extra Lennard-Jones and electrostatic interactions between pairs of atoms in a molecule can be
added in the [pairs] section of a molecule definition. The parameters for these interactions
can be set independently from the non-bonded interaction parameters. In the GROMOS force

5.4. Exclusions 99

fields pairs are only used to modify the 1-4 interactions (interactions of atoms separated by three
bonds). In these forcefields the 1-4 interactions are excluded from the non-bonded interactions
(see sec. 5.4).

The pair interaction parameters for the atom types in ff???nb.itp are listed in the [pairtypes]
section. The GROMOS force fields list all these interactions explicitly, but this section might be
empty for force fields like OPLS that calculate the 1-4 interactions by scaling. Pair parameters
which are not present in the [pairtypes] section are only generated when generate pairs
is set to yes in the topology (see 5.7.1). When generate pairs is set to no, grompp will give a
warning for each pair type for which no parameters are given.

The normal pair interactions, intended for 1-4 interactions, have function type 1. Function types
2 and 3 are intended for free-energy simulations. When determining hydration free-energies, the
solute needs to be decoupled from the solvent. This can be done by adding a B-state topology
(see sec. 3.12) with all non-bonded parameters, i.e. charges and LJ parameters, of the solute set
to zero. But the free-energy difference between the A and B state is not the total hydration free-
energy, one has to add the free-energy for reintroducing the internal Coulomb and interactions
in the solute. This second step can be combined with the first step when the Coulomb and LJ
interactions within the solute are not modified. For this purpose there is a pairs function type 2,
which is identical to function type 1, except that the B-state parameters are always identical to the
A-state parameters. For searching the parameters in the [pairtypes] section no distinction
is made between function type 1 and 2. Function type 3 is intended to replace the non-bonded
interaction. It uses the unscaled charges and the non-bonded LJ parameters. Type 3 also only uses
the A-state parameters. Note that one should add exclusions for all atom pairs participating in pair
interactions type 3, otherwise such pairs will also end up in the normal neighborlists.

All three pair types always use plain Coulomb interactions, even when Reaction-field, PME, Ewald
or shifted Coulomb interactions are selected for the non-bonded interactions. Energies for types
1 and 2 are written to the energy and log file in seperate “14” LJ and Coulomb entries per energy
group pair. Energies for type 3 are added to the LJ and Coulomb SR terms.

5.4 Exclusions

The exclusions for bonded particles are generated by grompp for neighboring atoms up to a
certain number of bonds away, as defined in the [moleculetype] section in the topology
file (see 5.7.1). Particles are considered bonded when they are connected by bonds ([bonds]
types 1 to 5, 7 or 8) or constraints ([constraints] type 1). [bonds] type 5 can be
used to create a connection between two atoms without creating an interaction. There is a harmonic
interaction ([bonds] type 6) which does not connect the atoms by a chemical bond. There is
also a second constraint type ([constraints] type 2) which fixes the distance, but does not
connect the atoms by a chemical bond. For a complete list of all these interactions see Table 5.4.

Extra exclusions within a molecule can be added manually in a [exclusions] section. Each
line should start with one atom index, followed by one or more atom indices. All non-bonded
interactions between the first atom and the other atoms will be excluded.

When all non-bonded interactions within or between groups of atoms need to be excluded, is it
more convenient and much more efficient to use energy monitor group exclusions (see sec. 3.3).

100 Chapter 5. Topologies

5.5 Constraints

Constraints are defined in the [constraints] section. The format is two atom numbers
followed by the function type, which can be 1 or 2 and the constraint distance. The only differ-
ence between the two types is that type 1 is used for generating exclusions and type 2 is not (see
sec. 5.4). The distances are constrained using the LINCS or the SHAKE algorithm, which can
be selected in the *.mdp file. Both types of constraints can be perturbed in free-energy calcula-
tions by adding a second constraint distance (see 5.7.5). Several types of bonds and angles (see
Table 5.4) can be converted automatically to constraints by grompp. There are several options
for this in the *.mdp file.

We have also implemented the SETTLE algorithm [32] which is an analytical solution of SHAKE
specifically for water. SETTLE can be selected in the topology file. Check for instance the SPC
molecule definition:
[moleculetype]
; molname nrexcl
SOL 1

[atoms]
; nr at type res nr ren nm at nm cg nr charge
1 OW 1 SOL OW1 1 -0.82
2 HW 1 SOL HW2 1 0.41
3 HW 1 SOL HW3 1 0.41

[settles]
; OW funct doh dhh
1 1 0.1 0.16333

[exclusions]
1 2 3
2 1 3
3 1 2
The section [settles] defines the first atom of the watery molecule. The settle funct is al-
ways one, and the distance between O-H and H-H distances must be given. Note that the algorithm
can also be used for TIP3P and TIP4P [79]. TIP3P just has another geometry. TIP4P has a virtual
site, but since that is generated it does not need to be shaken (nor stirred).

5.6 Databases

5.6.1 Residue database

The file holding the residue database is ff???.rtp. Originally this file contained building blocks
(amino acids) for proteins, and is the GROMACS interpretation of the rt37c4.dat file of GRO-
MOS. So the residue file contains information (bonds, charge, charge groups and improper dihe-
drals) for a frequently used building block. It is better not to change this file because it is standard

5.6. Databases 101

input for pdb2gmx, but if changes are needed make them in the *.top file (see 5.7.1). However,
in the ff???.rtp file the user can define a new building block or molecule: see for example
2,2,2-trifluoroethanol (TFE) or n-decane (C10). But when defining new molecules (non-protein)
it is preferable to create a *.itp file. This will be discussed in section 5.7.2. When adding a new
protein residue to the database, don’t forget to add the residue name to the aminoacids.dat
file, so that grompp, make ndx and analysis tools can recognize the residue as a protein residue
(see 8.1.1).

The file ff???.rtp is only used by pdb2gmx. As mentioned before, the only extra information
this program needs from ff???.rtp is bonds, charges of atoms, charge groups and improper
dihedrals, because the rest is read from the coordinate input file (in the case of pdb2gmx, a pdb
format file). Some proteins contain residues that are not standard, but are listed in the coordinate
file. You have to construct a building block for this “strange” residue, otherwise you will not
obtain a *.top file. This also holds for molecules in the coordinate file such as phosphate or
sulphate ions. The residue database is constructed in the following way:
[bondedtypes] ; mandatory

; bonds angles dihedrals impropers

1 1 1 2 ; mandatory

[GLY] ; mandatory

[atoms] ; mandatory

; name type charge chargegroup

N N -0.280 0

H H 0.280 0

CA CH2 0.000 1

C C 0.380 2

O O -0.380 2

[bonds] ; optional

;atom1 atom2 b0 kb

N H

N CA

CA C

C O

-C N

[exclusions] ; optional

;atom1 atom2

[angles] ; optional

;atom1 atom2 atom3 th0 cth

[dihedrals] ; optional

;atom1 atom2 atom3 atom4 phi0 cp mult

102 Chapter 5. Topologies

[impropers] ; optional

;atom1 atom2 atom3 atom4 q0 cq

N -C CA H

-C -CA N -O

[ZN]

[atoms]

ZN ZN 2.000 0

The file is free format, the only restriction is that there can be at most one entry on a line. The
first field in the file is the [bondedtypes] field, which is followed by four numbers, that
indicate the interaction type for bonds, angles, dihedrals and improper dihedrals. The file contains
residue entries, which consist of atoms and optionally bonds, angles dihedrals and impropers. The
charge group codes denote the charge group numbers. Atoms in the same charge group should
always be below each other. When using the hydrogen database with pdb2gmx for adding missing
hydrogens, the atom names defined in the .rtp entry should correspond exactly to the naming
convention used in the hydrogen database, see 5.6.2. The atom names in the bonded interaction
can be preceded by a minus or a plus, indicating that the atom is in the preceding or following
residue respectively. Parameters can be added to bonds, angles, dihedrals and impropers, these
parameters override the standard parameters in the .itp files. This should only be used in special
cases. Instead of parameters, a string can be added for each bonded interaction, this is used in
GROMOS96 .rtp files. These strings are copied to the topology file and can be replaced by
force field parameters by the C-preprocessor in grompp using #define statements.

pdb2gmx automatically generates all angles. This means that for the GROMACS force field the
[angles] field is only useful for overriding .itp parameters. For the GROMOS-96 force
field the interaction number off all angles need to be specified.

pdb2gmx automatically generates one proper dihedral for every rotatable bond, preferably on
heavy atoms. When the [dihedrals] field is used, no other dihedrals will be generated for
the bonds corresponding to the specified dihedrals. It is possible to put more than one dihedral on
a rotatable bond.

pdb2gmx sets the number of exclusions to 3, which means that interactions between atoms con-
nected by at most 3 bonds are excluded. Pair interactions are generated for all pairs of atoms
which are separated by 3 bonds (except pairs of hydrogens). When more interactions need to be
excluded, or some pair interactions should not be generated, an [exclusions] field can be
added, followed by pairs of atom names on separate lines. All non-bonded and pair interactions
between these atoms will be excluded.

5.6.2 Hydrogen database

The hydrogen database is stored in ff???.hdb. It contains information for the pdb2gmx pro-
gram on how to connect hydrogen atoms to existing atoms. In versions of the database before
GROMACS 3.3, hydrogen atoms were named after the atom they are connected to: the first letter
of the atom name ws replaced by an ’H’. In the versions from 3.3 onwards, the H atom has to be

5.6. Databases 103

listed explicitly, because the old behaviour was protein-specific and hence could not be general-
ized to other molecules. If more then one hydrogen atom is connected to the same atom, a number
will be added to the end of the hydrogen atom name. For example, adding two hydrogen atoms to
ND2 (in asparagine), the hydrogen atoms will be named HD21 and HD22. This is important since
atom naming in the .rtp file (see 5.6.1) must be the same. The format of the hydrogen database
is as follows:
; res # additions

H add type H i j k

ALA 1

1 1 H N -C CA

ARG 4

1 2 H N CA C

1 1 HE NE CD CZ

2 3 HH1 NH1 CZ NE

2 3 HH2 NH2 CZ NE

On the first line we see the residue name (ALA or ARG) and the number of additions. After that
follows one line for each addition, on which we see:

• The number of H atoms added

• The way of adding H atoms, can be any of

1 one planar hydrogen, e.g. rings or peptide bond
one hydrogen atom (n) is generated, lying in the plane of atoms (i,j,k) on the plane
bisecting angle (j-i-k) at a distance of 0.1 nm from atom i, such that the angles (n-i-j)
and (n-i-k) are > 90o

2 one single hydrogen, e.g. hydroxyl
one hydrogen atom (n) is generated at a distance of 0.1 nm from atom i, such that angle
(n-i-j)=109.5 degrees and dihedral (n-i-j-k)=trans

3 two planar hydrogens, e.g. -NH2

two hydrogens (n1,n2) are generated at a distance of 0.1 nm from atom i, such that
angle (n1-i-j)=(n2-i-j)=120 degrees and dihedral (n1-i-j-k)=cis and (n2-i-j-k)=trans,
such that names are according to IUPAC standards [84]

4 two or three tetrahedral hydrogens, e.g. -CH3

three (n1,n2,n3) or two (n1,n2) hydrogens are generated at a distance of 0.1 nm from
atom i, such that angle (n1-i-j)=(n2-i-j)=(n3-i-j)=109.47o, dihedral (n1-i-j-k)=trans,
(n2-i-j-k)=trans+120 and (n3-i-j-k)=trans+240 degrees

5 one tetrahedral hydrogen, e.g. C3CH
one hydrogen atom (n′) is generated at a distance of 0.1 nm from atom i in tetrahedral
conformation such that angle (n′-i-j)=(n′-i-k)=(n′-i-l)=109.47o

6 two tetrahedral hydrogens, e.g. C-CH2-C
two hydrogen atoms (n1,n2) are generated at a distance of 0.1 nm from atom i in
tetrahedral conformation on the plane bissecting angle i-j-k with angle (n-i-n2)=(n1-i-
j)=(n1-i-k)=109.5

104 Chapter 5. Topologies

7 two water hydrogens
two hydrogens are generated around atom i according to SPC [57] water geometry.
The symmetry axis will alternate between three coordinate axes in both directions

10 three water “hydrogens”
two hydrogens are generated around atom i according to SPC [57] water geometry.
The symmetry axis will alternate between three coordinate axes in both directions. In
addition an extra particle is generated on the position of the oxygen. This is for use
with four-atom water models such as TIP4P [79]

10 four water “hydrogens”
Same as above, except that two additional particles are generated on the position of
the oxygen. This is for use with five-atom water models such as TIP5P [85]

• The name of the new H atom

• Three or four control atoms (i,j,k,l), where the first always is the atom to which the H atoms
are connected. The other two or three depend on the code selected (for water there is only
one control atom).

5.6.3 Termini database

The termini databases are stored in ff???-n.tdb and ff???-c.tdb for the N- and C-termini
respectively. They contain information for the pdb2gmx program on how to connect new atoms to
existing ones, which atoms should be removed or changed and which bonded interactions should
be added. The format of the is as follows (this is an example from the ffgmx-c.tdb):

[None]

[COO-]

[replace]
C C C 12.011 0.27

[add]
2 8 O C CA N
OM 15.9994 -0.635

[delete]
O

[impropers]
C O1 O2 CA

The file is organized in blocks, each with a header specifying the name of the block. These
blocks correspond to different types of termini that can be added to a molecule. In this exam-
ple [None] is the first block, corresponding to a terminus that leaves the molecule as it is;
[COO-] is the second terminus type, corresponding to changing the terminal carbon atom into

5.6. Databases 105

a deprotonated carboxyl group. Block names cannot be any of the following: replace, add,
delete, bonds, angles, dihedrals, impropers; this would interfere with the parame-
ters of the block, and would probably also be very confusing to human readers.

Per block the following options are present:

• [replace]
replace an existing atom by one with a different atom type, atom name, charge and/or mass.
For each atom to be replaced on line should be entered with the following fields:

– name of the atom to be replaced
– new atom name
– new atom type
– new mass
– new charge

• [add]
add new atoms. For each (group of) added atom(s), a two-line entry is necessary. The
first line contains the same fields as an entry in the hydrogen database (name of the new
atom, number of atoms, type of addition, control atoms, see 5.6.2), but the possible types of
addition are extended by two more, specifically for C-terminal additions:

8 two carboxyl oxygens, -COO−

two oxygens (n1,n2) are generated according to rule 3, at a distance of 0.136 nm from
atom i and an angle (n1-i-j)=(n2-i-j)=117 degrees

9 carboxyl oxygens and hydrogen, -COOH
two oxygens (n1,n2) are generated according to rule 3, at distances of 0.123 nm and
0.125 nm from atom i for n1 and n2 resp. and angles (n1-i-j)=121 and (n2-i-j)=115
degrees. One hydrogen (n’) is generated around n2 according to rule 2, where n-i-j
and n-i-j-k should be read as n’-n2-i and n’-n2-i-j resp.

After this line another line follows which specifies the details of the added atom(s), in the
same way as for replacing atoms, i.e.:

– atom type
– mass
– charge

Like in the hydrogen database (see 5.6.1), when more then one atom is connected to an
existing one, a number will be appended to the end of the atom name. Note that, like in the
hydrogen database the atom name is now on the same line as the control atoms, whereas it
was at the beginning of the second line prior to GROMACS version 3.3.

• [delete]
delete existing atoms. One atom name per line.

• [bonds], [angles], [dihedrals] and [impropers]
add additional bonded parameters. The format is identical to that used in the ff???.rtp,
see 5.6.1.

106 Chapter 5. Topologies

5.7 File formats

5.7.1 Topology file

The topology file is built following the GROMACS specification for a molecular topology. A
*.top file can be generated by pdb2gmx. All possible entries in the topology file are listed
in Tables 5.3, 5.4 and 5.5. Also listed are all the units of the parameters, which interactions can
be perturbed for free energy calculations, which bonded interactions are used by grompp for
generating exclusions and which bonded interactions can be converted to constraints by grompp.

Description of the file layout:

• semicolon (;) and newline surround comments

• on a line ending with \ the newline character is ignored.

• directives are surrounded by [and]

• the topology consists of three levels:

– the parameter level (see Table 5.3)

– the molecule level, which should contain one or more molecule definitions (see Ta-
ble 5.4)

– the system level: [system], [molecules]

• items should be separated by spaces or tabs, not commas

• atoms in molecules should be numbered consecutively starting at 1

• the file is parsed once only which implies that no forward references can be treated: items
must be defined before they can be used

• exclusions can be generated from the bonds or overridden manually

• the bonded force types can be generated from the atom types or overridden per bond

• it is possible to apply multiple bonded interactions of the same type on the same atoms

• descriptive comment lines and empty lines are highly recommended

• starting with GROMACS version 3.1.3 all directives at the parameter level can be used
multiple times and there are no restrictions on the order, except that an atom type needs to
be defined before it can be used in other parameter definitions

• If parameters for a certain interaction are defined multiple times for the same combination
of atom types the last definition is used; starting with GROMACS version 3.1.3 grompp
generates a warning for parameter redefinitions with different values

• using one of the [atoms], [bonds], [pairs], [angles], etc. without
having used [moleculetype] before is meaningless and generates a warning

5.7. File formats 107

Parameters
interaction directive # f. parameters F. E.
type at. tp
mandatory defaults non-bonded function type;

combination rule(cr);
generate pairs (no/yes);
fudge LJ (); fudge QQ ()

mandatory atomtypes atom type; m (u); q (e); particle type;
V(cr); W(cr)

bondtypes (see Table 5.4, directive bonds)
pairtypes (see Table 5.4, directive pairs)
angletypes (see Table 5.4, directive angles)
dihedraltypes(∗) (see Table 5.4, directive dihedrals)
constrainttypes (see Table 5.5, directive constraints)

LJ nonbond params 2 1 V (a); W (a)

Buckingham nonbond params 2 2 a (kJ mol−1); b (nm−1);
c6 (kJ mol−1nm6)

Molecule definition(s)
mandatory moleculetype molecule name; n(nrexcl)

ex

mandatory atoms 1 atom type; residue number; type
residue name; atom name;
charge group number; q (e); m (u) q,m

intramolecular interaction and geometry definitions as described in Tables 5.4 and 5.5

System
mandatory system system name
mandatory molecules molecule name; number of molecules

’# at’ is the number of atom types
’f. tp’ is function type
’F. E.’ indicates which parameters can be interpolated during free energy calculations
(cr) the combination rule determines the type of LJ parameters, see 5.3.3
(∗) for dihedraltypes one can specify 4 atoms or the inner (outer for improper) 2 atoms
(nrexcl) exclude neighbors nex bonds away for non-bonded interactions
For free energy calculations, type, q and m or no parameters should be added
for topology ’B’ (λ = 1) on the same line, after the normal parameters.

Table 5.3: The topology (*.top) file.

108 Chapter 5. Topologies

Intramolecular interaction definitions
interaction directive # f. parameters F. E.
type at. tp

bond bonds(excl,con) 2 1 b0 (nm); kb (kJ mol−1nm−2) all
G96 bond bonds(excl,con) 2 2 b0 (nm); kb (kJ mol−1nm−4) all
morse bonds(excl,con) 2 3 b0 (nm); D (kJ mol−1); β (nm−1)
cubic bond bonds(excl,con) 2 4 b0 (nm); Ci=2,3 (kJ mol−1nm−i);
connection bonds(excl) 2 5
harmonic pot. bonds 2 6 b0 (nm); kb (kJ mol−1nm−2) all
FENE bond bonds(excl) 2 7 bm (nm); kb (kJ mol−1nm−2)
tab. bond bonds(excl) 2 8 table number (≥ 0); k (kJ mol−1) k
tab. bond n.c. bonds 2 9 table number (≥ 0); k (kJ mol−1) k

LJ/Coul. 1-4 pairs 2 1 V (cr); W (cr) all
LJ/Coul. 1-4 pairs 2 2 fudge QQ (); qi, qj (e), V (cr); W (cr)

LJ/C. pair NB pairs nb 2 1 qi, qj (e); V (cr); W (cr)

angle angles(con) 3 1 θ0 (deg); kθ (kJ mol−1rad−2) all
G96 angle angles(con) 3 2 θ0 (deg); kθ (kJ mol−1) all
Cross bond-bond angles 3 3 r1e, r2e (nm); krr′ (kJ mol−1nm−2)
Cross bond-angle angles 3 4 r1e, r2e r3e (nm); krθ (kJ mol−1nm−2)
Urey-Bradley angles(con) 3 5 θ0 (deg); kθ (kJ mol−1); r13 (nm);

kUB (kJ mol−1)
quartic angle angles(con) 3 6 θ0 (deg); Ci=0,1,2,3,4 (kJ mol−1rad−i)
tab. angle angles 3 8 table number (≥ 0); k (kJ mol−1) k
proper dih. dihedrals 4 1 φs (deg); kφ (kJ mol−1); multiplicity φ, k
improper dih. dihedrals 4 2 ξ0 (deg); kξ (kJ mol−1rad−2) all
RB dihedral dihedrals 4 3 C0, C1, C2, C3, C4, C5 (kJ mol−1) all
Fourier dih. dihedrals 4 5 C1, C2, C3, C4 (kJ mol−1) all
tab. dihedral dihedrals 4 8 table number (≥ 0); k (kJ mol−1) k
exclusions exclusions 1 one or more atom indices

’# at’ is the number of atom indices
’f. tp’ is function type
’F. E.’ indicates which parameters can be interpolated during free energy calculations
(cr) the combination rule determines the type of LJ parameters, see 5.3.3
(excl) used by grompp for generating exclusions
(con) can be converted to constraints by grompp

For free energy calculations, all or no parameters for topology ’B’ (λ = 1) should be added
on the same line, after the normal parameters, in the same order as the normal parameters.

Table 5.4: Intramolecular interaction definitions.

5.7. File formats 109

Intramolecular geometry and restraint definitions
interaction directive # f. parameters F. E.
type at. tp

constraint constraints(excl) 2 1 b0 (nm) all
constr. n.c. constraints 2 2 b0 (nm) all
settle settles 3 1 dOH, dHH (nm)
vsite2 virtual sites2 3 1 a ()
vsite3 virtual sites3 4 1 a, b ()
vsite3fd virtual sites3 4 2 a (); d (nm)
vsite3fad virtual sites3 4 3 θ (deg); d (nm)
vsite3out virtual sites3 4 4 a, b (); c (nm−1)
vsite4fd virtual sites4 5 1 a, b (); d (nm);
vsite COG virtual sitesn 1 1 one or more construc. atom ind.
vsite COM virtual sitesn 1 2 one or more construc. atom ind.
vsite COW virtual sitesn 1 3 one or more pairs consisting of

a construc. atom ind. and weight
position res. position restraints 1 1 kx, ky, kz (kJ mol−1nm−2) all
distance res. distance restraints 2 1 type; label; low, up1, up2 (nm);

weight ()
orient. res. orientation restraints

2 1 exp.; label; α; c (U nmα);
obs. (U); weight (U−1)

angle res. angle restraints 4 1 θ0 (deg); kc (kJ mol−1); θ, k
multiplicity

angle res. z angle restraints z 2 1 θ0 (deg); kc (kJ mol−1); θ, k
multiplicity

’# at’ is the number of atom indices
’f. tp’ is function type
’F. E.’ indicates which parameters can be interpolated during free energy calculations
(excl) used by grompp for generating exclusions
For free energy calculations, all or no parameters for topology ’B’ (λ = 1) should be added
on the same line, after the normal parameters, in the same order as the normal parameters.

Table 5.5: Intramolecular geometry and restraint definitions.

110 Chapter 5. Topologies

• using [molecules] without having used [system] before is meaningless and
generates a warning.

• after [system] the only allowed directive is [molecules]

• using an unknown string in [] causes all the data until the next directive to be ignored,
and generates a warning

Here is an example of a topology file, urea.top:

;
; Example topology file
;
; The force field files to be included
#include "ffgmx.itp"

[moleculetype]
; name nrexcl
Urea 3

[atoms]
; nr type resnr residu atom cgnr charge
1 C 1 UREA C1 1 0.683
2 O 1 UREA O2 1 -0.683
3 NT 1 UREA N3 2 -0.622
4 H 1 UREA H4 2 0.346
5 H 1 UREA H5 2 0.276
6 NT 1 UREA N6 3 -0.622
7 H 1 UREA H7 3 0.346
8 H 1 UREA H8 3 0.276

[bonds]
; ai aj funct b0 kb
3 4 1 1.000000e-01 3.744680e+05
3 5 1 1.000000e-01 3.744680e+05
6 7 1 1.000000e-01 3.744680e+05
6 8 1 1.000000e-01 3.744680e+05
1 2 1 1.230000e-01 5.020800e+05
1 3 1 1.330000e-01 3.765600e+05
1 6 1 1.330000e-01 3.765600e+05

[pairs]
; ai aj funct c6 c12
2 4 1 0.000000e+00 0.000000e+00
2 5 1 0.000000e+00 0.000000e+00
2 7 1 0.000000e+00 0.000000e+00
2 8 1 0.000000e+00 0.000000e+00

5.7. File formats 111

3 7 1 0.000000e+00 0.000000e+00
3 8 1 0.000000e+00 0.000000e+00
4 6 1 0.000000e+00 0.000000e+00
5 6 1 0.000000e+00 0.000000e+00

[angles]
; ai aj ak funct th0 cth
1 3 4 1 1.200000e+02 2.928800e+02
1 3 5 1 1.200000e+02 2.928800e+02
4 3 5 1 1.200000e+02 3.347200e+02
1 6 7 1 1.200000e+02 2.928800e+02
1 6 8 1 1.200000e+02 2.928800e+02
7 6 8 1 1.200000e+02 3.347200e+02
2 1 3 1 1.215000e+02 5.020800e+02
2 1 6 1 1.215000e+02 5.020800e+02
3 1 6 1 1.170000e+02 5.020800e+02

[dihedrals]
; ai aj ak al funct phi cp mult
2 1 3 4 1 1.800000e+02 3.347200e+01 2.000000e+00
6 1 3 4 1 1.800000e+02 3.347200e+01 2.000000e+00
2 1 3 5 1 1.800000e+02 3.347200e+01 2.000000e+00
6 1 3 5 1 1.800000e+02 3.347200e+01 2.000000e+00
2 1 6 7 1 1.800000e+02 3.347200e+01 2.000000e+00
3 1 6 7 1 1.800000e+02 3.347200e+01 2.000000e+00
2 1 6 8 1 1.800000e+02 3.347200e+01 2.000000e+00
3 1 6 8 1 1.800000e+02 3.347200e+01 2.000000e+00

[dihedrals]
; ai aj ak al funct q0 cq
3 4 5 1 2 0.000000e+00 1.673600e+02
6 7 8 1 2 0.000000e+00 1.673600e+02
1 3 6 2 2 0.000000e+00 1.673600e+02

[position restraints]
; you wouldn’t normally use this for a molecule like Urea,
; but we include it here for didactic purposes
; ai funct fc
1 1 1000 1000 1000 ; Restrain to a point
2 1 1000 0 1000 ; Restrain to a line (Y-axis)
3 1 1000 0 0 ; Restrain to a plane (Y-Z-plane)

; Include SPC water topology
#include "spc.itp"

[system]

112 Chapter 5. Topologies

Urea in Water

[molecules]
;molecule name nr.
Urea 1
SOL 1000

Here follows the explanatory text.

[defaults] :

• non-bond type = 1 (Lennard-Jones) or 2 (Buckingham)

• combination rule =

1. For Lennard Jones: supply C(6) and C(N), CMij =
√
CMi CMj (M = 6,N). Default

value for N = 12, but it can be overridden using the last parameter on this line. For
Buckingham potentials the combination rule is such that you give the A, B and C
parameters. Aij =

√
AiAj and similar for Cij , Bij = 2/(1/Bi + 1/Bj).

2. supply σ and ε, σij = 1
2(σi + σj) and εij = √εi εj

3. supply σ and ε, σij = √σi σj , εij = √εi εj

• generate pairs = no (the default, get 1-4 interactions from the pair list, when parameters are
not present in the list give a warning and use zeros) or yes (generate 1-4 interactions which
are not present in the pair list from normal Lennard-Jones parameters using FudgeLJ)

• FudgeLJ = factor to multiply Lennard-Jones 1-4 interactions with, default 1

• FudgeQQ = factor to multiply electrostatic 1-4 interactions with, default 1

• N = power for the repulsion term in a 6-N potential (with nonbonded-type Lennard Jones
only)

note: generate pairs, FudgeLJ, FudgeQQ and N are optional, FudgeLJ is only used when generate
pairs is set to ’yes’. However if you want to specify N you need to give a value for the other
parameters as well.

#include "ffgmx.itp" : this includes the bonded and non-bonded GROMACS parameters,
the gmx in ffgmx will be replaced by the name of the force field you are actually using.

[moleculetype] : defines the name of your molecule in this *.top and nrexcl = 3 stands
for excluding non-bonded interactions between atoms that are no further than 3 bonds away.

[atoms] : defines the molecule, where nr and type are fixed, the rest is user defined. So
atom can be named as you like, cgnr made larger or smaller (if possible, the total charge of a
charge group should be zero), and charges can be changed here too.

[bonds] : no comment.

[pairs] : LJ and Coulomb 1-4 interactions

5.7. File formats 113

[angles] : no comment

[dihedrals] : in this case there are 9 proper dihedrals (funct = 1), 3 improper (funct =
2) and no Ryckaert-Bellemans type dihedrals. If you want to include Ryckaert-Bellemans type
dihedrals in a topology, do the following (in case of e.g. decane): [dihedrals]
; ai aj ak al funct c0 c1 c2
1 2 3 4 3
2 3 4 5 3
and do not forget to erase the 1-4 interaction in [pairs]!

[position restraints] : harmonically restrain the selected particles to reference posi-
tions (sec. 4.3.1). The reference positions are read from a separate coordinate file by grompp.

#include "spc.itp" : includes a topology file that was already constructed (see next sec-
tion, molecule.itp).

[system] : title of your system, user defined

[molecules] : this defines the total number of (sub)molecules in your system that are de-
fined in this *.top. In this example file it stands for 1 urea molecules dissolved in 1000 water
molecules. The molecule type SOL is defined in the spc.itp file.

5.7.2 Molecule.itp file

If you construct a topology file you will use frequently (like a water molecule, spc.itp) it is
better to make a molecule.itp file, which only lists the information of the molecule:

[moleculetype]
; name nrexcl
Urea 3

[atoms]
; nr type resnr residu atom cgnr charge
1 C 1 UREA C1 1 0.683
.................
.................
8 H 1 UREA H8 3 0.276

[bonds]
; ai aj funct c0 c1
3 4 1 1.000000e-01 3.744680e+05
.................
.................
1 6 1 1.330000e-01 3.765600e+05

[pairs]
; ai aj funct c0 c1
2 4 1 0.000000e+00 0.000000e+00
.................

114 Chapter 5. Topologies

.................
5 6 1 0.000000e+00 0.000000e+00

[angles]
; ai aj ak funct c0 c1
1 3 4 1 1.200000e+02 2.928800e+02
.................
.................
3 1 6 1 1.170000e+02 5.020800e+02

[dihedrals]
; ai aj ak al funct c0 c1 c2
2 1 3 4 1 1.800000e+02 3.347200e+01 2.000000e+00
.................
.................
3 1 6 8 1 1.800000e+02 3.347200e+01 2.000000e+00

[dihedrals]
; ai aj ak al funct c0 c1
3 4 5 1 2 0.000000e+00 1.673600e+02
6 7 8 1 2 0.000000e+00 1.673600e+02
1 3 6 2 2 0.000000e+00 1.673600e+02

This results in a very short *.top file as described in the previous section, but this time you only
need to include files:

; The force field files to be included
#include "ffgmx.itp"

; Include urea topology
#include "urea.itp"

; Include SPC water topology
#include "spc.itp"

[system]
Urea in Water

[molecules]
;molecule name number
Urea 1
SOL 1000

5.7. File formats 115

5.7.3 Ifdef option

A very powerful feature in GROMACS is the use of #ifdef statements in your *.top file.
By making use of this statement, different parameters for one molecule can be used in the same
*.top file. An example is given for TFE, where there is an option to use different charges on the
atoms: charges derived by De Loof et al. [86] or by Van Buuren and Berendsen [80]. In fact you
can use all the options of the C-Preprocessor, cpp, because this is used to scan the file. The way
to make use of the #ifdef option is as follows:

• in grompp.mdp (the GROMACS preprocessor input parameters) use the option
define = -DDeloof
or
define =

• put the #ifdef statements in your *.top, as shown below:

...

[atoms]

; nr type resnr residu atom cgnr charge mass

#ifdef DeLoof

; Use Charges from DeLoof

1 C 1 TFE C 1 0.74

2 F 1 TFE F 1 -0.25

3 F 1 TFE F 1 -0.25

4 F 1 TFE F 1 -0.25

5 CH2 1 TFE CH2 1 0.25

6 OA 1 TFE OA 1 -0.65

7 HO 1 TFE HO 1 0.41

#else

; Use Charges from VanBuuren

1 C 1 TFE C 1 0.59

2 F 1 TFE F 1 -0.2

3 F 1 TFE F 1 -0.2

4 F 1 TFE F 1 -0.2

5 CH2 1 TFE CH2 1 0.26

6 OA 1 TFE OA 1 -0.55

7 HO 1 TFE HO 1 0.3

#endif

[bonds]

; ai aj funct c0 c1

6 7 1 1.000000e-01 3.138000e+05

1 2 1 1.360000e-01 4.184000e+05

1 3 1 1.360000e-01 4.184000e+05

1 4 1 1.360000e-01 4.184000e+05

1 5 1 1.530000e-01 3.347000e+05

116 Chapter 5. Topologies

B-state atom types parameters parameters in bonded types
all indentical to on line A atom types B atom types message

A-state atom types A B A B A B
+AB − x x
+A +B x x

yes − − − − error
− − +AB −
− − +A +B

+AB − x x x x warning
+A +B x x x x
− − − − x x error

no − − +AB − − − warning
− − +A +B − − warning
− − +A x +B −
− − +A x + +B

Table 5.6: The bonded parameters that are used for free energy topologies, on the line of the
bonded interaction definition or looked up in the bond types section based on atom types. A and
B indicate the parameters used for state A and B respectively, + and− indicate the (non-)presence
of parameters in the topology, x indicates that the presence has no influence.

5 6 1 1.430000e-01 3.347000e+05

...

5.7.4 Topologies for free energy calculations

Free energy differences between two systems A and B can be calculated as described in sec. 3.12.
The systems A and B are described by topologies consisting of the same number of molecules with
the same number of atoms. Masses and non-bonded interactions can be perturbed by adding B pa-
rameters in the [atoms] field. Bonded interactions can be perturbed by adding B parameters
to the bonded types or the bonded interactions. The parameters that can be perturbed are listed
in Tables 5.3, 5.4 and 5.5. The λ-dependence of the interactions is described in section sec. 4.5.
Which bonded parameters are used, the one on the line of the bonded interaction definition, or the
ones looked up on atom types in the bonded type lists, is explained in Table 5.6. In most cases
things should work intuitively. When the A and B atom types in a bonded interaction are not all
identical and parameters are not present for the B-state, either on the line on in the bonded types,
grompp uses the A-state parameters and issues a warning.

Below is an example of a topology which changes from 200 propanols to 200 pentanes using the
GROMOS-96 force field.

; Include forcefield parameters
#include "ffG43a1.itp"

5.7. File formats 117

[moleculetype]
; Name nrexcl
PropPent 3

[atoms]
; nr type resnr residue atom cgnr charge mass typeB chargeB massB
1 H 1 PROP PH 1 0.398 1.008 CH3 0.0 15.035
2 OA 1 PROP PO 1 -0.548 15.9994 CH2 0.0 14.027
3 CH2 1 PROP PC1 1 0.150 14.027 CH2 0.0 14.027
4 CH2 1 PROP PC2 2 0.000 14.027
5 CH3 1 PROP PC3 2 0.000 15.035

[bonds]
; ai aj funct par A par B
1 2 2 gb 1 gb 26
2 3 2 gb 17 gb 26
3 4 2 gb 26 gb 26
4 5 2 gb 26

[pairs]
; ai aj funct
1 4 1
2 5 1

[angles]
; ai aj ak funct par A par B
1 2 3 2 ga 11 ga 14
2 3 4 2 ga 14 ga 14
3 4 5 2 ga 14 ga 14

[dihedrals]
; ai aj ak al funct par A par B
1 2 3 4 1 gd 12 gd 17
2 3 4 5 1 gd 17 gd 17

[system]
; Name
Propanol to Pentane
4
[molecules]
; Compound #mols
PropPent 200

Atoms that are not perturbed, PC2 and PC3, do not need B parameter specifications, the B pa-
rameters will be copied from the A parameters. Bonded interactions between atoms that are not

118 Chapter 5. Topologies

perturbed do not need B parameter specifications, here this is the case for the last bond. Topolo-
gies using the OPLS/AA force field need no bonded parameters at all, since both the A and B
parameters are determined by the atom types. Non-bonded interactions involving one or two per-
turbed atoms use the free-energy perturbation functional forms. Non-bonded interaction between
two non-perturbed atoms use the normal functional forms. This means that when, for instance,
only the charge of a particle is perturbed, its Lennard-Jones interactions will also be affected when
lambda is not equal to zero or one.

Note that this topology uses the GROMOS-96 force field, in which the bonded interactions are not
determined by the atom types. The bonded interaction strings are converted by the C-preprocessor.
The force field parameter files contain lines like:

#define gb 26 0.1530 7.1500e+06

#define gd 17 0.000 5.86 3

5.7.5 Constraint force

The constraint force between two atoms in one molecule can be calculated with the free energy
perturbation code by adding a constraint between the two atoms, with a different length in the A
and B topology. When the B length is 1 nanometer longer than the A length and lambda is kept
constant at zero, the derivative of the Hamiltonian with respect to lambda is the constraint force.
For constraints between molecules the pull code can be used, see sec. ??. Below is an example for
calculating the constraint force at 0.7 nanometer between two methanes in water, by combining
the two methanes into one molecule. The added constraint is of function type 2, which means that
it is not used for generating exclusions (see sec. 5.4).

; Include forcefield parameters
#include "ffG43a1.itp"

[moleculetype]
; Name nrexcl
Methanes 1

[atoms]
; nr type resnr residu atom cgnr charge mass
1 CH4 1 CH4 C1 1 0 16.043
2 CH4 1 CH4 C2 2 0 16.043

[constraints]
; ai aj funct length A length B
1 2 2 0.7 1.7

#include "spc.itp"

[system]

5.7. File formats 119

; Name
Methanes in Water

[molecules]
; Compound #mols
Methanes 1
SOL 2002

5.7.6 Coordinate file

Files with the .gro file extension contain a molecular structure in GROMOS87 format. A sample
piece is included below:

MD of 2 waters, reformat step, PA aug-91
6
1WATER OW1 1 0.126 1.624 1.679 0.1227 -0.0580 0.0434
1WATER HW2 2 0.190 1.661 1.747 0.8085 0.3191 -0.7791
1WATER HW3 3 0.177 1.568 1.613 -0.9045 -2.6469 1.3180
2WATER OW1 4 1.275 0.053 0.622 0.2519 0.3140 -0.1734
2WATER HW2 5 1.337 0.002 0.680 -1.0641 -1.1349 0.0257
2WATER HW3 6 1.326 0.120 0.568 1.9427 -0.8216 -0.0244
1.82060 1.82060 1.82060

This format is fixed, i.e. all columns are in a fixed position. If you want to read such a file in your
own program without using the GROMACS libraries you can use the following formats:

C-format: "%5i%5s%5s%5i%8.3f%8.3f%8.3f%8.4f%8.4f%8.4f"

Or to be more precise, with title etc. it looks like this:

""for (i=0; (i<natoms); i++)
"residuenr,residuename,atomname,atomnr,x,y,z,vx,vy,vz

"box[X][X],box[Y][Y],box[Z][Z],
box[X][Y],box[X][Z],box[Y][X],box[Y][Z],box[Z][X],box[Z][Y]

Fortran format: (i5,2a5,i5,3f8.3,3f8.4)

So confin.gro is the GROMACS coordinate file and is almost the same as the GROMOS-
87 file (for GROMOS users: when used with ntx=7). The only difference is the box for which
GROMACS uses a tensor, not a vector.

120 Chapter 5. Topologies

5.8 Force-field organization

5.8.1 Force-field files

GROMACS 4.0 includes five forcefields. They are listed the file FF.dat:

5
ffgmx Gromacs Forcefield (see manual)
ffgmx2 Gromacs Forcefield with all hydrogens (proteins only)
ffG43a1 GROMOS96 43a1 Forcefield (official distribution)
ffG43b1 GROMOS96 43b1 Vacuum Forcefield (official distribution)
ffG43a2 GROMOS96 43a2 Forcefield (development) (improved ...)

All files for each force field have names beginning with the ff??? string in the FF.dat file. A
force field is included at the beginning of a topology file with an #include statement followed
by ff???.itp. This statement includes the force-field file, which in turn may include other
forcefield files. A the five force fields are organized in the same way. As an example we show the
ffgmx.itp force-field file:

#define FF GROMACS
#define FF GROMACS1

[defaults]
; nbfunc comb-rule gen-pairs fudgeLJ fudgeQQ
1 1 no 1.0 1.0

#include "ffgmxnb.itp"
#include "ffgmxbon.itp"

The first #define can be used in topologies to parse data which is specific for all GROMACS
force-fields, the second #define to parse data which is specific for this force field. The defaults
section is explained in 5.7.1. The included file ffgmxnb.itp contains all atom types and non-
bonded parameters. The included file ffgmxbon.itp contains all bonded parameters.

For each force field there a five files which are only used by pdb2gmx. These are: the residue
database (.rtp, see 5.6.1) the hydrogen database (.hdb, see 5.6.2), two termini databases (.tdb,
see 5.6.3) and the atom type database (.atp) which contains only the masses.

5.8.2 Changing force-field parameters

If one wants to change the parameters of few bonded interactions in a molcule, this is most eas-
ily accomplished by typing the parameters behind the definition of the bonded interaction in the
[moleculetype] section (see 5.7.1 for the format and units). If one wants to change the
parameters for all instances of a certain interaction one can change them in the force-field file or
add a new [???types] section after including the force field. When parameters for a certain
interaction are defined multiple times the last definition is used. As of GROMACS version 3.1.3 a

5.8. Force-field organization 121

warning is generated when parameters are redefined with a different value. Changing the Lennard-
Jones parameters of an atom type is not recommended, because in the GROMACS and GROMOS
force-fields the Lennard-Jones parameters for several combinations of atom types are not accord-
ing to the standard combination rules. Such combinations (and possibly also combinations that
do follow the combionation rules) are defined in the [nonbonded params] section and
changing the Lennard-Jones parameters of an atom type has no effect on these combinations.

5.8.3 Adding atom types

As of GROMACS version 3.1.3 atom types can be added in an extra [atomtypes] section
after the the inclusing of the normal forcefield. After the definition of the new atom type(s), ad-
ditional non-bonded and pair parameters can be defined. In pre 3.1.3 versions of GROMACS the
new atom types needed to be added in the [atomtypes] section of the forcefield files, be-
cause all non-bonded parameters above the last [atomtypes] section would be overwritten
using the standard combination rules.

122 Chapter 5. Topologies

Chapter 6

Special Topics

6.1 Potential of mean force

A potential of mean force (PMF) is a potential which is obtained by integrating the mean force
from an ensemble of configurations. In GROMACS there are several different methods to calculate
the mean force. Each method has its limitations, which are listed below.

• pull code: between the centers of mass of molecules or groups of molecules.

• free-energy code with harmonic bonds or constraints: between single atoms.

• free-energy code with position restraints: changing the conformation of a relatively im-
mobile group of atoms.

• pull code in limited cases: between groups of atoms that are part of a larger molecule for
which the bonds are constrained with SHAKE or LINCS. If the pull group if relatively large,
the pull code can be used.

The pull and free-energy code a desribed in more detail in the following two sections.

Entropic effects

When a distance between two atoms or the centers of mass of two groups is constrained or re-
strained, there will be a purely entropic contribution to the PMF due to the rotation of the two
groups. For a system of two non-interacting masses the potential of mean force is:

Vpmf (r) = −(nc − 1)kBT log(r) (6.1)

where nc is the number of dimensions in which the constraint works (i.e. nc = 3 for a normal con-
straint and nc = 1 when only the z-direction is constrained). Whether one needs to correct for this
contribution depends on what the PMF should represent. When one wants to pull a substrate into a
protein, this entropic term indeed contributes to the work to get the substrate into the protein. But

124 Chapter 6. Special Topics

V

zz link spring

rup

Figure 6.1: Schematic picture of pulling a lipid out of a lipid bilayer with umbrella pulling. Vrup
is the velocity at which the spring is retracted, Zlink is the atom to which the spring is attached
and Zspring is the location of the spring.

when calculating a PMF between two solutes in a solvent, for the purpose of simulating without
solvent, the entropic contribution should be removed. Note that this term can be significant; when
at 300K the distance is halved the contribution is 3.5 kJ mol−1.

6.2 Non-equilibrium pulling

When the distance between two groups is changed continuously, work is applied to the system,
which means that the system is no longer in equilibrium. Although in the limit of very slow pulling
the system is again in equilibrium, for many systems this limit is not reachable within reasonable
computational time. However, one can use the Jarzynski relation[87] to obtain the equilibrium
free-energy difference ∆G between two distances from many non-equilibrium simulations:

∆GAB = −kBT log
〈
e−βWAB

〉
A

(6.2)

where WAB is the work performed to force the system along one path from state A to B, the
angular bracket denotes averaging over a canonical ensemble of the initial state A and β = 1/kBT .

6.3 The pull code

The pull code applies forces or constraints between the centers of mass of one or more pairs of
groups of atoms. There is one reference group and one more other pull groups. Instead of a refer-
nce group one can also use absolute reference point in space. The most common situation consists
of a reference group and one pull group. In this case the two groups are treated equivalently. The
distance between a pair of groups can be determined in 1, 2 or 3 dimension, or can be along a user-
defined vector. The reference distance can be constant or can change linearly with time. Normally
all atoms are weighted by there mass, but an additional weight factor can also be used.

6.3. The pull code 125

Three different types of calculation are supported, in all cases the reference distance can be con-
stant or linearly changing with time.

1. Umbrella pulling A harmonic potential is applied between the centers of mass of two
groups. Thus the force is proportional to the displacement.

2. Constraint pulling The distance between the centers of mass of two groups is constrained.
The constraint force can be written to a file. This method uses the SHAKE algorithm but
only needs 1 iteration to be exact if only two groups are constrained.

3. Constant force pulling A constant force is applied between the centers of mass of two
groups. Thus the potential is linear. In this case there is no reference distance of pull rate.

Definition of the center of mass

In GROMACS there are two ways to define the center of mass of a group. The standard way
is a “plain” center of mass, possibly with additional weighting factors. With periodic boundary
conditions it is no longer possible to uniquely define the center of mass of a group of atoms.
Therefore a reference atom is used. For determining the center of mass, for all other atoms in the
group the periodic image is used which is closed to the reference atom. This uniquely defines the
center of mass. By default the middle (determined by the order in the topology) atom is used as a
reference atom, but the user can also select any other atom, if this would be closer to center of the
group.

For a layered system, for instance a lipid bilayer, it may be of interest to calculate the PMF of a
lipid as function of its distance from the whole bilayer. The whole bilayer can be taken as reference
group in that case, but it might also be of interest to define the reaction coordinate for the PMF
more locally. The mdp option pull geometry = cylinder does not use all the atoms of the
reference group, but instead dynamically only those within a cylinder with radius r 1 around the
pull vector going through the pull group. This only works for distances defined in one dimension,
and the cylinder is oriented with its long axis along this one dimension. A second cylinder can
be defined with r 0, with a linear switch function that weighs the contribution of atoms between
r 0 and r 1 with distance. This smoothes the effects of atoms moving in and out of the cylinder
(which causes jumps in the pull forces).

When relative weightswi are used during the calculations, either by supplying weights in the input
or due to cylinder geometry, the weights need to be scaled to conserve momentum:

w′i = wi

N∑
j=1

wjmj

/
N∑
j=1

w2
j mj (6.3)

where mj is the mass of atom j of the group. The mass of the group, required for calculating the
constraint force, is:

M =
N∑
i=1

w′imi (6.4)

The definition of the weighted center of mass is:

rcom =
N∑
i=1

w′imi ri

/
M (6.5)

126 Chapter 6. Special Topics

�

�
�

�
�

Figure 6.2: Overview of the different reference group possibilities, applied to interface systems.
C is the reference group. The circles represent the center of mass of two groups plus the reference
group, dc is the reference distance.

From the centers of mass the AFM, constraint or umbrella force Fcom on each group can be
calculated. The force on the center of mass of a group is redistributed to the atoms as follows:

Fi =
w′imi

M
Fcom (6.6)

Limitations

There is one important limitation: strictly speaking, constraint forces can only be calculated be-
tween groups that are not connected by constraints to the rest of the system. If a group contains
part of a molecule of which the bondlengths are constrained, the pull constraint and LINCS or
SHAKE bond constraint algorithms should be iterated simultaneously. This is not done in GRO-
MACS. This means that for simulations with constraints = all-bonds in the .mdp file
pulling is, strictly speaking, limited to whole molecules or groups of molecules. In some cases this
limitation can be avoided by using the free energy code, see sec. 6.4. In practice the errors caused
by not iterating the two constraint algorithms can be negligble when the pull group consists of a
large amount of atoms and/or the the pull force is small. In such cases the constraint correction
displacement of the pull group is small compared to the bond lengths.

6.4 Calculating a PMF using the free-energy code

The free-energy coupling-parameter approach (see sec. 3.12) provides several ways to calculate
potentials of mean force. A potential of mean force between two atoms can be calculated by con-
necting them with a harmonic potential or a constraint (for this purpose there a special potentials
that avoid the generation of extra exclusions, see sec. 5.4). When the position of the minimum
or the constraint length is 1 nm more in state B than in state A, the restraint or constraint force is

6.5. Removing fastest degrees of freedom 127

given by ∂H/∂λ. The distance between the atoms can be changed as a function of λ and time by
setting delta-lambda in the .mdp file. The results should be identical (although not numeri-
cally due to the different implementations) to the results of the pull code with umbrella sampling
and constraint pulling. Unlike the pull code, the free energy code can also handle atoms that are
connected by constraints.

Potentials of mean force can also be calculated using position restraints. With position restraints
atoms can be linked to a position in space with a harmonic potential (see sec. 4.3.1). These
positions can be made a function of the coupling parameter λ. The positions for the A and the
B state are supplied to grompp with the -r and -rb option, respectively. One could use this
approach to do targeted MD; note that we do not encourage the use of targeted MD for proteins. A
protein can be forced from one conformation to another by using these conformations as position
restraint coordinates for state A and B. One can then slowly change λ from 0 to 1. The main
drawback of this approach is that the conformational freedom of the protein is severely limited
by the position restraints, independent of the change from state A to B. Also the protein is forced
from state A to B in an almost straight line, whereas the real pathway might be very different. An
example of a more fruitful application is a solid system or a liquid confined between walls were
one wants to measure the force required to change the separation between the boundaries or walls.
Because the boundaries or walls already need to be fixed, the position restraints do not limit the
system in its sampling.

6.5 Removing fastest degrees of freedom

The maximum time step in MD simulations is limited by the smallest oscillation period that can
be found in the simulated system. Bond-stretching vibrations are in their quantum-mechanical
ground state and are therefore better represented by a constraint than by a harmonic potential.

For the remaining degrees of freedom, the shortest oscillation period as measured from a simu-
lation is 13 fs for bond-angle vibrations involving hydrogen atoms. Taking as a guideline that
with a Verlet (leap-frog) integration scheme a minimum of 5 numerical integration steps should be
performed per period of a harmonic oscillation in order to integrate it with reasonable accuracy,
the maximum time step will be about 3 fs. Disregarding these very fast oscillations of period 13 fs
the next shortest periods are around 20 fs, which will allow a maximum time step of about 4 fs

Removing the bond-angle degrees of freedom from hydrogen atoms can best be done by defining
them as virtual interaction-sites instead of normal atoms. Where a normal atoms is connected
to the molecule with bonds, angles and dihedrals, a virtual site’s position is calculated from the
position of three nearby heavy atoms in a predefined manner (see also sec. 4.7). For the hydrogens
in water and in hydroxyl, sulfhydryl or amine groups, no degrees of freedom can be removed,
because rotational freedom should be preserved. The only other option available to slow down
these motions, is to increase the mass of the hydrogen atoms at the expense of the mass of the
connected heavy atom. This will increase the moment of inertia of the water molecules and the
hydroxyl, sulfhydryl or amine groups, without affecting the equilibrium properties of the system
and without affecting the dynamical properties too much. These constructions will shortly be
described in sec. 6.5.1 and have previously been described in full detail [88].

Using both virtual sites and modified masses, the next bottleneck is likely to be formed by the

128 Chapter 6. Special Topics

D

d

α

d

BA C

����������
���������� ����������

��������������������
����������

����������
����������

	�	�		�	�	

�
�

�
�

����������
����������

�
���

����������
����������

����������
����������

Figure 6.3: The different types of virtual site constructions used for hydrogen atoms. The atoms
used in the construction of the virtual site(s) are depicted as black circles, virtual sites as grey ones.
Hydrogens are smaller than heavy atoms. A: fixed bond angle, note that here the hydrogen is not a
virtual site; B: in the plane of three atoms, with fixed distance; C: in the plane of three atoms, with
fixed angle and distance; D: construction for amine groups (-NH2 or -NH+

3), see text for details.

improper dihedrals (which are used to preserve planarity or chirality of molecular groups) and the
peptide dihedrals. The peptide dihedral cannot be changed without affecting the physical behavior
of the protein. The improper dihedrals that preserve planarity, mostly deal with aromatic residues.
Bonds, angles and dihedrals in these residues can also be replaced with somewhat elaborate virtual
site constructions.

All modifications described in this section can be performed using the GROMACS topology build-
ing tool pdb2gmx. Separate options exist to increase hydrogen masses, virtualize all hydrogen
atoms or also virtualize all aromatic residues. Note that when all hydrogen atoms are virtualized,
also those inside the aromatic residues will be virtualized, i.e. hydrogens in the aromatic residues
are treated differently depending on the treatment of the aromatic residues.

Parameters for the virtual site constructions for the hydrogen atoms are inferred from the forcefield
parameters (vis. bond lengths and angles) directly by grompp while processing the topology file.
The constructions for the aromatic residues are based on the bond lengths and angles for the
geometry as described in the forcefields, but these parameters are hard-coded into pdb2gmx due
to the complex nature of the construction needed for a whole aromatic group.

6.5.1 Hydrogen bond-angle vibrations

Construction of virtual sites

The goal of defining hydrogen atoms as virtual sites is to remove all high-frequency degrees of
freedom from them. In some cases not all degrees of freedom of a hydrogen atom should be
removed, e.g. in the case of hydroxyl or amine groups the rotational freedom of the hydrogen
atom(s) should be preserved. Care should be taken that no unwanted correlations are introduced
by the construction of virtual sites, e.g. bond-angle vibration between the constructing atoms could
translate into hydrogen bond-length vibration. Additionally, since virtual sites are by definition
massless, in order to preserve total system mass, the mass of each hydrogen atom that is treated as
virtual site should be added to the bonded heavy atom.

Taking into account these considerations, the hydrogen atoms in a protein naturally fall into several
categories, each requiring a different approach (see also Fig. 6.3).

6.5. Removing fastest degrees of freedom 129

ε

η

ζδ

ε

γ

ε

δ ε

δ

ε
δ

γ

ζ
ε

η

εδ

γ

Phe Tyr HisTrp

ζ

ε

ζ

εδ

γ

δδ

��������������������

��������������������

��������������������

��������������������

	�	�		�	�	
�
�

�
�

��������������������

�
���

�������������������� ����������
����������

��������������������

��������������������

��������������������

��������������������
��������������������

Figure 6.4: The different types of virtual site constructions used for aromatic residues. The atoms
used in the construction of the virtual site(s) are depicted as black circles, virtual sites as grey ones.
Hydrogens are smaller than heavy atoms. A: phenylalanine; B: tyrosine (note that the hydroxyl
hydrogen is not a virtual site); C: tryptophane; D: histidine.

• hydroxyl (-OH) or sulfhydryl (-SH) hydrogen: The only internal degree of freedom in a
hydroxyl group that can be constrained is the bending of the C-O-H angle. This angle is
fixed by defining an additional bond of appropriate length, see Fig. 6.3A. This removes the
high frequency angle bending, but leaves the dihedral rotational freedom. The same goes
for a sulfhydryl group. Note that in these cases the hydrogen is not treated as a virtual site.

• single amine or amide (-NH-) and aromatic hydrogens (-CH-): The position of these hy-
drogens cannot be constructed from a linear combination of bond vectors, because of the
flexibility of the angle between the heavy atoms. Instead, the hydrogen atom is positioned
at a fixed distance from the bonded heavy atom on a line going through the bonded heavy
atom and a point on the line through both second bonded atoms, see Fig. 6.3B.

• planar amine (-NH2) hydrogens: The method used for the single amide hydrogen is not well
suited for planar amine groups, because no suitable two heavy atoms can be found to define
the direction of the hydrogen atoms. Instead, the hydrogen is constructed at a fixed distance
from the nitrogen atom, with a fixed angle to the carbon atom, in the plane defined by one
of the other heavy atoms, see Fig. 6.3C.

• amine group (umbrella -NH2 or -NH+
3) hydrogens: Amine hydrogens with rotational free-

dom cannot be constructed as virtual sites from the heavy atoms they are connected to,
since this would result in loss of the rotational freedom of the amine group. To preserve
the rotational freedom while removing the hydrogen bond-angle degrees of freedom, two
“dummy masses” are constructed with the same total mass, moment of inertia (for rotation
around the C-N bond) and center of mass as the amine group. These dummy masses have
no interaction with any other atom, except for the fact that they are connected to the carbon
and to each other, resulting in a rigid triangle. From these three particles the positions of the
nitrogen and hydrogen atoms are constructed as linear combinations of the two carbon-mass
vectors and their outer product, resulting in an amine group with rotational freedom intact,
but without other internal degrees of freedom. See Fig. 6.3D.

130 Chapter 6. Special Topics

6.5.2 Out-of-plane vibrations in aromatic groups

The planar arrangements in the side chains of the aromatic residues lends itself perfectly to a
virtual-site construction, giving a perfectly planar group without the inherently instable constraints
that are necessary to keep normal atoms in a plane. The basic approach is to define three atoms or
dummy masses with constraints between them to fix the geometry and create the rest of the atoms
as simple virtual sites type (see sec. 4.7) from these three. Each of the aromatic residues require a
different approach:

• Phenylalanine: Cγ , Cε1 and Cε2 are kept as normal atoms, but with each a mass of one third
the total mass of the phenyl group. See Fig. 6.3A.

• Tyrosine: The ring is treated identical to the phenylalanine ring. Additionally, constraints
are defined between Cε1 and Cε2 and Oη. The original improper dihedral angles will keep
both triangles (one for the ring and one with Oη) in a plane, but due to the larger moments
of inertia this construction will be much more stable. The bond angle in the hydroxyl group
will be constrained by a constraint between Cγ and Hη, note that the hydrogen is not treated
as a virtual site. See Fig. 6.3B.

• Tryptophane: Cβ is kept as a normal atom and two dummy masses are created at the center
of mass of each of the rings, each with a mass equal to the total mass of the respective ring
(Cδ2 and Cε2 are each counted half for each ring). This keeps the overall center of mass and
the moment of inertia almost (but not quite) equal to what it was. See Fig. 6.3C.

• Histidine: Cγ , Cε1 and Nε2 are kept as normal atoms, but with masses redistributed such
that the center of mass of the ring is preserved. See Fig. 6.3D.

6.6 Viscosity calculation

The shear viscosity is a property of liquid which can be determined easily by experiment. It is use-
ful for parameterizing the forcefield, because it is a kinetic property, while most other properties
which are used for parameterization are thermodynamic. The viscosity is also an important prop-
erty, since it influences the rates of conformational changes of molecules solvated in the liquid.

The viscosity can be calculated from an equilibrium simulation using an Einstein relation:

η =
1
2
V

kBT
lim
t→∞

d
dt

〈(∫ t0+t

t0
Pxz(t′)dt′

)2
〉
t0

(6.7)

This can be done with g energy. This method converges very slowly [89]. A nanosecond
simulation might not be long enough for an accurate determinination of the viscoity. The result is
very dependent on the treatment of the electrostatics. Using a (short) cut-off results in large noise
on the off-diagonal pressure elements, which can increase the calculated viscosity by an order of
magnitude.

GROMACS also has a non-equilibrium method for determining the viscosity [89]. This makes use
of the fact that energy, which is fed into system by external forces, is dissipated through viscous

6.6. Viscosity calculation 131

friction. The generated heat is removed by coupling to a heat bath. For a Newtonian liquid adding
a small force will result in a velocity gradient according to the following equation:

ax(z) +
η

ρ

∂2vx(z)
∂z2

= 0 (6.8)

here we have applied an acceleration ax(z) in the x-direction, which is a function of the z-
coordinate. In GROMACS the acceleration profile is:

ax(z) = A cos
(

2πz
lz

)
(6.9)

where lz is the height of the box. The generated velocity profile is:

vx(z) = V cos
(

2πz
lz

)
(6.10)

V = A
ρ

η

(
lz
2π

)2

(6.11)

The viscosity can be calculated from A and V :

η =
A

V
ρ

(
lz
2π

)2

(6.12)

In the simulation V is defined as:

V =

N∑
i=1

mivi,x2 cos
(

2πz
lz

)
N∑
i=1

mi

(6.13)

The generated velocity profile is not coupled to the heat bath, moreover the velocity profile is
excluded from the kinetic energy. One would like V to be as large as possible to get good statistics.
However the shear rate should not be so high that the system gets too far from equilibrium. The
maximum shear rate occurs where the cosine is zero, the rate being:

shmax = max
z

∣∣∣∣∂vx(z)
∂z

∣∣∣∣ = A
ρ

η

lz
2π

(6.14)

For a simulation with: η = 10−3 [kg m−1 s−1], ρ = 103 [kg m−3] and lz = 2π [nm], shmax =
1 [ps nm−1] A. This shear rate should be smaller than one over the longest correlation time in the
system. For most liquids this will be the rotation correlation time, which is around 10 picoseconds.
In this case A should be smaller than 0.1 [nm ps−2]. When the shear rate is too high, the observed
viscosity will be too low. Because V is proportional to the square of the box height, the optimal
box is elongated in the z-direction. In general a simulation length of 100 picoseconds is enough
to obtain an accurate value for the viscosity.

The heat generated by the viscous friction is removed by coupling to a heat bath. Because this
coupling is not instantaneous the real temperature of the liquid will be slightly lower than the

132 Chapter 6. Special Topics

observed temperature. Berendsen derived this temperature shift[24], which can be written in terms
of the shear rate as:

Ts =
η τ

2ρCv
sh2

max (6.15)

where τ is the coupling time for the Berendsen thermostat and Cv is the heat capacity. Using
the values of the example above, τ = 10−13 [s] and Cv = 2 · 103 [J kg−1 K−1], we get: Ts =
25 [K ps−2] sh2

max. When we want the shear rate to be smaller than 1/10 [ps−1], Ts is smaller than
0.25 [K], which is negligible.

Note that the system has to build up the velocity profile when starting from an equilibrium state.
This build-up time is of the order of the correlation time of the liquid.

Two quantities are written to the energy file, along with their averages and fluctuations: V and 1/η
as obtained from (6.12).

6.7 Tabulated interaction functions

6.7.1 Cubic splines for potentials

In some of the inner loops of GROMACS lookup tables are used for computation of potential and
forces. The tables are interpolated using a cubic spline algorithm. There are separate tables for
electrostatic, dispersion and repulsion interactions, but for the sake of caching performance these
have been combined into a single array. The cubic spline interpolation for xi ≤ x < xi+1 looks
like this:

Vs(x) = A0 +A1 ε+A2 ε
2 +A3 ε

3 (6.16)

where the table spacing h and fraction ε are given by:

h = xi+1 − xi (6.17)

ε = (x− xi)/h (6.18)

so that 0 ≤ ε < 1. From this we can calculate the derivative in order to determine the forces:

− V ′s (x) = − dVs(x)
dε

dε
dx

= − (A1 + 2A2 ε+ 3A3 ε
2)/h (6.19)

The four coefficients are determined from the four conditions that Vs and−V ′s at both ends of each
interval should match the exact potential V and force −V ′. This results in the following errors for
each interval:

|Vs − V |max = V ′′′′
h4

384
+O(h5) (6.20)

|V ′s − V ′|max = V ′′′′
h3

72
√

3
+O(h4) (6.21)

|V ′′s − V ′′|max = V ′′′′
h2

12
+O(h3) (6.22)

V and V’ are continuous, while V” is the first discontinuous derivative. The number of points
per nanometer is 500 and 2000 for single and double precision compiled versions of GROMACS,

6.7. Tabulated interaction functions 133

respectively. This means that the errors in the potential and force will usually be smaller than the
single precision accuracy.

GROMACS stores A0, A1, A2 and A3. The force routines get a table with these four parameters
and a scaling factor s that is equal to the number of points per nm. (Note that h is s−1). The
algorithm goes a little something like this:

1. Calculate distance vector (rij) and distance rij

2. Multiply rij by s and truncate to an integer value n0 to get a table index

3. Calculate fractional component (ε = srij − n0) and ε2

4. Do the interpolation to calculate the potential V and the the scalar force f

5. Calculate the vector force F by multiplying f with rij

Note that table lookup is significantly slower than computation of the most simple Lennard-Jones
and Coulomb interaction. However, it is much faster than the shifted coulomb function used in
conjunction with the PPPM method. Finally it is much easier to modify a table for the potential
(and get a graphical representation of it) than to modify the inner loops of the MD program.

6.7.2 User specified potential functions

You can also use your own potential functions without editing the GROMACS code. The potential
function should be according to the following equation

V (rij) =
qiqj
4πε0

f(rij) + C6 g(rij) + C12 h(rij) (6.23)

with f,g,h user defined functions. Note that if g(r) represents a normal dispersion interaction, g(r)
should be < 0. C6, C12 and the charges are read from the topology. Also note that combination
rules are only supported for Lennard Jones and Buckingham, and that your tables should match
the parameters in the binary topology.

When you add the following lines in your .mdp file:
rlist = 1.0
coulombtype = User
rcoulomb = 1.0
vdwtype = User
rvdw = 1.0
the MD program will read a single file (the name can be changed with option -table) with seven
columns of table lookup data in the order: x, f(x), −f ′(x), g(x), −g′(x), h(x), −h′(x). The x
should run from 0 to rc + 1 (the value table extension can be changed in the .mdp file). You
can choose the spacing you like; for the standard tables GROMACS uses a spacing of 0.002 and
0.0005 nm when you run in single and double precision, respectively. In this context rc denotes
the maximum of the two cut-offs rvdw and rcoulomb (see above). These variables need not be
the same (and need not be 1.0 either). Some functions used for potentials contain a singularity at
x = 0, but since atoms are normally not closer to each other than 0.1 nm, the function value at x =

134 Chapter 6. Special Topics

0 is not important. Finally, it is also possible to combine a standard Coulomb with a modified LJ
potential (or vice versa). One then specifies e.g. coulombtype = Cut-off or coulombtype = PME,
combined with vdwtype = User. The table file must always contain the 7 columns however, and
meaningful data (i.e. not zeroes) must be entered in all columns. A number of pre-built table files
can be found in the GMXLIB directory, for 6-8, 6-9, 6-10, 6-11, 6-12 Lennard Jones potentials
combined with a normal Coulomb.

6.8 Mixed Quantum-Classical simulation techniques

In a molecular mechanics (MM) forcefield, the influence of electrons is expressed by empirical
parameters that are assigned on the basis of experimental data, or on the basis of results from
high-level quantum chemistry calculations. These are valid for the ground state of a given covalent
structure, and the MM approximation is usually sufficiently accurate for ground-state processes
in which the overall connectivity between the atoms is the system remains unchanged. However,
for processes in which the connectivity does change, such as chemical reactions, or processes that
involve multiple electronic states, such as photochemical conversions, electrons can no longer be
ignored, and a quantum mechanical description is required for at least those parts of the system in
which the reaction takes place.

One approach to the simulation of chemical reactions in solution, or in enzymes, is to use a com-
bination of quantum mechanics (QM) adn molecular mechanics (MM). The reacting parts of the
system are treated quantum mechanically, with the remainder being modelled using the force-
field. The current version of Gromacs provides interfaces to several popular Quantum Chemistry
packages (Mopac[90], Gamess-UK[91], Gaussian[92] and CPMD[93]).

Gromacs interactions between the two subsystems are either handled as described by Field et
al.[94] or within the ONIOM approach by Morokuma and coworkers[95, 96].

6.8.1 Overview

Two approaches for describing the interactions between the QM and MM subsystems are sup-
ported in this version:

1. Electronic Embedding The electrostatic interactions between the electrons of the QM re-
gion and the MM atoms and between the QM nuclie and the MM atoms, are included in the
Hamiltonian for the QM subsystem:

HQM/MM = HQM
e −

n∑
i

M∑
J

e2QJ
4πε0riJ

+
N∑
A

M∑
J

e2ZAQJ
eπε0RAJ

, (6.24)

where n and N are the number of electrons and nuclei in the QM region, respectively,
and M is the number of charged MM atoms. The first term on the right hand side is the
original electronic Hamiltonian of an isolated QM system. The first of the double sums us
the total electrostatic interaction between the QM electrons and the MM atoms. The total
electrostatic interaction of the QM nuclei with the MM atoms is given by the second double
sum. Bonded interactions between QM and MM atoms are described at the MM level by the

6.8. Mixed Quantum-Classical simulation techniques 135

appropriate forcefield terms. Chemical bonds that connect the two subsystems are capped
by a hydrogen atom to complete the valence of the QM region. The force on this atom,
which is present in the QM region only, is distributed over the two atoms of the bond. The
cap atom is usually referred to as a link atom.

2. ONIOM In the ONIOM approach, the energy and gradients are first evaluated for the iso-
lated QM subsystem at the desired level of ab initio theory. Subsequently, the energy and
gradients of the total system, including the QM region, are computed using the molecular
mechanics forcefield and added to the energy and gradients calculated for the isolated QM
subsystem. Finally in order to correct for counting the interactions inside the QM region
twice, a molecular mechanics calculation is performed on the isolated QM subsystem and
the energy and gradients are subtracted. This leads to the following expression for the total
QM/MM energy (and gradients likewise):

Etot = EQMI + EMM
I+II − EMM

I , (6.25)

where the subscripts I and II refer to the QM and MM subsystems, respectively. The super-
scripts indicate at what level of theory the energies are computed. The ONIOM scheme has
the advantage has the advantage that it is not restricted to a two layer QM/MM description,
but can easily handle more than two layers, with each layer described at a different level of
theory.

6.8.2 Usage

To make use of the QM/MM functionality in Gromacs, one needs to:

1. introduce link atoms at the QM/MM boundary, if needed;

2. specify which atoms are to be treated at a QM level;

3. specify the QM level, basisset, type of QM/MM interface and so on.

Adding link atoms

At the bond that connects the QM and MM subsystems a link atoms is introduced. In Gromacs
the link atom has special atomtype, called LA. This atomtype is treated as a hydrogen atom in the
QM calculation, and as a dummy atom in the forcefield calculation. The link atoms, if any, are
part of the system, but have no interaction with any other atom, except that the QM force working
on it is distributed over the two atoms of the bond. In the topology the link atom (LA), therefore,
is defined as a virtual site atom:

[virtual sites2]
LA QMatom MMatom 1 0.65

See the dummy atoms section for more details on how dummies are treated. The link atom is
replaced at every step of the simulation.

136 Chapter 6. Special Topics

In addition, the bond itself is replaced by a constraint:

[constraints]
QMatom MMatom 2 0.153

Note that, because in our system the QM/MM bond is a carbon-carbon bond (0.153 nm), we use
a constraint length of 0.153 nm, and dummy position of 0.65. The latter is the ratio between the
ideal C-H bondlength and the ideal C-C bond length. With this ratio, the link atom is always 0.1
nm away from the QMatom, consistent with the carbon-hydrogen bondlength. If the QM and MM
subsystems are connected by a different kind of bond, a different constraint and a different dummy
position, appropriate for that bond type, are required.

Specifying the QM atoms

Atoms that should be treated at a QM level of theory, including the link atoms, are added to the
index file. In addition, the chemical bonds between the atoms in the QM region are to be defined
as connect bonds (bond type 5)in the topology file:

[bonds]
QMatom1 QMatom2 5
QMatom2 QMatom3 5

Specifying the QM/MM simulation parameters

In the mdp file, the following parameters control a QM/MM simulation.

QMMM = no
If this is set to yes, a QM/MM simulation is requested. Several groups of atoms can be
described at different QM levels separately. These are specified in the QMMM-grps field
separated by spaces. The level of ab initio theory at which the groups are described is
speficied by QMmethod and QMbasis Fields. Describing the groups at different levels of
theory is only possible with the ONIOM QM/MM scheme, specified by QMMMscheme.

QMMM-grps =
groups to be descibed at the QM level

QMMMscheme = normal
Options are normal and ONIOM. This selects the QM/MM interface. normal implies
that the QM subsystem is electronically embedded in the MM subsystem. There can only
be one QMMM-grps that is modelled at the QMmethod and QMbasis level of ab initio
theory. The rest of the system is described at the MM level. The QM and MM subsystems
interact as follows: MM point charges are included in the QM one-electron hamiltonian
and all Lennard-Jones interactions are described at the MM level. If ONIOM is selected, the
interaction between the subsystem is described using the ONIOM method by Morokuma
and co-workers. There can be more than one QMMM-grps each modelled at a different
level of QM theory (QMmethod and QMbasis).

6.8. Mixed Quantum-Classical simulation techniques 137

QMmethod =
Method used to compute the energy and gradients on the QM atoms. Available meth-
ods are AM1, PM3, RHF, UHF, DFT, B3LYP, MP2, CASSCF, MMVB and CPMD. For
CASSCF, the number of electrons and orbitals included in the active space is specified by
CASelectrons and CASorbitals. For CPMD, the planewave cut-off is specified by
the planewavecutoff keyword.

QMbasis =
Gaussian basisset used to expand the electronic wavefuntion. Only gaussian bassisets are
currently available, i.e. STO-3G, 3-21G, 3-21G*, 3-21+G*, 6-21G, 6-31G, 6-31G*, 6-
31+G*, and 6-311G. For CPMD, whcih uses plane wave expansion rather than atom-centered
basisfunctions, the planewavecutoff keyword controls the plane wave expansion.

QMcharge =
The total charge in e of the QMMM-grps. In case there are more than one QMMM-grps, the
total charge of each ONIOM layer needs to be specified separately.

QMmult =
The multiplicity of the QMMM-grps. In case there are more than one QMMM-grps, the
multiplicity of each ONIOM layer needs to be specified separately.

CASorbitals =
The number of orbitals to be included in the active space when doing a CASSCF computa-
tion.

CASelectrons =
The number of electrons to be included in the active space when doing a CASSCF compu-
tation.

SH = no
If this is set to yes, a QM/MM MD simulation on the excited state-potential energy surface
and enforce a diabatic hop to the ground-state when the system hits the conical intersection
hyperline in the course the simulation. This option only works in combination with the
CASSCF method.

6.8.3 Output

The energies and gradients computed in the QM calculation are added to those computed by gro-
macs. In the .edr file there is a section for the total QM energy.

6.8.4 Future developments

Several features are currently under development that increase the accuracy of the QM/MM in-
terface. One useful feature is the use of delocalized MM charges in the QM computations. The
most important benefit of using such smeared-out charges is that the coulombic potential has a
finite value at inter atomic distances. In the point charge representation, the partially charged MM

138 Chapter 6. Special Topics

atoms close to the QM region, tend to ’overpolarize’ the QM system, which leads to artefacts in
the calculation.

What is needed as well is a transition state optimizer.

Chapter 7

Run parameters and
Programs

7.1 Online and html manuals

All the information in this chapter can also be found in HTML format in your GROMACS data
directory. The path depends on where your files are installed, but the default location is

/usr/local/gromacs/share/html/online.html
Or, if you installed from Linux packages it can be found as

/usr/local/share/gromacs/html/online.html
You can also use the online from our web site,

www.gromacs.org/documentation/reference 3.0/online.html

In addition, we install standard UNIX manuals for all the programs. If you have sourced the
GMXRC script in the GROMACS binary directory for your host they should already be present in
your $MANPATH, and you should be able to type e.g. man grompp.

The program manual pages can also be found in Appendix D in this manual.

7.2 File types

Table 7.1 lists the file types used by GROMACS along with a short description, and you can find
a more detail description for each file in your HTML reference, or in our online version.

GROMACS files written in xdr format can be read on any architecture with GROMACS version
1.6 or later if the configuration script found the XDR libraries on your system. They should always
be present on UNIX since they are necessary for NFS support.

http://www.gromacs.org/documentation/reference_3.0/online.html

140 Chapter 7. Run parameters and Programs

Default Default
Name Ext. Type Option Description
atomtp.atp Asc Atomtype file used by pdb2gmx
eiwit.brk Asc -f Brookhaven data bank file
state.cpt xdr Checkpoint file
nnnice.dat Asc Generic data file
user.dlg Asc Dialog Box data for ngmx
sam.edi Asc ED sampling input
sam.edo Asc ED sampling output
ener.edr Generic energy: edr ene
ener.edr xdr Energy file in portable xdr format
ener.ene Bin Energy file

eiwit.ent Asc -f Entry in the protein date bank
plot.eps Asc Encapsulated PostScript (tm) file
conf.esp Asc -c Coordinate file in ESPResSo format

gtraj.g87 Asc Gromos-87 ASCII trajectory format
conf.g96 Asc -c Coordinate file in Gromos-96 format
conf.gro Asc -c Coordinate file in Gromos-87 format
conf.gro -c Structure: gro g96 pdb esp tpr tpb tpa
out.gro -o Structure: gro g96 pdb esp

polar.hdb Asc Hydrogen data base
topinc.itp Asc Include file for topology

run.log Asc -l Log file
ps.m2p Asc Input file for mat2ps
ss.map Asc File that maps matrix data to colors
ss.mat Asc Matrix Data file

grompp.mdp Asc -f grompp input file with MD parameters
hessian.mtx Bin -m Hessian matrix

index.ndx Asc -n Index file
hello.out Asc -o Generic output file
eiwit.pdb Asc -f Protein data bank file

residue.rtp Asc Residue Type file used by pdb2gmx
doc.tex Asc -o LaTeX file

topol.top Asc -p Topology file
topol.tpb Bin -s Binary run input file
topol.tpr -s Generic run input: tpr tpb tpa
topol.tpr -s Structure+mass(db): tpr tpb tpa gro g96 pdb
topol.tpr xdr -s Portable xdr run input file
traj.trj Bin Trajectory file (architecture specific)
traj.trr Full precision trajectory: trr trj cpt
traj.trr xdr Trajectory in portable xdr format
root.xpm Asc X PixMap compatible matrix file
traj.xtc -f Trajec., input: xtc trr trj cpt gro g96 pdb
traj.xtc -f Trajectory, output: xtc trr trj gro g96 pdb
traj.xtc xdr Compressed trajectory (portable xdr format)

graph.xvg Asc -o xvgr/xmgr file

Table 7.1: The GROMACS file types.

7.3. Run Parameters 141

7.3 Run Parameters

7.3.1 General

Default values are given in parentheses. The first option is always the default option. Units are
given in square brackets The difference between a dash and an underscore is ignored. A sample
.mdp file is available. This should be appropriate to start a normal simulation. Edit it to suit your
specific needs and desires.

7.3.2 Preprocessing

include:
directories to include in your topology. Format:
-I/home/john/my lib -I../more lib

define:
defines to pass to the preprocessor, default is no defines. You can use any defines to control
options in your customized topology files. Options that are already available by default are:

-DFLEXIBLE
Will tell grompp to include flexible water in stead of rigid water into your topology,
this can be useful for normal mode analysis.

-DPOSRES
Will tell grompp to include posre.itp into your topology, used for position restraints.

7.3.3 Run control

integrator:

md
A leap-frog algorithm for integrating Newton’s equations of motion.

sd
An accurate leap-frog stochastic dynamics integrator. Four Gaussian random number
are required per integration step per degree of freedom. With constraints, coordinates
needs to be constrained twice per integration step. Depending on the computational
cost of the force calculation, this can take a significant part of the simulation time.
The temperature for one or more groups of atoms (tc grps) is set with ref t [K], the
inverse friction constant for each group is set with tau t [ps]. The parameter tcoupl is
ignored. The random generator is initialized with ld seed. When used as a thermostat,
an appropriate value for tau t is 2 ps, since this results in a friction that is lower than
the internal friction of water, while it is high enough to remove excess heat (unless
cut-off or reaction-field electrostatics is used). NOTE: temperature deviations decay
twice as fast as with a Berendsen thermostat with the same tau t.

142 Chapter 7. Run parameters and Programs

sd1
An efficient leap-frog stochastic dynamics integrator. This integrator is equivalent to
sd, except that it requires only one Gaussian random number and one constraint step.
This integrator is less accurate. For water the relative error in the temperature with this
integrator is 0.5 delta t/tau t, but for other systems it can be higher. Use with care
and check the temperature.

bd
An Euler integrator for Brownian or position Langevin dynamics, the velocity is the
force divided by a friction coefficient (bd fric [amu ps−1]) plus random thermal noise
(ref t). When bd fric=0, the friction coefficient for each particle is calculated as
mass/tau t, as for the integrator sd. The random generator is initialized with ld seed.

The following algorithms are not integrators, but selected using
the integrator tag anyway

steep
A steepest descent algorithm for energy minimization. The maximum step size is
emstep [nm], the tolerance is emtol [kJ mol−1 nm−1].

cg
A conjugate gradient algorithm for energy minimization, the tolerance is emtol [kJ
mol−1 nm−1]. CG is more efficient when a steepest descent step is done every once
in a while, this is determined by nstcgsteep. For a minimization prior to a normal
mode analysis, which requires a very high accuracy, GROMACS should be compiled
in double precision.

l-bfgs
A quasi-Newtonian algorithm for energy minimization according to the low-memory
Broyden-Fletcher-Goldfarb-Shanno approach. In practice this seems to converge faster
than Conjugate Gradients, but due to the correction steps necessary it is not (yet) par-
allelized.

nm
Normal mode analysis is performed on the structure in the tpr file. GROMACS
should be compiled in double precision.

tpi
Test particle insertion. The last molecule in the topology is the test particle. A trajec-
tory should be provided with the -rerun option of mdrun. This trajectory should
not contain the molecule to be inserted. Insertions are performed nsteps times in
each frame at random locations and with random orientiations of the molecule. When
nstlist is larger than one, nstlist insertions are performed in a sphere with radius rtpi
around a the same random location using the same neighborlist (and the same long-
range energy when rvdw or rcoulomb > rlist, which is only allowed for single-atom
molecules). Since neighborlist construction is expensive, one can perform several ex-
tra insertions with the same list almost for free. The random seed is set with ld seed.
The temperature for the Boltzmann weighting is set with ref t, this should match the
temperature of the simulation of the original trajectory. Dispersion correction is im-
plemented correctly for tpi. All relevant quantities are written to the file specified with
the -tpi option of mdrun. The distribution of insertion energies is written to the file

7.3. Run Parameters 143

specified with the -tpid option of mdrun. No trajectory or energy file is written.
Parallel tpi gives identical results to single node tpi.

tpic
Test particle insertion into a predefined cavity location. The procedure is the same as
for tpi, except that one coordinate extra is read from the trajectory, which is used as the
insertion location. The molecule to be inserted should be centered at 0,0,0. Gromacs
does not do this for you, since for different situations a different way of centering might
be optimal. Also rtpi sets the radius for the sphere around this location. Neighbor
searching is done only once per frame, nstlist is not used. Parallel tpic gives identical
results to single node tpic.

tinit: (0) [ps]
starting time for your run (only makes sense for integrators md, sd and bd)

dt: (0.001) [ps]
time step for integration (only makes sense for integrators md, sd and bd)

nsteps: (0)
maximum number of steps to integrate

init step: (0)
The starting step. The time at an step i in a run is calculated as: t = tinit + dt*(init step
+ i). The free-energy lambda is calculated as: lambda = init lambda + delta lambda*(init step
+ i). Also non-equilibrium MD parameters can depend on the step number. Thus for exact
restarts or redoing part of a run it might be necessary to set init step to the step number
of the restart frame. tpbconv does this automatically.

comm mode:

Linear
Remove center of mass translation

Angular
Remove center of mass translation and rotation around the center of mass

No
No restriction on the center of mass motion

nstcomm: (1) [steps]
frequency for center of mass motion removal

comm grps:
group(s) for center of mass motion removal, default is the whole system

7.3.4 Langevin dynamics

bd fric: (0) [amu ps−1]
Brownian dynamics friction coefficient. When bd fric=0, the friction coefficient for each
particle is calculated as mass/tau t.

144 Chapter 7. Run parameters and Programs

ld seed: (1993) [integer]
used to initialize random generator for thermal noise for stochastic and Brownian dynam-
ics. When ld seed is set to -1, the seed is calculated as (time() + getpid()) %
1000000. When running BD or SD on multiple processors, each processor uses a seed
equal to ld seed plus the processor number.

7.3.5 Energy minimization

emtol: (10.0) [kJ mol−1 nm−1]
the minimization is converged when the maximum force is smaller than this value

emstep: (0.01) [nm]
initial step-size

nstcgsteep: (1000) [steps]
frequency of performing 1 steepest descent step while doing conjugate gradient energy min-
imization.

nbfgscorr: (10)
Number of correction steps to use for L-BFGS minimization. A higher number is (at least
theoretically) more accurate, but slower.

7.3.6 Shell Molecular Dynamics

When shells or flexible constraints are present in the system the positions of the shells and the
lengths of the flexible constraints are optimized at every time step until either the RMS force on
the shells and constraints is less than emtol, or a maximum number of iterations (niter) has been
reached

emtol: (10.0) [kJ mol−1 nm−1]
the minimization is converged when the maximum force is smaller than this value. For shell
MD this value should be 1.0 at most, but since the variable is used for energy minimization
as well the default is 10.0.

niter: (20)
maximum number of iterations for optimizing the shell positions and the flexible constraints.

fcstep: (0) [ps2]
the step size for optimizing the flexible constraints. Should be chosen as mu/(d2V/d q2)
where mu is the reduced mass of two particles in a flexible constraint and d2V/d q2 is the
second derivative of the potential in the constraint direction. Hopefully this number does
not differ too much between the flexible constraints, as the number of iterations and thus the
runtime is very sensitive to fcstep. Try several values!

7.3. Run Parameters 145

7.3.7 Test particle insertion

rtpi: (0.05) [nm]
the test particle insertion radius see integrators tpi and tpic

7.3.8 Output control

nstxout: (100) [steps]
frequency to write coordinates to output trajectory file, the last coordinates are always writ-
ten

nstvout: (100) [steps]
frequency to write velocities to output trajectory, the last velocities are always written

nstfout: (0) [steps]
frequency to write forces to output trajectory.

nstlog: (100) [steps]
frequency to write energies to log file, the last energies are always written

nstenergy: (100) [steps]
frequency to write energies to energy file, the last energies are always written, note that the
exact sums and fluctuations over all MD steps are stored in the energy file, so g energy can
report exact energy averages and fluctuations also when nstenergy> 1 (unless the -nosum
option of mdrun is used)

nstxtcout: (0) [steps]
frequency to write coordinates to xtc trajectory

xtc precision: (1000) [real]
precision to write to xtc trajectory

xtc grps:
group(s) to write to xtc trajectory, default the whole system is written (if nstxtcout is larger
than zero)

energygrps:
group(s) to write to energy file

7.3.9 Neighbor searching

nstlist: (10) [steps]

> 0
Frequency to update the neighbor list (and the long-range forces, when using twin-
range cut-off’s). When this is 0, the neighbor list is made only once. With energy
minimization the neighborlist will be updated for every energy evaluation when nstlist
> 0.

146 Chapter 7. Run parameters and Programs

0
The neighbor list is only constructed once and never updated. This is mainly useful
for vacuum simulations in which all particles see each other.

-1
Automated update frequency. This can only be used with switched, shifted or user
potentials where the cut-off can be smaller than rlist. One then has a buffer of size
rlist minus the longest cut-off. The neighbor list is only updated when one or more
particles have moved further than half the buffer size from the center of geometry of
their charge group as determined at the previous neighbor search. Coordinate scaling
due to pressure coupling or the deform option is taken into account. This option
guarantees that their are no cut-off artifacts. But for larger systems this can come at a
high computational cost, since the neighbor list update frequency will be determined
by just one or two particles moving slightly beyond the half buffer length (which not
even necessarily implies that the neighbor list is invalid), while 99.99% of the particles
are fine.

ns type:

grid
Make a grid in the box and only check atoms in neighboring grid cells when construct-
ing a new neighbor list every nstlist steps. In large systems grid search is much faster
than simple search.

simple
Check every atom in the box when constructing a new neighbor list every nstlist steps.

pbc:

xyz
Use periodic boundary conditions in all directions.

no
Use no periodic boundary conditions, ignore the box, only works with ns type=simple.
To simulate without cut-offs, set all cut-offs to 0 and nstlist=0. Note that for large
molecules it is more efficient to use pbc=xyz, because this allow the use of grid neigh-
bor searching.

xy
Use periodic boundary conditions in x and y directions only. This works only with
ns type=grid and can be used in combination with walls. Without walls or with only
one wall the system size is infinite in the z direction. Therefore pressure coupling or
Ewald summation methods can not be used. For thick layers neighbor searching will
become slow, as a simple search is used for the z direction. All these disadvantages do
not apply when two walls are used.

periodic molecules:

no
molecules are finite, fast molecular pbc can be used

7.3. Run Parameters 147

yes
for systems with molecules that couple to themselves through the periodic boundary
conditions, this requires a slower pbc algorithm and molecules are not made whole in
the output

rlist: (1) [nm]
cut-off distance for the short-range neighbor list

7.3.10 Electrostatics

coulombtype:

Cut-off
Twin range cut-off’s with neighborlist cut-off rlist and Coulomb cut-off rcoulomb,
where rcoulomb ≥ rlist.

Ewald
Classical Ewald sum electrostatics. The real-space cut-off rcoulomb should be equal
to rlist. Use e.g. rlist=0.9, rcoulomb=0.9. The highest magnitude of wave vectors
used in reciprocal space is controlled by fourierspacing. The relative accuracy of
direct/reciprocal space is controlled by ewald rtol.
NOTE: Ewald scales as O(N3/2) and is thus extremely slow for large systems. It is
included mainly for reference - in most cases PME will perform much better.

PME
Fast Particle-Mesh Ewald electrostatics. Direct space is similar to the Ewald sum,
while the reciprocal part is performed with FFTs. Grid dimensions are controlled with
fourierspacing and the interpolation order with pme order. With a grid spacing of
0.1 nm and cubic interpolation the electrostatic forces have an accuracy of 2-3e-4.
Since the error from the vdw-cutoff is larger than this you might try 0.15 nm. When
running in parallel the interpolation parallelizes better than the FFT, so try decreasing
grid dimensions while increasing interpolation.

PPPM
Particle-Particle Particle-Mesh algorithm for long range electrostatic interactions. Use
for example rlist=0.9, rcoulomb=0.9. The grid dimensions are controlled by fouri-
erspacing. Reasonable grid spacing for PPPM is 0.05-0.1 nm. See Shift for the
details of the particle-particle potential.
NOTE: the pressure in incorrect when using PPPM.

Reaction-Field
Reaction field with Coulomb cut-off rcoulomb, where rcoulomb ≥ rlist. The dielec-
tric constant beyond the cut-off is epsilon rf. The dielectric constant can be set to
infinity by setting epsilon rf=0.

Generalized-Reaction-Field
Generalized reaction field with Coulomb cut-off rcoulomb, where rcoulomb ≥ rlist.
The dielectric constant beyond the cut-off is epsilon rf. The ionic strength is com-
puted from the number of charged (i.e. with non zero charge) charge groups. The
temperature for the GRF potential is set with ref t [K].

148 Chapter 7. Run parameters and Programs

Reaction-Field-zero
In GROMACS normal reaction-field electrostatics leads to bad energy conservation.
Reaction-Field-zero solves this by making the potential zero beyond the cut-off. It
can only be used with an infinite dielectric constant (epsilon rf=0), because only for
that value the force vanishes at the cut-off. rlist should be 0.1 to 0.3 nm larger than
rcoulomb to accommodate for the size of charge groups and diffusion between neigh-
bor list updates. This, and the fact that table lookups are used instead of analyti-
cal functions make Reaction-Field-zero computationally more expensive than normal
reaction-field.

Reaction-Field-nec
The same as Reaction-Field, but implemented as in GROMACS versions before 3.3.
No reaction-field correction is applied to excluded atom pairs and self pairs. The 1-4
interactions are calculated using a reaction-field. The missing correction due to the
excluded pairs that do not have a 1-4 interaction is up to a few percent of the total
electrostatic energy and causes a minor difference in the forces and the pressure.

Shift
The Coulomb potential is decreased over the whole range and the forces decay smoothly
to zero between rcoulomb switch and rcoulomb. The neighbor search cut-off rlist
should be 0.1 to 0.3 nm larger than rcoulomb to accommodate for the size of charge
groups and diffusion between neighbor list updates.

Encad-Shift
The Coulomb potential is decreased over the whole range, using the definition from
the Encad simulation package.

Switch
The Coulomb potential is normal out to rcoulomb switch, after which it is switched
off to reach zero at rcoulomb. Both the potential and force functions are continuously
smooth, but be aware that all switch functions will give rise to a bulge (increase) in the
force (since we are switching the potential). The neighbor search cut-off rlist should
be 0.1 to 0.3 nm larger than rcoulomb to accommodate for the size of charge groups
and diffusion between neighbor list updates.

User
mdrun will now expect to find a file table.xvg with user-defined potential func-
tions for repulsion, dispersion and Coulomb. When pair interactions are present,
mdrun also expects to find a file tablep.xvg for the pair interactions. When the
same interactions should be used for non-bonded and pair interactions the user can
specify the same file name for both table files. These files should contain 7 columns:
the x value, f(x), -f’(x), g(x), -g’(x), h(x), -h’(x), where f(x) is the
Coulomb function, g(x) the dispersion function and h(x) the repulsion function. When
vdwtype is not set to User the values for g, -g’, h and -h’ are ignored. For the non-
bonded interactions x values should run from 0 to the largest cut-off distance + table-
extension and should be uniformly spaced. For the pair interactions the table length in
the file will be used. The optimal spacing, which is used for non-user tables, is 0.002
[nm] when you run in single precision or 0.0005 [nm] when you run in double pre-
cision. The function value at x=0 is not important. More information is in the printed
manual.

7.3. Run Parameters 149

PME-Switch

A combination of PME and a switch function for the direct-space part (see above).
rcoulomb is allowed to be smaller than rlist. This is mainly useful constant energy
simulations. For constant temperature simulations the advantage of improved energy
conservation is usually outweighed by the small loss in accuracy of the electrostatics.

PME-User

A combination of PME and user tables (see above). rcoulomb is allowed to be smaller
than rlist. The PME mesh contribution is subtracted from the user table by mdrun.
Because of this subtraction the user tables should contain about 10 decimal places.

PME-User-Switch

A combination of PME-User and a switching function (see above). The switching
function is applied to final particle-particle interaction, i.e. both to the user supplied
function and the PME Mesh correction part.

rcoulomb switch: (0) [nm]
where to start switching the Coulomb potential

rcoulomb: (1) [nm]
distance for the Coulomb cut-off

epsilon r: (1)
The relative dielectric constant. A value of 0 means infinity.

epsilon rf: (1)
The relative dielectric constant of the reaction field. This is only used with reaction-field
electrostatics. A value of 0 means infinity.

7.3.11 VdW

vdwtype:

Cut-off
Twin range cut-off’s with neighbor list cut-off rlist and VdW cut-off rvdw, where
rvdw ≥ rlist.

Shift
The LJ (not Buckingham) potential is decreased over the whole range and the forces
decay smoothly to zero between rvdw switch and rvdw. The neighbor search cut-off
rlist should be 0.1 to 0.3 nm larger than rvdw to accommodate for the size of charge
groups and diffusion between neighbor list updates.

Switch
The LJ (not Buckingham) potential is normal out to rvdw switch, after which it is
switched off to reach zero at rvdw. Both the potential and force functions are continu-
ously smooth, but be aware that all switch functions will give rise to a bulge (increase)

150 Chapter 7. Run parameters and Programs

in the force (since we are switching the potential). The neighbor search cut-off rlist
should be 0.1 to 0.3 nm larger than rvdw to accommodate for the size of charge groups
and diffusion between neighbor list updates.

Encad-Shift
The LJ (not Buckingham) potential is decreased over the whole range, using the defi-
nition from the Encad simulation package.

User
See user for coulombtype. The function value at x=0 is not important. When you
want to use LJ correction, make sure that rvdw corresponds to the cut-off in the user-
defined function. When coulombtype is not set to User the values for f and -f’ are
ignored.

rvdw switch: (0) [nm]
where to start switching the LJ potential

rvdw: (1) [nm]
distance for the LJ or Buckingham cut-off

DispCorr:

no
don’t apply any correction

EnerPres
apply long range dispersion corrections for Energy and Pressure

Ener
apply long range dispersion corrections for Energy only

7.3.12 Tables

table-extension: (1) [nm]
Extension of the non-bonded potential lookup tables beyond the largest cut-off distance. The
value should be large enough to account for charge group sizes and the diffusion between
neighbor-list updates. Without user defined potential the same table length is used for the
lookup tables for the 1-4 interactions, which are always tabulated irrespective of the use of
tables for the non-bonded interactions.

energygrp table:
When user tables are used for electrostatics and/or VdW, here one can give pairs of energy
groups for which seperate user tables should be used. The two energy groups will be ap-
pended to the table file name, in order of their definition in energygrps, seperated by under-
scores. For example, if energygrps = Na Cl Sol and energygrp table = Na
Na Na Cl, mdrun will read table Na Na.xvg and table Na Cl.xvg in addition
to the normal table.xvg which will be used for all other energy group pairs.

7.3. Run Parameters 151

7.3.13 Ewald

fourierspacing: (0.12) [nm]
The maximum grid spacing for the FFT grid when using PPPM or PME. For ordinary Ewald
the spacing times the box dimensions determines the highest magnitude to use in each di-
rection. In all cases each direction can be overridden by entering a non-zero value for
fourier n*. For optimizing the relative load of the particle-particle interactions and the
mesh part of PME it is useful to know that the accuracy of the electrostatics remains nearly
constant when the Coulomb cut-off and the PME grid spacing are scaled by the same factor.

fourier nx (0) ; fourier ny (0) ; fourier nz: (0)
Highest magnitude of wave vectors in reciprocal space when using Ewald. Grid size when
using PPPM or PME. These values override fourierspacing per direction. The best choice
is powers of 2, 3, 5 and 7. Avoid large primes.

pme order (4)
Interpolation order for PME. 4 equals cubic interpolation. You might try 6/8/10 when run-
ning in parallel and simultaneously decrease grid dimension.

ewald rtol (1e-5)
The relative strength of the Ewald-shifted direct potential at rcoulomb is given by ewald rtol.
Decreasing this will give a more accurate direct sum, but then you need more wave vectors
for the reciprocal sum.

ewald geometry: (3d)

3d
The Ewald sum is performed in all three dimensions.

3dc
The reciprocal sum is still performed in 3d, but a force and potential correction applied
in the z dimension to produce a pseudo-2d summation. If your system has a slab
geometry in the x-y plane you can try to increase the z-dimension of the box (a box
height of 3 times the slab height is usually ok) and use this option.

epsilon surface: (0)
This controls the dipole correction to the Ewald summation in 3d. The default value of zero
means it is turned off. Turn it on by setting it to the value of the relative permittivity of the
imaginary surface around your infinite system. Be careful - you shouldn’t use this if you
have free mobile charges in your system. This value does not affect the slab 3DC variant of
the long range corrections.

optimize fft:

no
Don’t calculate the optimal FFT plan for the grid at startup.

yes
Calculate the optimal FFT plan for the grid at startup. This saves a few percent for
long simulations, but takes a couple of minutes at start.

152 Chapter 7. Run parameters and Programs

7.3.14 Temperature coupling

tcoupl:

no
No temperature coupling.

berendsen
Temperature coupling with a Berendsen-thermostat to a bath with temperature ref t
[K], with time constant tau t [ps]. Several groups can be coupled separately, these are
specified in the tc grps field separated by spaces.

nose-hoover
Temperature coupling with a by using a Nose-Hoover extended ensemble. The refer-
ence temperature and coupling groups are selected as above, but in this case tau t [ps]
controls the period of the temperature fluctuations at equilibrium, which is slightly
different from a relaxation time. For NVT simulations the conserved energy quantity
is written to energy and log file.

v-rescale
Temperature coupling using velocity rescaling with a stochastic term (JCP 126, 014101).
This thermostat is similar to Berendsen coupling, with the same scaling using tau t,
but the stochastic term ensures that a proper canonical ensemble is generated. The
random seed is set with ld seed. For NVT simulations the conserved energy quantity
is written to the energy and log file.

tc grps:
groups to couple separately to temperature bath

tau t: [ps]
time constant for coupling (one for each group in tc grps), 0 means no temperature coupling

ref t: [K]
reference temperature for coupling (one for each group in tc grps)

7.3.15 Pressure coupling

pcoupl:

no
No pressure coupling. This means a fixed box size.

berendsen
Exponential relaxation pressure coupling with time constant tau p [ps]. The box is
scaled every timestep. It has been argued that this does not yield a correct thermody-
namic ensemble, but it is the most efficient way to scale a box at the beginning of a
run.

Parrinello-Rahman
Extended-ensemble pressure coupling where the box vectors are subject to an equation
of motion. The equation of motion for the atoms is coupled to this. No instantaneous

7.3. Run Parameters 153

scaling takes place. As for Nose-Hoover temperature coupling the time constant tau p
[ps] is the period of pressure fluctuations at equilibrium. This is probably a better
method when you want to apply pressure scaling during data collection, but beware
that you can get very large oscillations if you are starting from a different pressure.

pcoupltype:

isotropic
Isotropic pressure coupling with time constant tau p [ps]. The compressibility and
reference pressure are set with compressibility [bar−1] and ref p [bar], one value is
needed.

semiisotropic
Pressure coupling which is isotropic in the x and y direction, but different in the z
direction. This can be useful for membrane simulations. 2 values are needed for x/y
and z directions respectively.

anisotropic
Idem, but 6 values are needed for xx, yy, zz, xy/yx, xz/zx and yz/zy components
respectively. When the off-diagonal compressibilities are set to zero, a rectangular box
will stay rectangular. Beware that anisotropic scaling can lead to extreme deformation
of the simulation box.

surface-tension
Surface tension coupling for surfaces parallel to the xy-plane. Uses normal pressure
coupling for the z-direction, while the surface tension is coupled to the x/y dimen-
sions of the box. The first ref p value is the reference surface tension times the num-
ber of surfaces [bar nm], the second value is the reference z-pressure [bar]. The two
compressibility [bar−1] values are the compressibility in the x/y and z direction re-
spectively. The value for the z-compressibility should be reasonably accurate since it
influences the convergence of the surface-tension, it can also be set to zero to have a
box with constant height.

tau p: (1) [ps]
time constant for coupling

compressibility: [bar−1]
compressibility (NOTE: this is now really in bar−1) For water at 1 atm and 300 K the
compressibility is 4.5e-5 [bar−1].

ref p: [bar]
reference pressure for coupling

refcoord scaling:

no
The reference coordinates for position restraints are not modified. Note that with this option
the virial and pressure will depend on the absolute positions of the reference coordinates.

154 Chapter 7. Run parameters and Programs

all
The reference coordinates are scaled with the scaling matrix of the pressure coupling.

com
Scale the center of mass of the reference coordinates with the scaling matrix of the pressure
coupling. The vectors of each reference coordinate to the center of mass are not scaled.
Only one COM is used, even when there are multiple molecules with position restraints.
For calculating the COM of the reference coordinates in the starting configuration, periodic
boundary conditions are not taken into account.

7.3.16 Simulated annealing

Simulated annealing is controlled separately for each temperature group in GROMACS. The ref-
erence temperature is a piecewise linear function, but you can use an arbitrary number of points
for each group, and choose either a single sequence or a periodic behaviour for each group. The
actual annealing is performed by dynamically changing the reference temperature used in the ther-
mostat algorithm selected, so remember that the system will usually not instantaneously reach the
reference temperature!

annealing:
Type of annealing for each temperature group
no

No simulated annealing - just couple to reference temperature value.

single
A single sequence of annealing points. If your simulation is longer than the time of
the last point, the temperature will be coupled to this constant value after the annealing
sequence has reached the last time point.

periodic
The annealing will start over at the first reference point once the last reference time is
reached. This is repeated until the simulation ends.

annealing npoints:
A list with the number of annealing reference/control points used for each temperature
group. Use 0 for groups that are not annealed. The number of entries should equal the
number of temperature groups.

annealing time:
List of times at the annealing reference/control points for each group. If you are using
periodic annealing, the times will be used modulo the last value, i.e. if the values are 0, 5,
10, and 15, the coupling will restart at the 0ps value after 15ps, 30ps, 45ps, etc. The number
of entries should equal the sum of the numbers given in annealing npoints.

annealing temp:
List of temperatures at the annealing reference/control points for each group. The number
of entries should equal the sum of the numbers given in annealing npoints.

Confused? OK, let’s use an example. Assume you have two temperature groups, set the
group selections to annealing = single periodic, the number of points of each

7.3. Run Parameters 155

group to annealing npoints = 3 4, the times to annealing time = 0 3 6
0 2 4 6 and finally temperatures to annealing temp = 298 280 270 298 320
320 298. The first group will be coupled to 298K at 0ps, but the reference temperature
will drop linearly to reach 280K at 3ps, and then linearly between 280K and 270K from 3ps
to 6ps. After this is stays constant, at 270K. The second group is coupled to 298K at 0ps,
it increases linearly to 320K at 2ps, where it stays constant until 4ps. Between 4ps and 6ps
it decreases to 298K, and then it starts over with the same pattern again, i.e. rising linearly
from 298K to 320K between 6ps and 8ps. Check the summary printed by grompp if you are
unsure!

7.3.17 Velocity generation

gen vel:

no
Do not generate velocities at startup. The velocities are set to zero when there are no
velocities in the input structure file.

yes
Generate velocities according to a Maxwell distribution at temperature gen temp [K],
with random seed gen seed. This is only meaningful with integrator md.

gen temp: (300) [K]
temperature for Maxwell distribution

gen seed: (173529) [integer]
used to initialize random generator for random velocities, when gen seed is set to -1, the
seed is calculated as (time() + getpid()) % 1000000

7.3.18 Bonds

constraints:

none
No constraints except for those defined explicitly in the topology, i.e. bonds are rep-
resented by a harmonic (or other) potential or a Morse potential (depending on the
setting of morse) and angles by a harmonic (or other) potential.

hbonds
Convert the bonds with H-atoms to constraints.

all-bonds
Convert all bonds to constraints.

h-angles
Convert all bonds and additionally the angles that involve H-atoms to bond-constraints.

all-angles
Convert all bonds and angles to bond-constraints.

156 Chapter 7. Run parameters and Programs

constraint algorithm:

LINCS
LINear Constraint Solver. With domain decomposition the parallel version P-LINCS
is used. The accuracy in set with lincs order, which sets the number of matrices
in the expansion for the matrix inversion. After the matrix inversion correction the
algorithm does an iterative correction to compensate for lengthening due to rotation.
The number of such iterations can be controlled with lincs iter. The root mean square
relative constraint deviation is printed to the log file every nstlog steps. If a bond
rotates more than lincs warnangle [degrees] in one step, a warning will be printed
both to the log file and to stderr. LINCS should not be used with coupled angle
constraints.

SHAKE
SHAKE is slightly slower and less stable than LINCS, but does work with angle con-
straints. The relative tolerance is set with shake tol, 0.0001 is a good value for ”nor-
mal” MD. SHAKE does not support constraints between atoms on different nodes, thus
it can not be used with domain decompositon when inter charge-group constraints are
present. SHAKE can not be used with energy minimization.

unconstrained start:

no
apply constraints to the start configuration and reset shells

yes
do not apply constraints to the start configuration and do not reset shells, useful for
exact coninuation and reruns

shake tol: (0.0001)
relative tolerance for SHAKE

lincs order: (4)
Highest order in the expansion of the constraint coupling matrix. When constraints form
triangles, an additional expansion of the same order is applied on top of the normal expan-
sion only for the couplings within such triangles. For ”normal” MD simulations an order
of 4 usually suffices, 6 is needed for large time-steps with virtual sites or BD. For accurate
energy minimization an order of 8 or more might be required. With domain decomposition,
the cell size is limited by the distance spanned by lincs order+1 constraints. When one
wants to scale further than this limit, one can decrease lincs order and increase lincs iter,
since the accuracy does not deteriorate when (1+lincs iter)*lincs order remains constant.

lincs iter: (1)
Number of iterations to correct for rotational lengthening in LINCS. For normal runs a
single step is sufficient, but for NVE runs where you want to conserve energy accurately or
for accurate energy minimization you might want to increase it to 2.

lincs warnangle: (30) [degrees]
maximum angle that a bond can rotate before LINCS will complain

7.3. Run Parameters 157

morse:

no
bonds are represented by a harmonic potential

yes
bonds are represented by a Morse potential

7.3.19 Energy group exclusions

energygrp excl:
Pairs of energy groups for which all non-bonded interactions are excluded. An example: if
you have two energy groups Protein and SOL, specifying

energygrp excl = Protein Protein SOL SOL

would give only the non-bonded interactions between the protein and the solvent. This is
especially useful for speeding up energy calculations with mdrun -rerun and for exclud-
ing interactions within frozen groups.

7.3.20 Walls

nwall: 0
When set to 1 there is a wall at z=0, when set to 2 there is also a wall at z=z box. Walls can
only be used with pbc=xy. When set to 2 pressure coupling and Ewald summation can be
used (it is usually best to use semiisotropic pressure coupling with the x/y compressibility
set to 0, as otherwise the surface area will change). Energy groups wall0 and wall1
(for nwall=2) are added automatically to monitor the interaction of energy groups with each
wall. The center of mass motion removal will be turned off in the z-direction.

wall type:

9-3
LJ integrated over the volume behind the wall: 9-3 potential

10-4
LJ integrated over the wall surface: 10-4 potential

tableuser defined potentials indexed with the z distance from the wall, the tables are read analogously to

the energygrp table option, where the first name is for a ”normal” energy group and
the second name is wall0 or wall1, only the dispersion and repulsion columns are
used

wall r linpot: -1 (nm)
Below this distance from the wall the potential is continued linearly and thus the force is
constant. Setting this option to a postive value is especially useful for equilibration when
some atoms are beyond a wall. When the value is ≤ 0 (< 0 for wall type=table), a fatal
error is generated when atoms are beyond a wall.

158 Chapter 7. Run parameters and Programs

wall atomtype:
the atom type name in the force field for each wall, this allows for independent tuning of the
interaction of each atomtype with the walls

wall density: [nm−3/nm−2]
the number density of the atoms for each wall for wall types 9-3 and 10-4

wall ewald zfac: 3
The scaling factor for the third box vector for Ewald summation only, the minimum is 2.
Ewald summation can only be used with nwall=2, where one should use ewald geometry=3dc.
The empty layer in the box serves to decrease the unphysical Coulomb interaction between
periodic images.

7.3.21 COM pulling

pull:

no
No center of mass pulling. All the following pull options will be ignored (and if present
in the mdp file, they unfortunately generate warnings)

umbrella
Center of mass pulling using an umbrella potential between the reference group and
one or more groups.

constraint
Center of mass pulling using a constraint between the reference group and one or more
groups. The setup is identical to the option umbrella, except for the fact that a rigid
constraint is applied instead of a harmonic potential.

constant force
Center of mass pulling using a linear potential and therefore a constant force. For
this option there is no reference position and therefore the parameters pull init and
pull rate are not used.

pull geometry

distance
Pull along the vector connecting the two groups. Components can be selected with
pull dim.

direction
Pull in the direction of pull vec.

cylinder
Designed for pulling with respect to a layer where the reference COM is given by a
local cylindrical part of the reference group. The pulling is in the direction of pull vec,
which should have only a z-component. From the reference group a cylinder is selected
for determining the COM, with the axis given by the x/y location of the group to be

7.3. Run Parameters 159

pulled and two radii. The radius pull r1 gives the radius within which all the relative
weights are one, between pull r1 and pull r0 the weights are switched to zero. Mass
weighting is also used.

position
Pull to the position of the reference group plus pull init + time*pull rate*pull vec.

pull dim: (Y Y Y)
the distance components to be used with geometry distance and position, also sets which
components are printed int the output files

pull r1: (1) [nm]
the inner radius of the cylinder for geometry cylinder

pull r0: (1) [nm]
the outer radius of the cylinder for geometry cylinder

pull constr tol: (1e-6)
the relative constraint tolerance for constraint pulling

pull start

no
do not modify pull init

yes
add the COM distance of the starting conformation to pull init

pull nstxout: (10)
frequency for writing out the COMs of all the pull group

pull nstfout: (1)
frequency for writing out the force of all the pulled group

pull ngroups: (1)
The number of pull groups, not including the reference group. If there is only one group,
there is no difference in treatment of the reference and pulled group (except with the cylinder
geometry). Below only the pull options for the reference group (ending on 0) and the first
group (ending on 1) are given, further groups work analogously, but with the number 1
replaced by the group number.

pull group0:
The name of the reference group. When this is empty an absolute reference of (0,0,0)
is used. With an absolute reference the system is no longer translation invariant and one
should think about what to do with the center of mass motion.

pull weights0:
see pull weights1

pull pbcatom0: (0)
see pull pbcatom1

160 Chapter 7. Run parameters and Programs

pull group1:
The name of the pull group.

pull weights1:
Optional relative weights which are multiplied with the masses of the atoms to give the total
weight for the COM. The number should be 0, meaning all 1, or the number of atoms in the
pull group.

pull pbcatom1: (0)
The reference atom for the treatment of periodic boundary conditions inside the group (this
has no effect on the treatment of the pbc between groups). This option is only important
when the diameter of the pull group is larger than half the shortest box vector. For deter-
mining the COM, all atoms in the group are put at their periodic image which is closest to
pull pbcatom1. A value of 0 means that the middle atom (number wise) is used.

pull vec1: (0.0 0.0 0.0)
The pull direction. grompp normalizes the vector.

pull init1: (0.0) / (0.0 0.0 0.0) [nm]
The reference distance at t=0. This is a single value, except for geometry position which
uses a vector.

pull rate1: (0) [nm/ps]
The rate of change of the reference position.

pull k1: (0) [kJ mol−1 nm−2] / [kJ mol−1 nm−1]
The force constant. For umbrella pulling this is the harmonic force constant in [kJ mol−1

nm−2]. For constant force pulling this is the force constant of the linear potential, and thus
minus (!) the constant force in [kJ mol−1 nm−1].

pull kB1: (pull k1) [kJ mol−1 nm−2] / [kJ mol−1 nm−1]
As pull k1, but for state B. This is only used when free energy is turned on. The force
constant is then (1 - lambda)*pull k1 + lambda*pull kB1.

7.3.22 NMR refinement

disre:

no
no distance restraints (ignore distance restraint information in topology file)

simple
simple (per-molecule) distance restraints, ensemble averaging can be performed with
mdrun -multi

ensemble
distance restraints over an ensemble of molecules in one simulation box, should only
be used for special cases, such as dimers

disre weighting:

7.3. Run Parameters 161

conservative
the forces are the derivative of the restraint potential, this results in an r−7 weighting
of the atom pairs

equal
divide the restraint force equally over all atom pairs in the restraint

disre mixed:

no
the violation used in the calculation of the restraint force is the time averaged violation

yes
the violation used in the calculation of the restraint force is the square root of the time
averaged violation times the instantaneous violation

disre fc: (1000) [kJ mol−1 nm−2]
force constant for distance restraints, which is multiplied by a (possibly) different factor for
each restraint

disre tau: (0) [ps]
time constant for distance restraints running average

nstdisreout: (100) [steps]
frequency to write the running time averaged and instantaneous distances of all atom pairs
involved in restraints to the energy file (can make the energy file very large)

orire:

no
no orientation restraints (ignore orientation restraint information in topology file)

yes
use orientation restraints, ensemble averaging can be performed with mdrun -multi

orire fc: (0) [kJ mol]
force constant for orientation restraints, which is multiplied by a (possibly) different factor
for each restraint, can be set to zero to obtain the orientations from a free simulation

orire tau: (0) [ps]
time constant for orientation restraints running average

orire fitgrp:
fit group for orientation restraining, for a protein backbone is a good choice

nstorireout: (100) [steps]
frequency to write the running time averaged and instantaneous orientations for all restraints
and the molecular order tensor to the energy file (can make the energy file very large)

162 Chapter 7. Run parameters and Programs

7.3.23 Free energy calculations

free energy:

no
Only use topology A.

yes
Interpolate between topology A (lambda=0) to topology B (lambda=1) and write the
derivative of the Hamiltonian with respect to lambda to the energy file and to dgdl.xvg.
The potentials, bond-lengths and angles are interpolated linearly as described in the
manual. When sc alpha is larger than zero, soft-core potentials are used for the LJ
and Coulomb interactions.

init lambda: (0)
starting value for lambda

delta lambda: (0)
increment per time step for lambda

sc alpha: (0)
the soft-core parameter, a value of 0 results in linear interpolation of the LJ and Coulomb
interactions

sc power: (0)
the power for lambda in the soft-core function, only the values 1 and 2 are supported

sc sigma: (0.3) [nm]
the soft-core sigma for particles which have a C6 or C12 parameter equal to zero

couple-moltype:
Here one can supply a molecule type (as defined in the topology) for calculating solvation
or coupling free energies. free energy has to be turned on. The Van der Waals interac-
tions and/or charges in this molecule type can be turned on or off between lambda=0 and
lambda=1, depending on the settings of couple-lambda0 and couple-lambda1. If you want
to decouple one of several copies of a molecule, you need to copy and rename the molecule
definition in the topology.

couple-lambda0:

vdw-q
all interactions are on at lambda=0

vdw
the charges are zero (no Coulomb interactions) at lambda=0

none
the Van der Waals interactions are turned off and the charges are zero at lambda=0;
soft-core interactions will be required to avoid singularities

couple-lambda1:
analogous to couple-lambda1, but for lambda=1

7.3. Run Parameters 163

couple-intramol:

no
All intra-molecular non-bonded interactions for moleculetype couple-moltype are re-
placed by exclusions and explicit pair interactions. In this manner the decoupled state
of the molecule corresponds to the proper vacuum state without periodicity effects.

yes
The intra-molecular Van der Waals and Coulomb interactions are also turned on/off.
This can be useful for partitioning free-energies of relatively large molecules, where
the intra-molecular non-bonded interactions might lead to kinetically trapped vacuum
conformations. The 1-4 pair interactions are not turned off.

7.3.24 Non-equilibrium MD

acc grps:
groups for constant acceleration (e.g.: Protein Sol) all atoms in groups Protein and Sol
will experience constant acceleration as specified in the accelerate line

accelerate: (0) [nm ps−2]
acceleration for acc grps; x, y and z for each group (e.g. 0.1 0.0 0.0 -0.1 0.0
0.0 means that first group has constant acceleration of 0.1 nm ps−2 in X direction, second
group the opposite).

freezegrps:
Groups that are to be frozen (i.e. their X, Y, and/or Z position will not be updated; e.g.
Lipid SOL). freezedim specifies for which dimension the freezing applies. To avoid
spurious contibrutions to the virial and pressure due to large forces between completely
frozen atoms you need to use energy group exclusions, this also saves computing time.
Note that frozen coordinates are not subject to pressure scaling.

freezedim:
dimensions for which groups in freezegrps should be frozen, specify Y or N for X, Y and
Z and for each group (e.g. Y Y N N N N means that particles in the first group can move
only in Z direction. The particles in the second group can move in any direction).

cos acceleration: (0) [nm ps−2]
the amplitude of the acceleration profile for calculating the viscosity. The acceleration is in
the X-direction and the magnitude is cos acceleration cos(2 pi z/boxheight). Two terms are
added to the energy file: the amplitude of the velocity profile and 1/viscosity.

deform: (0 0 0 0 0 0) [nm ps−1]
The velocities of deformation for the box elements: a(x) b(y) c(z) b(x) c(x) c(y). Each step
the box elements for which deform is non-zero are calculated as: box(ts)+(t-ts)*deform,
off-diagonal elements are corrected for periodicity. The coordinates are transformed ac-
cordingly. Frozen degrees of freedom are (purposely) also transformed. The time ts is set
to t at the first step and at steps at which x and v are written to trajectory to ensure exact

164 Chapter 7. Run parameters and Programs

restarts. Deformation can be used together with semiisotropic or anisotropic pressure cou-
pling when the appropriate compressibilities are set to zero. The diagonal elements can be
used to strain a solid. The off-diagonal elements can be used to shear a solid or a liquid.

7.3.25 Electric fields

E x ; E y ; E z:
If you want to use an electric field in a direction, enter 3 numbers after the appropriate E *,
the first number: the number of cosines, only 1 is implemented (with frequency 0) so enter
1, the second number: the strength of the electric field in V nm−1, the third number: the
phase of the cosine, you can enter any number here since a cosine of frequency zero has no
phase.

E xt; E yt; E zt:
not implemented yet

7.3.26 Mixed quantum/classical molecular dynamics

QMMM:

no
No QM/MM.

yes
Do a QM/MM simulation. Several groups can be described at different QM levels
separately. These are specified in the QMMM-grps field separated by spaces. The
level of ¡i¿ab initio¡/i¿ theory at which the groups are described is speficied by QM-
method and QMbasis Fields. Describing the groups at different levels of theory is
only possible with the ONIOM QM/MM scheme, specified by QMMMscheme.

QMMM-grps:
groups to be descibed at the QM level

QMMMscheme:

normal
normal QM/MM. There can only be one QMMM-grps that is modelled at the QM-
method and QMbasis level of ¡i¿ab initio¡/i¿ theory. The rest of the system is de-
scribed at the MM level. The QM and MM subsystems interact as follows: MM point
charges are included in the QM one-electron hamiltonian and all Lennard-Jones inter-
actions are described at the MM level.

ONIOM
The interaction between the subsystem is described using the ONIOM method by Mo-
rokuma and co-workers. There can be more than one QMMM-grps each modeled at
a different level of QM theory (QMmethod and QMbasis).

7.3. Run Parameters 165

QMmethod: (RHF)
Method used to compute the energy and gradients on the QM atoms. Available methods
are AM1, PM3, RHF, UHF, DFT, B3LYP, MP2, CASSCF, and MMVB. For CASSCF, the
number of electrons and orbitals included in the active space is specified by CASelectrons
and CASorbitals.

QMbasis: (STO-3G)
Basisset used to expand the electronic wavefuntion. Only gaussian bassisets are currently
available, ¡i¿i.e.¡/i¿ STO-3G, 3-21G, 3-21G*, 3-21+G*, 6-21G, 6-31G, 6-31G*, 6-31+G*,
and 6-311G.

QMcharge: (0) [integer]
The total charge in ¡i¿e¡/i¿ of the QMMM-grps. In case there are more than one QMMM-
grps, the total charge of each ONIOM layer needs to be specified separately.

QMmult: (1) [integer]
The multiplicity of the QMMM-grps. In case there are more than one QMMM-grps, the
multiplicity of each ONIOM layer needs to be specified separately.

CASorbitals: (0) [integer]
The number of orbitals to be included in the active space when doing a CASSCF computa-
tion.

CASelectrons: (0) [integer]
The number of electrons to be included in the active space when doing a CASSCF compu-
tation.

SH:

no
No surface hopping. The system is always in the electronic ground-state.

yes
Do a QM/MM MD simulation on the excited state-potential energy surface and enforce
a ¡i¿diabatic¡/i¿ hop to the ground-state when the system hits the conical intersection
hyperline in the course the simulation. This option only works in combination with
the CASSCF method.

7.3.27 User defined thingies

user1 grps; user2 grps:

userint1 (0); userint2 (0); userint3 (0); userint4 (0)

userreal1 (0); userreal2 (0); userreal3 (0); userreal4 (0)
These you can use if you modify code. You can pass integers and reals to your subroutine.
Check the inputrec definition in src/include/types/inputrec.h

166 Chapter 7. Run parameters and Programs

7.4 Programs by topic

Generating topologies and coordinates
pdb2gmx converts pdb files to topology and coordinate files
x2top generates a primitive topology from coordinates
editconf edits the box and writes subgroups
genbox solvates a system
genion generates mono atomic ions on energetically favorable positions
genconf multiplies a conformation in ’random’ orientations
genrestr generates position restraints or distance restraints for index groups
protonate protonates structures

Running a simulation
grompp makes a run input file
tpbconv makes a run input file for restarting a crashed run
mdrun performs a simulation, do a normal mode analysis or an energy minimization

Viewing trajectories
ngmx displays a trajectory
highway X-windows gadget for highway simulations

Processing energies
g energy writes energies to xvg files and displays averages
g enemat extracts an energy matrix from an energy file
mdrun with -rerun (re)calculates energies for trajectory frames

Converting files
editconf converts and manipulates structure files
trjconv converts and manipulates trajectory files
trjcat concatenates trajectory files
eneconv converts energy files
xmp2ps converts XPM matrices to encapsulated postscript (or XPM)
sigeps convert c6/12 or c6/cn combinations to and from sigma/epsilon

Tools
make ndx makes index files
mk angndx generates index files for g angle
gmxcheck checks and compares files
gmxdump makes binary files human readable
gen table generate tables for use by mdrun
g traj plots x, v and f of selected atoms/groups (and more) from a trajectory
g analyze analyzes data sets

7.4. Programs by topic 167

trjorder orders molecules according to their distance to a group
g filter frequency filters trajectories, useful for making smooth movies
g lie free energy estimate from linear combinations
g dyndom interpolate and extrapolate structure rotations
g morph linear interpolation of conformations
g wham weighted histogram analysis after umbrella sampling
ffscan scan and modify force field data for a single point energy calculation
xpm2ps convert XPM (XPixelMap) file to postscript
g sham read/write xmgr and xvgr data sets
g spatial calculates the spatial distribution function (more control than g sdf)
g sdf calculates the spatial distribution function (faster than g spatial)

Distances between structures
g rms calculates rmsd’s with a reference structure and rmsd matrices
g confrms fits two structures and calculates the rmsd
g cluster clusters structures
g rmsf calculates atomic fluctuations

Distances in structures over time
g mindist calculates the minimum distance between two groups
g dist calculates the distances between the centers of mass of two groups
g bond calculates distances between atoms
g mdmat calculates residue contact maps
g polystat calculates static properties of polymers
g rmsdist calculates atom pair distances averaged with power 2, -3 or -6

Mass distribution properties over time
g traj plots x, v, f, box, temperature and rotational energy
g gyrate calculates the radius of gyration
g msd calculates mean square displacements
g polystat calculates static properties of polymers
g rotacf calculates the rotational correlation function for molecules
g vanhove calculates Van Hove displacement functions

Analyzing bonded interactions
g bond calculates bond length distributions
mk angndx generates index files for g angle
g angle calculates distributions and correlations for angles and dihedrals
g dih analyzes dihedral transitions

Structural properties

168 Chapter 7. Run parameters and Programs

g hbond computes and analyzes hydrogen bonds
g saltbr computes salt bridges
g sas computes solvent accessible surface area
g order computes the order parameter per atom for carbon tails
g principal calculates axes of inertia for a group of atoms
g rdf calculates radial distribution functions
g sdf calculates solvent distribution functions
g sgangle computes the angle and distance between two groups
g sorient analyzes solvent orientation around solutes
g spol analyzes solvent dipole orientation and polarization around solutes
g bundle analyzes bundles of axes, e.g. helices
g disre analyzes distance restraints
g clustsize calculate size distributions of atomic clusters
anadock cluster structures from Autodock runs

Kinetic properties
g traj plots x, v, f, box, temperature and rotational energy
g velacc calculates velocity autocorrelation functions
g tcaf calculates viscosities of liquids
g kinetics derives information about kinetic processes from you trajectories

Electrostatic properties
genion generates mono atomic ions on energetically favorable positions
g potential calculates the electrostatic potential across the box
g dipoles computes the total dipole plus fluctuations
g dielectric calculates frequency dependent dielectric constants
g current calculates dielectric constants for charged systems

Protein specific analysis
do dssp assigns secondary structure and calculates solvent accessible surface area
g chi calculates everything you want to know about chi and other dihedrals
g helix calculates basic properties of alpha helices
g helixorientcalculates local pitch/bending/rotation/orientation inside helices
g rama computes Ramachandran plots
xrama shows animated Ramachandran plots
wheel plots helical wheels

Interfaces
g potential calculates the electrostatic potential across the box
g density calculates the density of the system
g densmap calculates 2D planar or axial-radial density maps
g order computes the order parameter per atom for carbon tails
g h2order computes the orientation of water molecules
g bundle analyzes bundles of axes, e.g. transmembrane helices

7.4. Programs by topic 169

Covariance analysis
g covar calculates and diagonalizes the covariance matrix
g anaeig analyzes the eigenvectors
make edi generate input files for essential dynamics sampling

Normal modes
grompp makes a run input file
mdrun finds a potential energy minimum
mdrun calculates the Hessian
g nmeig diagonalizes the Hessian
g nmtraj generate oscillating trajectory of an eigenmode
g anaeig analyzes the normal modes
g nmens generates an ensemble of structures from the normal modes

170 Chapter 7. Run parameters and Programs

Chapter 8

Analysis

In this chapter different ways of analyzing your trajectory are described. The names of the corre-
sponding analysis programs are given. Specific info on the in- and output of these programs can be
found in the on-line manual at www.gromacs.org. The output files are often produced as finished
Grace/Xmgr graphs.

First in sec. 8.1 the group concept in analysis is explained. Then the different analysis tools are
presented.

8.1 Groups in Analysis.

make ndx, mk angndx
In chapter 3 it was explained how groups of atoms can be used in the MD-program. In most
analysis programs groups of atoms are needed to work on. Most programs can generate several
default index groups, but groups can always be read from an index file. Let’s consider a simulation
of a binary mixture of components A and B. When we want to calculate the radial distribution
function (rdf) gAB(r) of A with respect to B, we have to calculate

4πr2gAB(r) = V
NA∑
i∈A

NB∑
j∈B

P (r) (8.1)

where V is the volume and P (r) is the probability to find a B atom at a distance r from an A atom.

By having the user define the atom numbers for groups A and B in a simple file we can calculate
this gAB in the most general way, without having to make any assumptions in the rdf-program
about the type of particles.

Groups can therefore consist of a series of atom numbers, but in some cases also of molecule
numbers. It is also possible to specify a series of angles by triples of atom numbers, dihedrals
by quadruples of atom numbers and bonds or vectors (in a molecule) by pairs of atom numbers.
When appropriate the type of index file will be specified for the following analysis programs. To
help creating such index files (index.ndx), there are a couple of programs to generate them,

http://www.gromacs.org

172 Chapter 8. Analysis

using either your input configuration or the topology. To generate an index file consisting of a
series of atom numbers (as in the example of gAB) use make ndx. To generate an index file with
angles or dihedrals, use mk angndx. Of course you can also make them by hand. The general
format is presented here:

[Oxygen]
1 4 7
[Hydrogen]
2 3 5 6
8 9

First the group name is written between square brackets. The following atom numbers may be
spread out over as many lines as you like. The atom numbering starts at 1.

8.1.1 Default Groups

When no index file is supplied to analysis tools or grompp, a number of default groups are
generated to choose from:

System
all atoms in the system

Protein
all protein atoms

Protein-H
protein atoms excluding hydrogens

C-alpha
Cα atoms

Backbone
protein backbone atoms; N, Cα and C

MainChain
protein main chain atoms: N, Cα, C and O, including oxygens in C-terminus

MainChain+Cb
protein main chain atoms including Cβ

MainChain+H
protein main chain atoms including backbone amide hydrogen and hydrogens on the N-
terminus

SideChain
protein side chain atoms; that is all atoms except N, Cα, C, O, backbone amide hydrogen,
oxygens in C-terminus and hydrogens on the N-terminus

SideChain-H
protein side chain atoms excluding all hydrogens

8.2. Looking at your trajectory 173

Figure 8.1: The window of ngmx showing a box of water.

Prot-Masses
protein atoms excluding dummy masses (as used in virtual site constructions of NH3 groups
and Tryptophane sidechains), see also sec. 5.2.2; this group is only included when it differs
from the ’Protein’ group

Non-Protein
all non-protein atoms

DNA
all DNA atoms

molecule name
for all residues/molecules which are not recognized as protein or DNA, one group per
residue/molecule name is generated

Other
all atoms which are neither protein nor DNA.

Empty groups will not be generated. Most of the groups only contain protein atoms. An atom is
considered a protein atom if its residue name is listed in the aminoacids.dat file.

8.2 Looking at your trajectory

ngmx

174 Chapter 8. Analysis

Before analyzing your trajectory it is often informative to look at your trajectory first. Gromacs
comes with a simple trajectory viewer ngmx; the advantage with this one is that it does not require
OpenGL, which usually isn’t present e.g. on supercomputers. It is also possible to generate a hard-
copy in Encapsulated Postscript format, see Fig. 8.1. If you want a faster and more fancy viewer
there are several programs that can read the GROMACS trajectory formats – have a look at our
homepage www.gromacs.org for updated links.

8.3 General properties

g energy, g traj
To analyze some or all energies and other properties, such as total pressure, pressure tensor,
density, box-volume and box-sizes, use the program g energy. A choice can be made from a list
a set of energies, like potential, kinetic or total energy, or individual contributions, like Lennard-
Jones or dihedral energies.

The center-of-mass velocity, defined as

vcom =
1
M

N∑
i=1

mivi (8.2)

withM =
∑N
i=1mi the total mass of the system, can be monitored in time by the program g com.

It is however recommended to remove the center-of-mass velocity every step (see chapter 3)!

8.4 Radial distribution functions

g rdf
The radial distribution function (rdf) or pair correlation function gAB(r) between particles of type
A and B is defined in the following way:

gAB(r) =
〈ρB(r)〉
〈ρB〉local

=
1

〈ρB〉local
1
NA

NA∑
i∈A

NB∑
j∈B

δ(rij − r)
4πr2

(8.3)

with 〈ρB(r)〉 the particle density of type B at a distance r around particles A, and 〈ρB〉local the
particle density of type B averaged over all spheres around particles A with radius rmax (see
Fig. 8.2C).

Usually the value of rmax is half of the box length. The averaging is also performed in time. In
practice the analysis program g rdf divides the system into spherical slices (from r to r+dr, see
Fig. 8.2A) and makes a histogram in stead of the δ-function. An example of the rdf of Oxygen-
Oxygen in SPC-water [57] is given in Fig. 8.3.

With g rdf it is also possible to calculate an angle dependent rdf gAB(r, θ), where the angle θ is
defined with respect to a certain laboratory axis e, see Fig. 8.2B.

gAB(r, θ) =
1

〈ρB〉local, θ
1
NA

NA∑
i∈A

NB∑
j∈B

δ(rij − r)δ(θij − θ)
2πr2sin(θ)

(8.4)

http://www.gromacs.org

8.4. Radial distribution functions 175

r

r+dr r+dr

r
θ+dθ

θ

e

A B

DC
Figure 8.2: Definition of slices in g rdf: A. gAB(r). B. gAB(r, θ). The slices are colored grey. C.
Normalization 〈ρB〉local. D. Normalization 〈ρB〉local, θ. Normalization volumes are colored grey.

0 0.2 0.4 0.6 0.8 1 1.2
r (nm)

0

0.5

1

1.5

2

2.5

3

g(
r)

Figure 8.3: gOO(r) for Oxygen-Oxygen of SPC-water.

176 Chapter 8. Analysis

cos(θij) =
rij · e
‖rij‖ ‖e‖

(8.5)

This gAB(r, θ) is useful for analyzing anisotropic systems. Note that in this case the normalization
〈ρB〉local, θ is the average density in all angle slices from θ to θ+dθ up to rmax, so angle dependent,
see Fig. 8.2D.

8.5 Correlation functions

8.5.1 Theory of correlation functions

The theory of correlation functions is well established [73]. However we want to describe here the
implementation of the various correlation function flavors in the GROMACS code. The definition
of the autocorrelation function (ACF) Cf (t) for a property f(t) is

Cf (t) = 〈f(ξ)f(ξ + t)〉ξ (8.6)

where the notation on the right hand side means averaging over ξ, i.e. over time origins. It is also
possible to compute cross-correlation function from two properties f(t) and g(t):

Cfg(t) = 〈f(ξ)g(ξ + t)〉ξ (8.7)

however, in GROMACS there is no standard mechanism to do this (note: you can use the xmgr
program to compute cross correlations). The integral of the correlation function over time is the
correlation time τf :

τf =
∫ ∞

0
Cf (t)dt (8.8)

In practice correlation functions are calculated based on data points with discrete time intervals
∆t, so that the ACF from an MD simulation is:

Cf (j∆t) =
1

N − j

N−1−j∑
i=0

f(i∆t)f((i+ j)∆t) (8.9)

whereN is the number of available time frames for the calculation. The resulting ACF is obviously
only available at time points with the same interval ∆t. Since for many applications it is necessary
to know the short time behavior of the ACF (e.g. the first 10 ps) this often means that we have to
save the atomic coordinates with short intervals. Another implication of eqn. 8.9 is that in principle
we can not compute all points of the ACF with the same accuracy, since we haveN−1 data points
for Cf (∆t) but only 1 for Cf ((N − 1)∆t). However, if we decide to compute only an ACF of
length M∆t, where M ≤ N/2 we can compute all points with the same statistical accuracy:

Cf (j∆t) =
1
M

N−1−M∑
i=0

f(i∆t)f((i+ j)∆t) (8.10)

here of course j < M . M is sometimes referred to as the time lag of the correlation function.
When we decide to do this, we intentionally do not use all the available points for very short time
intervals (j << M), but it makes it easier to interpret the results. Another aspect that may not be

8.5. Correlation functions 177

neglected when computing ACFs from simulation, is that usually the time origins ξ (eqn. 8.6) are
not statistically independent, which may introduce a bias in the results. This can be tested using a
block-averaging procedure, where only time origins with a spacing at least the length of the time
lag are included, e.g. using k time origins with spacing of M∆t (where kM ≤ N):

Cf (j∆t) =
1
k

k−1∑
i=0

f(iM∆t)f((iM + j)∆t) (8.11)

However, one needs very long simulations to get good accuracy this way, because there are many
fewer points that contribute to the ACF.

8.5.2 Using FFT for computation of the ACF

The computational cost for calculating an ACF according to eqn. 8.9 is proportional to N2, which
is considerable. However, this can be improved by using fast Fourier transforms to do the convo-
lution [73].

8.5.3 Special forms of the ACF

There are some important varieties on the ACF, e.g. the ACF of a vector p:

Cp(t) =
∫ ∞

0
Pn(cos 6 (p(ξ),p(ξ + t)) dξ (8.12)

where Pn(x) is the nth order Legendre polynomial 1. Such correlation times can actually be ob-
tained experimentally using e.g. NMR or other relaxation experiments. GROMACS can compute
correlations using the 1st and 2nd order Legendre polynomial (eqn. 8.12). This can a.o. be used
for rotational autocorrelation (g rotacf), dipole autocorrelation (g dipoles).

In order to study torsion angle dynamics we define a dihedral autocorrelation function as [97]:

C(t) = 〈cos(θ(τ)− θ(τ + t))〉τ (8.13)

Note that this is not a product of two functions as is generally used for correlation functions, but it
may be rewritten as the sum of two products:

C(t) = 〈cos(θ(τ)) cos(θ(τ + t)) + sin(θ(τ)) sin(θ(τ + t))〉τ (8.14)

8.5.4 Some Applications

The program g velacc calculates this Velocity Auto Correlation Function.

Cv(τ) = 〈vi(τ) · vi(0)〉i∈A (8.15)

The self diffusion coefficient can be calculated using the Green-Kubo relation [73]

DA =
1
3

∫ ∞
0
〈vi(t) · vi(0)〉i∈A dt (8.16)

1P0(x) = 1, P1(x) = x, P2(x) = (3x2 − 1)/2

178 Chapter 8. Analysis

which is just the integral of the velocity autocorrelation function. There is a widely held belief that
the velocity ACF converges faster than the mean square displacement (sec. 8.6), which can also
be used for the computation of diffusion constants. However, Allen & Tildesly [73] warn us that
the long time contribution to the velocity ACF can not be ignored, so care must be taken.

Another important quantity is the dipole correlation time. The dipole correlation function for
particles A is calculated as follows by g dipoles:

Cµ(τ) = 〈µi(τ) · µi(0)〉i∈A (8.17)

with µi =
∑
j∈i rjqj . The dipole correlation time can be computed using eqn. 8.8. For some

applications see [98].

The viscosity of a liquid can be related to the correlation time of the Pressure tensor P [99, 100].
g energy can compute the viscosity, but this is not very accurate [89] (actually the values do not
converge...).

8.6 Mean Square Displacement

g msd
To determine the self diffusion coefficientDA of particlesA one can use the Einstein relation [73]

lim
t→∞
〈‖ri(t)− ri(0)‖2〉i∈A = 6DAt (8.18)

This Mean Square Displacement and DA are calculated by the program g msd. Normally an
index file containing atom numbers is used and the MSD is averaged over atoms. For molecules
consisting of more than one atom, ri can be taken as the center of mass positions of the molecules.
In that case you should use an index file with molecule numbers. The results will be nearly
identical to averaging over atoms, however. The g msd program can also be used for calculating
diffusion in one or two dimensions. This is useful for studying lateral diffusion on interfaces.

An example of the mean square displacement of SPC-water is given in Fig. 8.4.

8.7 Bonds, angles and dihedrals

g bond, g angle, g sgangle
To monitor specific bonds in your molecules during time, the program g bond calculates the dis-
tribution of the bond length in time. The index file consists of pairs of atom numbers, for example

[bonds 1]
1 2
3 4
9 10
[bonds 2]
12 13

8.7. Bonds, angles and dihedrals 179

200 250 300 350 400
Time (ps)

0

1000

2000

3000

4000

M
S

D
 (

nm
2)

D = 3.50 10
-5

cm
-2

s
-1

Figure 8.4: Mean Square Displacement of SPC-water.

φ = 0φ = 0

A B

Figure 8.5: Dihedral conventions: A. “Biochemical convention”. B. “Polymer convention”.

The program g angle calculates the distribution of angles and dihedrals in time. It also gives
the average angle or dihedral. The index file consists of triplets or quadruples of atom numbers:

[angles]
1 2 3
2 3 4
3 4 5
[dihedrals]
1 2 3 4
2 3 5 5

For the dihedral angles you can use either the “biochemical convention” (φ = 0 ≡ cis) or “poly-
mer convention” (φ = 0 ≡ trans), see Fig. 8.5.

To follow specific angles in time between two vectors, a vector and a plane or two planes (defined
by 2, resp. 3 atoms inside your molecule, see Fig. 8.6A, B, C), use the program g sgangle.

For planes it uses the normal vector perpendicular to the plane. It can also calculate the distance d
between the geometrical center of two planes (see Fig. 8.6D), and the distances d1 and d2 between
2 atoms (of a vector) and the center of a plane defined by 3 atoms (see Fig. 8.6D). It further
calculates the distance d between the center of the plane and the middle of this vector. Depending

180 Chapter 8. Analysis

b b
a

φ

2

C

D

d

d

E

φ

d

φ

A B

n

1d

n

n

Figure 8.6: Options of g sgangle: A. Angle between 2 vectors. B. Angle between a vector and
the normal of a plane. C. Angle between two planes. D. Distance between the geometrical centers
of 2 planes. E. Distances between a vector and the center of a plane.

on the input groups (i.e. groups of 2 or 3 atom numbers), the program decides what angles and
distances to calculate. For example, the index-file could look like this:

[a plane]
1 2 3
[a vector]
3 4 5

8.8 Radius of gyration and distances

g gyrate, g sgangle, g mindist, g mdmat, xpm2ps
To have a rough measure for the compactness of a structure, you can calculate the radius of gyra-
tion with the program g gyrate as follows:

Rg =

(∑
i ‖ri‖2mi∑

imi

) 1
2

(8.19)

where mi is the mass of atom i and ri the position of atom i with respect to the center of mass of
the molecule. It is especially useful to characterize polymer solutions and proteins.

Sometimes it is interesting to plot the distance between two atoms, or the minimum distance be-
tween two groups of atoms (e.g.: protein side-chains in a salt bridge). To calculate these distances
between certain groups there are several possibilities:

• The distance between the geometrical centers of two groups can be calculated with the program
g sgangle, as explained in sec. 8.7.

8.9. Root mean square deviations in structure 181

21 30 40 50 60 70 80 90

21

30

40

50

60

70

80

90

t=
0

ps

Residue Number

0 Distance (nm) 1.2

Figure 8.7: A minimum distance matrix for a peptide [101].

• The minimum distance between two groups of atoms during time can be calculated with the
program g mindist. It also calculates the number of contacts between these groups within
a certain radius rmax.

• To monitor the minimum distances between amino-acid residues within a (protein) molecule,
you can use the program g mdmat. This minimum distance between two residues Ai and
Aj is defined as the smallest distance between any pair of atoms (i ∈ Ai, j ∈ Aj). The output
is a symmetrical matrix of smallest distances between all residues. To visualize this matrix,
you can use a program such as xv. If you want to view the axes and legend or if you want
to print the matrix, you can convert it with xpm2ps into a Postscript picture, see Fig. 8.7.

Plotting these matrices for different time-frames, one can analyze changes in the structure,
and e.g. forming of salt bridges.

8.9 Root mean square deviations in structure

g rms, g rmsdist
The root mean square deviation (RMSD) of certain atoms in a molecule with respect to a refer-
ence structure can be calculated with the program g rms by least-square fitting the structure to
the reference structure (t2 = 0) and subsequently calculating the RMSD (eqn. 8.20).

RMSD(t1, t2) =

[
1
M

N∑
i=1

mi‖ri(t1)− ri(t2)‖2
] 1

2

(8.20)

where M =
∑N
i=1mi and ri(t) is the position of atom i at time t. NOTE that fitting does not

have to use the same atoms as the calculation of the RMSD; e.g.: a protein is usually fitted on
the backbone atoms (N,Cα,C), but the RMSD can be computed of the backbone or of the whole
protein.

182 Chapter 8. Analysis

Instead of comparing the structures to the initial structure at time t = 0 (so for example a crystal
structure), one can also calculate eqn. 8.20 with a structure at time t2 = t1 − τ . This gives some
insight in the mobility as a function of τ . Also a matrix can be made with the RMSD as a
function of t1 and t2, this gives a nice graphical impression of a trajectory. If there are transitions
in a trajectory, they will clearly show up in such a matrix.

Alternatively theRMSD can be computed using a fit-free method with the program g rmsdist:

RMSD(t) =

 1
N2

N∑
i=1

N∑
j=1

‖rij(t)− rij(0)‖2
 1

2

(8.21)

where the distance rij between atoms at time t is compared with the distance between the same
atoms at time 0.

8.10 Covariance analysis

Covariance analysis, also called principal component analysis or essential dynamics [102], can
find correlated motions. It uses the covariance matrix C of the atomic coordinates:

Cij =
〈
M

1
2
ii (xi − 〈xi〉)M

1
2
jj(xj − 〈xj〉)

〉
(8.22)

where M is a diagonal matrix containing the masses of the atoms (mass-weighted analysis) or
the unit matrix (non-mass weighted analysis). C is a symmetric 3N × 3N matrix, which can be
diagonalized with an orthonormal transformation matrix R:

RTCR = diag(λ1, λ2, . . . , λ3N) where λ1 ≥ λ2 ≥ . . . ≥ λ3N (8.23)

The columns of R are the eigenvectors, also called principal or essential modes. R defines a
transformation to a new coordinate system. The trajectory can be projected on the principal modes
to give the principal components pi(t):

p(t) = RTM
1
2 (x(t)− 〈x〉) (8.24)

The eigenvalue λi is the mean square fluctuation of principal component i. The first few principal
modes often describe collective, global motions in the system. The trajectory can be filtered along
one (or more) principal modes. For one principal mode i this goes as follows:

xf (t) = 〈x〉+M−
1
2R∗i pi(t) (8.25)

When the analysis is performed on a macromolecule, one often wants to remove the overall rota-
tion and translation to look at the internal motion only. This can be achieved by least square fitting
to a reference structure. Care has to be taken that the reference structure is representative for the
ensemble, since the choice of reference structure influences the covariance matrix.

One should always check if the principal modes are well defined. If the first principal component
resembles a half cosine and the second resembles a full cosine, you might be filtering noise (see
below). A good way to check the relevance of the first few principal modes is to calculate the

8.10. Covariance analysis 183

overlap of the sampling between the first and second half of the simulation. Note that this can
only be done when the same reference structure is used for the two halves.

A good measure for the overlap has been defined in [103]. The elements of the covariance matrix
are proportional to the square of the displacement, so we need to take the square root of the matrix
to examine the extent of sampling. The square root can be calculated from the eigenvalues λi and
the eigenvectors, which are the columns of the rotation matrixR. For a symmetric and diagonally-
dominant matrix A of size 3N × 3N the square root can be calculated as:

A
1
2 = R diag(λ

1
2
1 , λ

1
2
2 , . . . , λ

1
2
3N)RT (8.26)

It can be verified easily that the product of this matrix with itself gives A. Now we can define a
difference d between covariance matrices A and B as follows:

d(A,B) =

√
tr
((
A

1
2 −B

1
2

)2
)

(8.27)

=
√

tr
(
A+B − 2A

1
2B

1
2

)
(8.28)

=

 N∑
i=1

(
λAi + λBi

)
− 2

N∑
i=1

N∑
j=1

√
λAi λ

B
j

(
RAi ·RBj

)2

 1
2

(8.29)

where tr is the trace of a matrix. We can now define the overlap s as:

s(A,B) = 1− d(A,B)√
trA+ trB

(8.30)

The overlap is 1 if and only if matrices A and B are identical. It is 0 when the sampled subspaces
are completely orthogonal.

A commonly used measure is the subspace overlap of the first few eigenvectors of covariance
matrices. The overlap of the subspace spanned by m orthonormal vectors w1, . . . ,wm with a
reference subspace spanned by n orthonormal vectors v1, . . . ,vn can be quantified as follows:

overlap(v,w) =
1
n

n∑
i=1

m∑
j=1

(vi ·wj)2 (8.31)

The overlap will increase with increasing m and will be 1 when set v is a subspace of set w. The
disadvantage of this method is that it does not take the eigenvalues into account. All eigenvectors
are weighted equally and when degenerate subspaces are present (equal eigenvalues) the calculated
overlap will be too low.

Another useful check is the cosine content. It has been proven the the principal components of
random diffusion are cosines with the number of periods equal to half the principal component
index[104, 103]. The eigenvalues are proportional to the index to the power −2. The cosine
content is defined as:

2
T

(∫ T

0
cos

(
iπt

T

)
pi(t)dt

)2(∫ T

0
p2
i (t)dt

)−1

(8.32)

184 Chapter 8. Analysis

D

H

α

A

r

Figure 8.8: Geometrical Hydrogen bond criterion.

When the cosine content of the first few principal components is close to 1, the largest fluctuations
are not connected with the potential, but with random diffusion.

The covariance matrix is built and diagonalized by g covar. The principal components and
overlap (any many more things) can be plotted and analyzed with g anaeig. The cosine content
can be calculated with g analyze.

8.11 Dihedral principal component analysis

g angle, g covar, g anaeig
Principal component analysis can be performed in dihedral space [105] using GROMACS. You
start by defining the dihedral angles of your interest in an index file, either using mk angndx
or otherwise. Then you use the g angle program with the -or flag to produce a new trr file
containing the cosine and sine of each dihedral angle in two coordinates respectively. That is, in
the trr file you will have a series of numbers corresponding to: cos(φ1), sin(φ1), cos(φ2), sin(φ2),
..., cos(φn), sin(φn), the array is padded with zeros if necessary. Then you can use this trr file as
input for the g covar program and perform principal component analysis as usual. For this to
work you will need to generate a reference file (tpr, gro, pdb etc.) containing the same number
of “atoms” as the new trr file, that is for n dihedrals you need 2n/3 atoms (rounded up if not an
integer number). You should use the -nofit option for g covar since the coordinates in the
dummy reference file do not correspond in any way to the information in the trr file. Analysis of
the results is done using g anaeig.

8.12 Hydrogen bonds

g hbond
The program g hbond analyses the hydrogen bonds (H-bonds) between all possible donors D and
acceptors A. To determine if an H-bond exists, a geometrical criterion is used, see also Fig. 8.8:

r ≤ rHB = 0.35nm
α ≤ αHB = 30o

(8.33)

The value of rHB = 0.35 nm corresponds to the first minimum of the rdf of SPC-water (see also
Fig. 8.3).

The program g hbond analyses all hydrogen bonds existing between two groups of atoms (which
must be either identical or non-overlapping) or in specified Donor Hydrogen Acceptor triplets, in
the following ways:

8.12. Hydrogen bonds 185

O

D A

H

H

H

(1)
(2)

(2)

Figure 8.9: Insertion of water into an H-bond. (1) Normal H-bond between two residues. (2)
H-bonding bridge via a water molecule.

• Donor-Acceptor distance (r) distribution of all H-bonds

• Hydrogen-Donor-Acceptor angle (α) distribution of all H-bonds

• The total number of H-bonds in each time frame

• The number of H-bonds in time between residues, divided into groups n-n+i where n and
n+i stand for residue numbers and i goes from 0 to 6. The group for i = 6 also includes
all H-bonds for i > 6. These groups include the n-n+3, n-n+4 and n-n+5 H-bonds which
provide a measure for the formation of α-helices or β-turns or strands.

• The lifetime of the H-bonds is calculated from the average over all autocorrelation functions
of the existence functions (either 0 or 1) of all H-bonds:

C(τ) = 〈si(t) si(t+ τ)〉 (8.34)

with si(t) = {0, 1} for H-bond i at time t. The integral of C(τ) gives a rough estimate of
the average H-bond lifetime τHB:

τHB =
∫ ∞

0
C(τ)dτ (8.35)

Both the integral and the complete auto correlation function C(τ) will be output, so that
more sophisticated analysis (e.g. using multi-exponential fits) can be used to get better es-
timates for τHB . A more complicate analysis is given in ref. [106], one of the more fancy
option is the Luzar and Chandler analysis of hydrogen bond kinetics [107, 108].

• An H-bond existence map can be generated of dimensions # H-bonds×# frames. The order-
ing is identical to the index file (see below), but reversed, meaning that the last triplet in the
index file corresponds to the first row of the existence map.

• Index groups are output containing the analyzed groups, all donor-hydrogen atom pairs
and acceptor atoms in these groups, donor-hydrogen-acceptor triplets involved in hydrogen
bonds between the analyzed groups and all solvent atoms involved in insertion.

186 Chapter 8. Analysis

0 100 200 300 400 500 600 700 800 900 1000

1

5

10

15

R
es

id
ue

Time (ps)
Coil Bend Turn A-Helix B-Bridge

Figure 8.10: Analysis of the secondary structure elements of a peptide in time.

C

O

N

C
H

R

C

Oα

N

H

H

ψ
φ

Figure 8.11: Definition of the dihedral angles φ and ψ of the protein backbone.

• Solvent insertion into H-bonds can be analyzed, see Fig. 8.9. In this case an additional group
identifying the solvent must be selected. The occurrence of insertion will be indicated in
the existence map. Note that insertion into and existence of a specific H-bond can occur
simultaneously and will also be indicated as such in the existence map.

8.13 Protein related items

do dssp, g rama, xrama, wheel
To analyze structural changes of a protein, you can calculate the radius of gyration or the minimum
residue distances during time (see sec. 8.8), or calculate the RMSD (sec. 8.9).

You can also look at the changing of secondary structure elements during your run. For this you
can use the program do dssp, which is an interface for the commercial program dssp [109]. For
further information, see the dssp-manual. A typical output plot of do dssp is given in Fig. 8.10.

One other important analysis of proteins is the so called Ramachandran plot. This is the projection
of the structure on the two dihedral angles φ and ψ of the protein backbone, see Fig. 8.11.

To evaluate this Ramachandran plot you can use the program g rama. A typical output is given
in Fig. 8.12.

It is also possible to generate an animation of the Ramachandran plot in time. This can be of help
for analyzing certain dihedral transitions in your protein. You can use the program xrama for
this.

When studying α-helices it is useful to have a helical wheel projection of your peptide, to see
whether a peptide is amphipatic. This can be done using the wheel program. Two examples are
plotted in Fig. 8.13.

8.13. Protein related items 187

-180 -90 0 90 180
Φ

-180

-90

0

90

180

Ψ

Figure 8.12: Ramachandran plot of a small protein.

HPr-A HIS-15+

T
H

R
-16

ARG-17+

PR
O

-1
8

ALA-19

ALA-20

G
LN

-2
1

PHE-22

V
A

L-23

LYS-24+

G
LU

-2
5-

ALA-26

LYS-27+
GLY-28

Figure 8.13: Helical wheel projection of the N-terminal helix of HPr.

188 Chapter 8. Analysis

8.14 Interface related items

g order, g density, g potential, g traj
When simulating molecules with long carbon tails, it can be interesting to calculate their average
orientation. There are several flavors of order parameters, most of which are related. The program
g order can calculate order parameters using the equation

Sz =
3
2
〈cos2 θz〉 −

1
2

(8.36)

where θz is the angle between the z-axis of the simulation box and the molecular axis under
consideration. The latter is defined as the vector from Cn−1 to Cn+1. The parameters Sx and Sy are
defined in the same way. The brackets imply averaging over time and molecules. Order parameters
can vary between 1 (full order along the interface normal) and −1/2 (full order perpendicular to
the normal), with a value of zero in the case of isotropic orientation.

The program can do two things for you. It can calculate the order parameter for each CH2 segment
separately, for any of three axes, or it can divide the box in slices and calculate the average value
of the order parameter per segment in one slice. The first method gives an idea of the ordering of
a molecule from head to tail, the second method gives an idea of the ordering as function of the
box length.

The electrostatic potential (ψ) across the interface can be computed from a trajectory by evaluating
the double integral of the charge density (ρ(z)):

ψ(z)− ψ(−∞) = −
∫ z

−∞
dz′

∫ z′

−∞
ρ(z′′)dz′′/ε0 (8.37)

where the position z = −∞ is far enough in the bulk phase that the field is zero. With this
method, it is possible to “split” the total potential into separate contributions from lipid and water
molecules. The program g potential divides the box in slices and sums all charges of the
atoms in each slice. It then integrates this charge density, giving the electric field, and the electric
field, giving the potential. Charge density, field and potential are written to xvgr-input files.

The program g traj is a very simple analysis program. All it does is print the coordinates,
velocities or forces of selected atoms. It can also calculate the center of mass of one or more
molecules and print the coordinates of the center of mass to three files. By itself, this is probably
not a very useful analysis, but having the coordinates of selected molecules or atoms can be very
handy for further analysis, not only in interface systems.

The program g pvd calculates a lot of properties, among which the density of a group in particles
per unit of volume, but not a density that takes the mass of the atoms into account. The program
g density also calculates the density of a group, but takes the masses into account and gives a
plot of the density against a box axis. This is useful for looking at the distribution of groups or
atoms across the interface.

8.15 Chemical shifts

total, do shift
You can compute the NMR chemical shifts of protons with the program do shift. This is just an

8.15. Chemical shifts 189

GROMACS interface to the public domain program total [110]. For further information, read
the article. Although there is limited support for this in GROMACS users are encouraged to use
the software provided by the David Case group at Scripps because it seems to be more up-to-date.

190 Chapter 8. Analysis

Appendix A

Technical Details

A.1 Installation

The entire GROMACS package is Free Software, licensed under the GNU General Public License.
The main distribution site is our WWW server at www.gromacs.org.

The package is mainly distributed as source code, but we also provide RPM packages for Linux.
On the home page you will find all the information you need to install the package, mailing lists
with archives, and several additional online resources like contributed topologies, etc. The default
installation action is simply to unpack the source code and the issue
./configure
make
make install
The configuration script should automatically determine the best options for your platform, and
it will tell you if anything is missing on your system. You will also find detailed step-by-step
installation instructions on the website.

A.2 Single or Double precision

GROMACS can be compiled in either single or double precision. The default choice is single
precision, but it is easy to turn on double precision by selecting the --disable-float option to
the configuration script. Double precision will be 0 to 50% slower than single precision depending
on the architecture you are running on. Double precision will use somewhat more memory and
run input, energy and full-precision trajectory files will be almost twice as large. Assembly loops
are available in single and double precision on Pentium 4, Opteron and Itanium processors. On
PowerPC processors containing the Altivec unit only single precision is possible. On older Athlon
and Pentium 3 processors only the single precision code is available, due to hardware limitations.
All other processors use either C or Fortran code for the compute intensive inner loops.

The energies in single precision are accurate up to the last decimal, the last one or two decimals of
the forces are non-significant. The virial is less accurate than the forces, since the virial is only one

http://www.gromacs.org

192 Appendix A. Technical Details

order of magnitude larger than the size of each element in the sum over all atoms (sec. B.1). In most
cases this is not really a problem, since the fluctuations in de virial can be 2 orders of magnitude
larger than the average. In periodic charged systems these errors are often negligible. Especially
cut-off’s for the Coulomb interactions cause large errors in the energies, forces and virial. Even
when using a reaction-field or lattice sum method the errors are larger than or comparable to
the errors due to the single precision. Since MD is chaotic, trajectories with very similar starting
conditions will diverge rapidly, the divergence is faster in single precision than in double precision.

For most simulations single precision is accurate enough. In some cases double precision is re-
quired to get reasonable results:

• normal mode analysis, for the conjugate gradient or l-bfgs minimization and the calculation
and diagonalization of the Hessian

• calculation of the constraint force between two large groups of atoms

• energy conservation (this can only be done without temperature coupling and without cut-
off’s)

A.3 Porting GROMACS

The GROMACS system is designed with portability as a major design goal. However there are
a number of things we assume to be present on the system GROMACS is being ported on. We
assume the following features:

1. A UNIX-like operating system (BSD 4.x or SYSTEM V rev.3 or higher) or UNIX-like
libraries running under e.g. CygWin

2. an ANSI C compiler

3. optionally a Fortran-77 compiler or Fortran-90 compiler for faster (on some computers)
inner loop routines

4. optionally the Nasm assembler to use the assembly innerloops on x86 processors.

There are some additional features in the package that require extra stuff to be present, but it is
checked for in the configuration script and you will be warned if anything important is missing.

That’s the requirements for a single processor system. If you want to compile GROMACS for
a multiple processor environment you also need a MPI library (Message-Passing Interface) to
perform the parallel communication. This is always shipped with supercomputers, and for work-
stations you can find links to free MPI implementations through the GROMACS homepage at
www.gromacs.org.

A.3.1 Multi-processor Optimization

If you want to, you could write your own optimized communication (perhaps using specific li-
braries for your hardware) instead of MPI. This should never be necessary for normal use (we

http://www.gromacs.org

A.4. Environment Variables 193

haven’t heard of a modern computer where it isn’t possible to run MPI), but if you absolutely want
to do it, here are some clues.

The interface between the communication routines and the rest of the GROMACS system is de-
scribed in the file $GMXHOME/src/include/network.h We will give a short description of
the different routines below.

extern void gmx tx(int pid,void *buf,int bufsize);
This routine, when called with the destination processor number, a pointer to a (byte ori-
ented) transfer buffer, and the size of the buffer will send the buffer to the indicated processor
(in our case always the neighboring processor). The routine does not wait until the transfer
is finished.

extern void gmx tx wait(int pid);
This routine waits until the previous, or the ongoing transmission is finished.

extern void gmx txs(int pid,void *buf,int bufsize);
This routine implements a synchronous send by calling the a-synchronous routine and then
the wait. It might come in handy to code this differently.

extern void gmx rx(int pid,void *buf,int bufsize);

extern void gmx rx wait(int pid);

extern void gmx rxs(int pid,void *buf,int bufsize);
The very same routines for receiving a buffer and waiting until the reception is finished.

extern void gmx init(int pid,int nprocs);
This routine initializes the different devices needed to do the communication. In general it
sets up the communication hardware (if it is accessible) or does an initialize call to the lower
level communication subsystem.

extern void gmx stat(FILE *fp,char *msg);
With this routine we can diagnose the ongoing communication. In the current implemen-
tation it prints the various contents of the hardware communication registers of the (Intel
i860) multiprocessor boards to a file.

A.4 Environment Variables

GROMACS programs may be influenced by the use of environment variables. First of all, the vari-
ables set in the GMXRC file are essential for running and compiling GROMACS. Other variables
are:

1. DUMPNL, dump neighbor list. If set to a positive number the entire neighbor list is printed
in the log file (may be many megabytes). Mainly for debugging purposes, but may also be
handy for porting to other platforms.

2. GMX NO QUOTES, if this is explicitly set, no cool quotes will be printed at the end of a
program

194 Appendix A. Technical Details

3. WHERE, when set print debugging info on line numbers.

4. LOG BUFS, the size of the buffer for file I/O. When set to 0, all file I/O will be unbuffered
and therefore very slow. This can be handy for debugging purposes, because it ensures that
all files are always totally up-to-date.

5. GMXNPRI, for SGI systems only. When set, gives the default non-degrading priority (npri)
for mdrun, nmrun, g covar and g nmeig, e.g. setting setenv GMXNPRI 250 causes
all runs to be performed at near-lowest priority by default.

6. GMX VIEW XPM, GMX VIEW XVG, GMX VIEW EPS and GMX VIEW PDB, commands used
to automatically view resp. .xvg, .xpm, .eps and .pdb file types; they default to xv,
xmgrace, ghostview and rasmol. Set to empty to disable automatic viewing of a
particular file type. The command will be forked off and run in the background at the same
priority as the GROMACS tool (which might not be what you want). Be careful not to use
a command which blocks the terminal (e.g. vi), since multiple instances might be run.

7. GMXTIMEUNIT the time unit used in output files, can be anything in fs, ps, ns, us, ms, s, m
or h.

Some other environment variables are specific to one program, such as TOTAL for the do shift
program, and DSPP for the do dssp program.

A.5 Running GROMACS in parallel

If you have installed the MPI (Message Passing Interface) on your computer(s) you can compile
GROMACS with this library to run simulations in parallel. All supercomputers are shipped with
MPI libraries optimized for that particular platform, and if you are using a cluster of workstations
there are several good free MPI implementations. You can find updated links to these on the gro-
macs homepage www.gromacs.org. Once you have an MPI library installed it’s trivial to compile
GROMACS with MPI support: Just set the option --enable-mpi to the configure script and
recompile. (But don’t forget to make distclean before running configure if you have previously
compiled with a different configuration.) The default nicing of mdrun is automatically turned off
when running in parallel.

There is usually a program called mpirun with which you can fire up the parallel processes. A
typical command line looks like:
% mpirun -np 16 mdrun -s topol

Check your local manuals (or online manual) for exact details of your MPI implementation.

http://www.gromacs.org

Appendix B

Some implementation details

In this chapter we will present some implementation details. This is far from complete, but we
deemed it necessary to clarify some things that would otherwise be hard to understand.

B.1 Single Sum Virial in GROMACS.

The virial Ξ can be written in full tensor form as:

Ξ = − 1
2

N∑
i<j

rij ⊗ F ij (B.1)

where ⊗ denotes the direct product of two vectors1. When this is computed in the inner loop of
an MD program 9 multiplications and 9 additions are needed2.

Here it is shown how it is possible to extract the virial calculation from the inner loop [111].

B.1.1 Virial.

In a system with Periodic Boundary Conditions, the periodicity must be taken into account for the
virial:

Ξ = − 1
2

N∑
i<j

rnij ⊗ F ij (B.2)

where rnij denotes the distance vector of the nearest image of atom i from atom j. In this definition
we add a shift vector δi to the position vector ri of atom i. The difference vector rnij is thus equal
to:

rnij = ri + δi − rj (B.3)

or in shorthand:
rnij = rni − rj (B.4)

1(u⊗ v)αβ = uαvβ
2The calculation of Lennard-Jones and Coulomb forces is about 50 floating point operations.

196 Appendix B. Some implementation details

In a triclinic system there are 27 possible images of i, when truncated octahedron is used there are
15 possible images.

B.1.2 Virial from non-bonded forces.

Here the derivation for the single sum virial in the non-bonded force routine is given. i 6= j in all
formulae below.

Ξ = −1
2

N∑
i<j

rnij ⊗ F ij (B.5)

= −1
4

N∑
i=1

N∑
j=1

(ri + δi − rj)⊗ F ij (B.6)

= −1
4

N∑
i=1

N∑
j=1

(ri + δi)⊗ F ij − rj ⊗ F ij (B.7)

= −1
4

 N∑
i=1

N∑
j=1

(ri + δi)⊗ F ij −
N∑
i=1

N∑
j=1

rj ⊗ F ij

 (B.8)

= −1
4

 N∑
i=1

(ri + δi)⊗
N∑
j=1

F ij −
N∑
j=1

rj ⊗
N∑
i=1

F ij

 (B.9)

= −1
4

 N∑
i=1

(ri + δi)⊗ F i +
N∑
j=1

rj ⊗ F j

 (B.10)

= −1
4

(
2

N∑
i=1

ri ⊗ F i +
N∑
i=1

δi ⊗ F i

)
(B.11)

In these formulae we introduced

F i =
N∑
j=1

F ij (B.12)

F j =
N∑
i=1

F ji (B.13)

which is the total force on i resp. j. Because we use Newton’s third law

F ij = − F ji (B.14)

we must in the implementation double the term containing the shift δi.

B.1.3 The intramolecular shift (mol-shift).

For the bonded-forces and shake it is possible to make a mol-shift list, in which the periodicity
is stored. We simple have an array mshift in which for each atom an index in the shiftvec
array is stored.

B.1. Single Sum Virial in GROMACS. 197

The algorithm to generate such a list can be derived from graph theory, considering each particle
in a molecule as a bead in a graph, the bonds as edges.

1 represent the bonds and atoms as bidirectional graph

2 make all atoms white

3 make one of the white atoms black (atom i) and put it in the central box

4 make all of the neighbors of i that are currently white, grey

5 pick one of the grey atoms (atom j), give it the correct periodicity with respect to any of its
black neighbors and make it black

6 make all of the neighbors of j that are currently white, grey

7 if any grey atom remains, goto [5]

8 if any white atom remains, goto [3]

Using this algorithm we can

• optimize the bonded force calculation as well as shake

• calculate the virial from the bonded forces in the single sum way again

Find a representation of the bonds as a bidirectional graph.

B.1.4 Virial from Covalent Bonds.

The covalent bond force gives a contribution to the virial, we have

b = ‖rnij‖ (B.15)

Vb =
1
2
kb(b− b0)2 (B.16)

F i = −∇Vb (B.17)

= kb(b− b0)
rnij
b

(B.18)

F j = −F i (B.19)

The virial contribution from the bonds then is

Ξb = −1
2

(rni ⊗ F i + rj ⊗ F j) (B.20)

= −1
2
rnij ⊗ F i (B.21)

198 Appendix B. Some implementation details

B.1.5 Virial from Shake.

An important contribution to the virial comes from shake. Satisfying the constraints a force G is
exerted on the particles shaken. If this force does not come out of the algorithm (as in standard
shake) it can be calculated afterwards (when using leap-frog) by:

∆ri = ri(t+ ∆t)− [ri(t) + vi(t−
∆t
2

)∆t+
F i

mi
∆t2] (B.22)

Gi =
mi∆ri

∆t2
(B.23)

but this does not help us in the general case. Only when no periodicity is needed (like in rigid
water) this can be used, otherwise we must add the virial calculation in the inner loop of shake.

When it is applicable the virial can be calculated in the single sum way:

Ξ = − 1
2

Nc∑
i

ri ⊗ F i (B.24)

where Nc is the number of constrained atoms.

B.2 Optimizations

Here we describe some of the algorithmic optimizations used in GROMACS, apart from par-
allelism. One of these, the implementation of the 1.0/sqrt(x) function is treated separately in
sec. B.3. The most important other optimizations are described below.

B.2.1 Inner Loops for Water

GROMACS users special inner loop to calculate non-bonded interactions for water molecules with
other atoms, and yet another set of loops for interactions between pairs of water molecules. There
highly optimized loops for two types of water models. For three site models similar to SPC [57],
i.e.:

1. There are three atoms in the molecule.

2. The whole molecule is a single charge group.

3. The first atom has Lennard-Jones (sec. 4.1.1) and coulomb (sec. 4.1.3) interactions.

4. Atoms two and three have only coulomb interactions, and equal charges.

These loops also works for the SPC/E [112] and TIP3P [79] water models. And for four site water
models similar to TIP4P [79]:

1. There are four atoms in the molecule.

2. The whole molecule is a single charge group.

B.3. Computation of the 1.0/sqrt function. 199

3. The first atom has only Lennard-Jones (sec. 4.1.1) interactions.

4. Atoms two and three have only coulomb (sec. 4.1.3) interactions, and equal charges.

5. Atom four has only coulomb interactions.

The gain of these implementations is that there are more floating point operations in a single
loop, which implies that some compilers can schedule the code better. However, it turns out that
even some of the most advanced compilers have problems with scheduling, implying that manual
tweaking is necessary to get optimum performance. This may include common-subexpression
elimination, or moving code around.

B.2.2 Fortran Code

Unfortunately, Fortran compilers are still better than C-compilers, for most machines anyway. For
some machines (e.g. SGI Power Challenge) the difference may be up to a factor of 3, in the case
of vector computers this may be even larger. Therefore, some of the routines that take up a lot of
computer time have been translated into Fortran and even assembly code for Intel and AMD x86
processors. In most cases, the Fortran or assembly loops should be selected automatically by the
configure script when appropriate, but you can also tweak this by setting options to the configure
script.

B.3 Computation of the 1.0/sqrt function.

B.3.1 Introduction.

The GROMACS project started with the development of a 1/
√
x processor which calculates

Y (x) =
1√
x

(B.25)

As the project continued, the Intel i860 processor was used to implement GROMACS, which now
turned into almost a full software project. The 1/

√
x processor was implemented using a Newton-

Raphson iteration scheme for one step. For this it needed lookup tables to provide the initial
approximation. The 1/

√
x function makes it possible to use two almost independent tables for the

exponent seed and the fraction seed with the IEEE floating point representation.

B.3.2 General

According to [113] the 1/
√
x can be calculated using the Newton-Raphson iteration scheme. The

inverse function is
X(y) =

1
y2

(B.26)

So instead of calculating
Y (a) = q (B.27)

200 Appendix B. Some implementation details

︸ ︷︷ ︸︸ ︷︷ ︸?
FES

02331

V alue = (−1)S(2E−127)(1.F)

02331

V alue = (−1)S(2E−127)(1.F)

Figure B.1: IEEE single precision floating point format

the equation
X(q)− a = 0 (B.28)

can now be solved using Newton-Raphson. An iteration is performed by calculating

yn+1 = yn −
f(yn)
f ′(yn)

(B.29)

The absolute error ε, in this approximation is defined by

ε ≡ yn − q (B.30)

using Taylor series expansion to estimate the error results in

εn+1 = −ε
2
n

2
f ′′(yn)
f ′(yn)

(B.31)

according to [113] equation (3.2). This is an estimation of the absolute error.

B.3.3 Applied to floating point numbers

Floating point numbers in IEEE 32 bit single precision format have a nearly constant relative error
of ∆x/x = 2−24. As seen earlier in the Taylor series expansion equation (eqn. B.31), the error in
every iteration step is absolute and in general dependent of y. If the error is expressed as a relative
error εr the following holds

εrn+1 ≡
εn+1

y
(B.32)

and so

εrn+1 = −(
εn
y

)2y
f ′′

2f ′
(B.33)

for the function f(y) = y−2 the term yf ′′/2f ′ is constant (equal to−3/2) so the relative error εrn
is independent of y.

εrn+1 =
3
2

(εrn)2 (B.34)

The conclusion of this is that the function 1/
√
x can be calculated with a specified accuracy.

B.3. Computation of the 1.0/sqrt function. 201

B.3.4 Specification of the lookup table

To calculate the function 1/
√
x using the previously mentioned iteration scheme, it is clear that the

first estimation of the solution must be accurate enough to get precise results. The requirements
for the calculation are

• Maximum possible accuracy with the used IEEE format

• Use only one iteration step for maximum speed

The first requirement states that the result of 1/
√
x may have a relative error εr equal to the

εr of a IEEE 32 bit single precision floating point number. From this the 1/
√
x of the initial

approximation can be derived, rewriting the definition of the relative error for succeeding steps,
equation (eqn. B.34)

εn
y

=

√
εrn+1

2f ′

yf ′′
(B.35)

So for the lookup table the needed accuracy is

∆Y
Y

=
√

2
3

2−24 (B.36)

which defines the width of the table that must be ≥ 13 bit.

At this point the relative error εrn of the lookup table is known. From this the maximum relative
error in the argument can be calculated as follows. The absolute error ∆x is defined as

∆x ≡ ∆Y
Y ′

(B.37)

and thus
∆x
Y

=
∆Y
Y

(Y ′)−1 (B.38)

and thus

∆x = constant
Y

Y ′
(B.39)

for the 1/
√
x function Y/Y ′ ∼ x holds, so ∆x/x = constant. This is a property of the used

floating point representation as earlier mentioned. The needed accuracy of the argument of the
lookup table follows from

∆x
x

= −2
∆Y
Y

(B.40)

so, using the floating point accuracy, equation (eqn. B.36)

∆x
x

= −2
√

2
3

2−24 (B.41)

This defines the length of the lookup table which should be ≥ 12 bit.

202 Appendix B. Some implementation details

B.3.5 Separate exponent and fraction computation

The used IEEE 32 bit single precision floating point format specifies that a number is represented
by a exponent and a fraction. The previous section specifies for every possible floating point
number the lookup table length and width. Only the size of the fraction of a floating point number
defines the accuracy. The conclusion from this can be that the size of the lookup table is length of
lookup table, earlier specified, times the size of the exponent (21228, 1Mb). The 1/

√
x function

has the property that the exponent is independent of the fraction. This becomes clear if the floating
point representation is used. Define

x ≡ (−1)S(2E−127)(1.F) (B.42)

see Fig. B.1 where 0 ≤ S ≤ 1, 0 ≤ E ≤ 255, 1 ≤ 1.F < 2 and S, E, F integer (normalization
conditions). The sign bit (S) can be omitted because 1/

√
x is only defined for x > 0. The 1/

√
x

function applied to x results in

y(x) =
1√
x

(B.43)

or
y(x) =

1√
(2E−127)(1.F)

(B.44)

this can be rewritten as
y(x) = (2E−127)−1/2(1.F)−1/2 (B.45)

Define
(2E

′−127) ≡ (2E−127)−1/2 (B.46)

1.F ′ ≡ (1.F)−1/2 (B.47)

then 1√
2
< 1.F ′ ≤ 1 holds, so the condition 1 ≤ 1.F ′ < 2 which is essential for normalized real

representation is not valid anymore. By introducing an extra term this can be corrected. Rewrite
the 1/

√
x function applied to floating point numbers, equation (eqn. B.45) as

y(x) = (2
127−E

2
−1)(2(1.F)−1/2) (B.48)

and
(2E

′−127) ≡ (2
127−E

2
−1) (B.49)

1.F ′ ≡ 2(1.F)−1/2 (B.50)

then
√

2 < 1.F ≤ 2 holds. This is not the exact valid range as defined for normalized floating
point numbers in equation (eqn. B.42). The value 2 causes the problem. By mapping this value
on the nearest representation < 2 this can be solved. The small error that is introduced by this
approximation is within the allowable range.

The integer representation of the exponent is the next problem. Calculating (2
127−E

2
−1) introduces

a fractional result if (127 − E) = odd. This is again easily accounted for by splitting up the
calculation into an odd and an even part. For (127 − E) = even E′ in equation (eqn. B.49) can
be exactly calculated in integer arithmetic as a function of E.

E′ =
127− E

2
+ 126 (B.51)

B.4. Modifying GROMACS 203

For (127− E) = odd equation (eqn. B.45) can be rewritten as

y(x) = (2
127−E−1

2)(
1.F
2

)−1/2 (B.52)

thus
E′ =

126− E
2

+ 127 (B.53)

which also can be calculated exactly in integer arithmetic. Note that the fraction is automatically
corrected for its range earlier mentioned, so the exponent does not need an extra correction.

The conclusions from this are:

• The fraction and exponent lookup table are independent. The fraction lookup table exists
of two tables (odd and even exponent) so the odd/even information of the exponent (lsb bit)
has to be used to select the right table.

• The exponent table is an 256 x 8 bit table, initialized for odd and even.

B.3.6 Implementation

The lookup tables can be generated by a small C program, which uses floating point numbers
and operations with IEEE 32 bit single precision format. Note that because of the odd/even
information that is needed, the fraction table is twice the size earlier specified (13 bit i.s.o. 12 bit).

The function according to equation (eqn. B.29) has to be implemented. Applied to the 1/
√
x

function, equation (eqn. B.28) leads to

f = a− 1
y2

(B.54)

and so
f ′ =

2
y3

(B.55)

so

yn+1 = yn −
a− 1

y2n
2
y3n

(B.56)

or
yn+1 =

yn
2

(3− ay2
n) (B.57)

Where y0 can be found in the lookup tables, and y1 gives the result to the maximum accuracy. It
is clear that only one iteration extra (in double precision) is needed for a double precision result.

B.4 Modifying GROMACS

The following files have to be edited in case you want to add a bonded potential of any type.

1. include/bondf.h

204 Appendix B. Some implementation details

2. include/types/idef.h

3. include/types/nrnb.h

4. include/types/enums.h

5. include/grompp.h

6. src/kernel/topdirs.c

7. src/gmxlib/tpxio.c

8. src/gmxlib/bondfree.c

9. src/gmxlib/ifunc.c

10. src/gmxlib/nrnb.c

11. src/kernel/convparm.c

12. src/kernel/topdirs.c

13. src/kernel/topio.c

Appendix C

Averages and fluctuations

C.1 Formulae for averaging

Note: this section was taken from ref [114].

When analyzing a MD trajectory averages 〈x〉 and fluctuations

〈
(∆x)2

〉 1
2 =

〈
[x− 〈x〉]2

〉 1
2 (C.1)

of a quantity x are to be computed. The variance σx of a series of Nx values, {xi}, can be computed
from

σx =
Nx∑
i=1

x2
i −

1
Nx

(
Nx∑
i=1

xi

)2

(C.2)

Unfortunately this formula is numerically not very accurate, especially when σ
1
2
x is small compared

to the values of xi. The following (equivalent) expression is numerically more accurate

σx =
Nx∑
i=1

[xi − 〈x〉]2 (C.3)

with

〈x〉 =
1
Nx

Nx∑
i=1

xi (C.4)

Using eqns. C.2 and C.4 one has to go through the series of xi values twice, once to determine
〈x〉 and again to compute σx, whereas eqn. C.1 requires only one sequential scan of the series
{xi}. However, one may cast eqn. C.2 in another form, containing partial sums, which allows for
a sequential update algorithm. Define the partial sum

Xn,m =
m∑
i=n

xi (C.5)

206 Appendix C. Averages and fluctuations

and the partial variance

σn,m =
m∑
i=n

[
xi −

Xn,m

m− n+ 1

]2

(C.6)

It can be shown that
Xn,m+k = Xn,m +Xm+1,m+k (C.7)

and

σn,m+k = σn,m + σm+1,m+k +
[

Xn,m

m− n+ 1
− Xn,m+k

m+ k − n+ 1

]2

∗

(m− n+ 1)(m+ k − n+ 1)
k

(C.8)

For n = 1 one finds

σ1,m+k = σ1,m + σm+1,m+k +
[
X1,m

m
− X1,m+k

m+ k

]2 m(m+ k)
k

(C.9)

and for n = 1 and k = 1 (eqn. C.8) becomes

σ1,m+1 = σ1,m +
[
X1,m

m
− X1,m+1

m+ 1

]2

m(m+ 1) (C.10)

= σ1,m +
[X1,m −mxm+1]2

m(m+ 1)
(C.11)

where we have used the relation

X1,m+1 = X1,m + xm+1 (C.12)

Using formulae (eqn. C.11) and (eqn. C.12) the average

〈x〉 =
X1,Nx

Nx
(C.13)

and the fluctuation 〈
(∆x)2

〉 1
2 =

[
σ1,Nx

Nx

] 1
2

(C.14)

can be obtained by one sweep through the data.

C.2 Implementation

In GROMACS the instantaneous energiesE(m) are stored in the energy file, along with the values
of σ1,m andX1,m. Although the steps are counted from 0, for the energy and fluctuations steps are
counted from 1. This means that the equations presented here are the ones that are implemented.
We give somewhat lengthy derivations in this section to simplify checking of code and equations
later on.

C.2. Implementation 207

C.2.1 Part of a Simulation

It is not uncommon to perform a simulation where the first part, e.g. 100 ps, is taken as equili-
bration. However, the averages and fluctuations as printed in the log file are computed over the
whole simulation. The equilibration time, which is now part of the simulation, may in such a case
invalidate the averages and fluctuations, because these numbers are now dominated by the initial
drift towards equilibrium.

Using eqns. C.7 and C.8 the average and standard deviation over part of the trajectory can be
computed as:

Xm+1,m+k = X1,m+k −X1,m (C.15)

σm+1,m+k = σ1,m+k − σ1,m −
[
X1,m

m
− X1,m+k

m+ k

]2 m(m+ k)
k

(C.16)

or, more generally (with p ≥ 1 and q ≥ p):

Xp,q = X1,q −X1,p−1 (C.17)

σp,q = σ1,q − σ1,p−1 −
[
X1,p−1

p− 1
− X1,q

q

]2 (p− 1)q
q − p+ 1

(C.18)

Note that implementation of this is not entirely trivial, since energies are not stored every time
step of the simulation. We therefore have to construct X1,p−1 and σ1,p−1 from the information at
time p using eqns. C.11 and C.12:

X1,p−1 = X1,p − xp (C.19)

σ1,p−1 = σ1,p −
[X1,p−1 − (p− 1)xp]2

(p− 1)p
(C.20)

C.2.2 Combining two simulations

Another frequently occurring problem is, that the fluctuations of two simulations must be com-
bined. Consider the following example: we have two simulations (A) of n and (B) of m steps, in
which the second simulation is a continuation of the first. However, the second simulation starts
numbering from 1 instead of from n + 1. For the partial sum this is no problem, we have to add
XA

1,n from run A:

XAB
1,n+m = XA

1,n +XB
1,m (C.21)

When we want to compute the partial variance from the two components we have to make a
correction ∆σ:

σAB1,n+m = σA1,n + σB1,m + ∆σ (C.22)

if we define xABi as the combined and renumbered set of data points we can write:

σAB1,n+m =
n+m∑
i=1

[
xABi −

XAB
1,n+m

n+m

]2

(C.23)

208 Appendix C. Averages and fluctuations

and thus

n+m∑
i=1

[
xABi −

XAB
1,n+m

n+m

]2

=
n∑
i=1

[
xAi −

XA
1,n

n

]2

+
m∑
i=1

[
xBi −

XB
1,m

m

]2

+ ∆σ (C.24)

or

n+m∑
i=1

(xABi)2 − 2xABi
XAB

1,n+m

n+m
+

(
XAB

1,n+m

n+m

)2
 −

n∑
i=1

(xAi)2 − 2xAi
XA

1,n

n
+

(
XA

1,n

n

)2
 −

m∑
i=1

(xBi)2 − 2xBi
XB

1,m

m
+

(
XB

1,m

m

)2
 = ∆σ (C.25)

all the x2
i terms drop out, and the terms independent of the summation counter i can be simplified:(

XAB
1,n+m

)2

n+m
−

(
XA

1,n

)2

n
−

(
XB

1,m

)2

m
−

2
XAB

1,n+m

n+m

n+m∑
i=1

xABi + 2
XA

1,n

n

n∑
i=1

xAi + 2
XB

1,m

m

m∑
i=1

xBi = ∆σ (C.26)

we recognize the three partial sums on the second line and use eqn. C.21 to obtain:

∆σ =

(
mXA

1,n − nXB
1,m

)2

nm(n+m)
(C.27)

if we check this by inserting m = 1 we get back eqn. C.11

C.2.3 Summing energy terms

The g energy program can also sum energy terms into one, e.g. potential + kinetic = total. For the
partial averages this is again easy if we have S energy components s:

XS
m,n =

n∑
i=m

S∑
s=1

xsi =
S∑
s=1

n∑
i=m

xsi =
S∑
s=1

Xs
m,n (C.28)

For the fluctuations it is less trivial again, considering for example that the fluctuation in potential
and kinetic energy should cancel. Nevertheless we can try the same approach as before by writing:

σSm,n =
S∑
s=1

σsm,n + ∆σ (C.29)

if we fill in eqn. C.6:

n∑
i=m

[(
S∑
s=1

xsi

)
−

XS
m,n

m− n+ 1

]2

=
S∑
s=1

n∑
i=m

[
(xsi)−

Xs
m,n

m− n+ 1

]2

+ ∆σ (C.30)

C.2. Implementation 209

which we can expand to:

n∑
i=m

 S∑
s=1

(xsi)
2 +

(
XS
m,n

m− n+ 1

)2

− 2

 XS
m,n

m− n+ 1

S∑
s=1

xsi +
S∑
s=1

S∑
s′=s+1

xsix
s′
i


−

S∑
s=1

n∑
i=m

[
(xsi)

2 − 2
Xs
m,n

m− n+ 1
xsi +

(
Xs
m,n

m− n+ 1

)2
]

= ∆σ (C.31)

the terms with (xsi)
2 cancel, so that we can simplify to:(
XS
m,n

)2

m− n+ 1
− 2

XS
m,n

m− n+ 1

n∑
i=m

S∑
s=1

xsi − 2
n∑

i=m

S∑
s=1

S∑
s′=s+1

xsix
s′
i −

S∑
s=1

n∑
i=m

[
−2

Xs
m,n

m− n+ 1
xsi +

(
Xs
m,n

m− n+ 1

)2
]

= ∆σ (C.32)

or

−

(
XS
m,n

)2

m− n+ 1
− 2

n∑
i=m

S∑
s=1

S∑
s′=s+1

xsix
s′
i +

S∑
s=1

(
Xs
m,n

)2

m− n+ 1
= ∆σ (C.33)

If we now expand the first term using eqn. C.28 we obtain:

−

(∑S
s=1X

s
m,n

)2

m− n+ 1
− 2

n∑
i=m

S∑
s=1

S∑
s′=s+1

xsix
s′
i +

S∑
s=1

(
Xs
m,n

)2

m− n+ 1
= ∆σ (C.34)

which we can reformulate to:

− 2

 S∑
s=1

S∑
s′=s+1

Xs
m,nX

s′
m,n +

n∑
i=m

S∑
s=1

S∑
s′=s+1

xsix
s′
i

 = ∆σ (C.35)

or

− 2

 S∑
s=1

Xs
m,n

S∑
s′=s+1

Xs′
m,n +

S∑
s=1

n∑
i=m

xsi

S∑
s′=s+1

xs
′
i

 = ∆σ (C.36)

which gives

− 2
S∑
s=1

Xs
m,n

S∑
s′=s+1

n∑
i=m

xs
′
i +

n∑
i=m

xsi

S∑
s′=s+1

xs
′
i

 = ∆σ (C.37)

Since we need all data points i to evaluate this, in general this is not possible. We can then make an
estimate of σSm,n using only the data points that are available using the left hand side of eqn. C.30.
While the average can be computed using all time steps in the simulation, the accuracy of the
fluctuations is thus limited by the frequency with which energies are saved. Since this can be
easily done with a program such as xmgr this is not built-in in GROMACS.

210 Appendix C. Averages and fluctuations

Appendix D

Manual Pages

D.1 options

All GROMACS programs have 6 standard options, of which some are hidden by default:
Other options

-h bool no Print help info and quit
-hidden bool no [hidden] Print hidden options
-quiet bool no [hidden] Do not print help info

-man enum tex [hidden] Write manual and quit: no, html, tex, nroff, ascii,
completion, py or xml

-debug bool no [hidden] Write file with debug information
-nice int 0 Set the nicelevel

• If the configuration script found Motif or Lesstif on your system, you can use the graphical interface
(if not, you will get an error):
-X bool no Use dialog box GUI to edit command line options

• When compiled on an SGI-IRIX system, all GROMACS programs have an additional option:
-npri int 0 Set non blocking priority (try 128)

• Optional files are not used unless the option is set, in contrast to non optional files, where the default
file name is used when the option is not set.

• All GROMACS programs will accept file options without a file extension or filename being specified.
In such cases the default filenames will be used. With multiple input file types, such as generic
structure format, the directory will be searched for files of each type with the supplied or default
name. When no such file is found, or with output files the first file type will be used.

• All GROMACS programs with the exception of mdrun, nmrun and eneconv check if the com-
mand line options are valid. If this is not the case, the program will be halted.

• Enumerated options (enum) should be used with one of the arguments listed in the option description,
the argument may be abbreviated. The first match to the shortest argument in the list will be selected.

• Vector options can be used with 1 or 3 parameters. When only one parameter is supplied the two
others are also set to this value.

• For many GROMACS programs, the time options can be supplied in different time units, depending
on the setting of the -tu option.

212 Appendix D. Manual Pages

• All GROMACS programs can read compressed or g-zipped files. There might be a problem with
reading compressed .xtc, .trr and .trj files, but these will not compress very well anyway.

• Most GROMACS programs can process a trajectory with less atoms than the run input or structure
file, but only if the trajectory consists of the first n atoms of the run input or structure file.

• Many GROMACS programs will accept the -tu option to set the time units to use in output files
(e.g. for xmgr graphs or xpm matrices) and in all time options.

D.2 anadock

anadock analyses the results of an Autodock run and clusters the structures together, based on distance or
RMSD. The docked energy and free energy estimates are analysed, and for each cluster the energy statistics
are printed.

An alternative approach to this is to cluster the structures first (using g cluster and then sort the clusters
on either lowest energy or average energy.
Files

-f eiwit.pdb Input Protein data bank file
-ox cluster.pdb Output Protein data bank file
-od edocked.xvg Output xvgr/xmgr file
-of efree.xvg Output xvgr/xmgr file
-g anadock.log Output Log file

Other options
-h bool no Print help info and quit

-nice int 0 Set the nicelevel
-xvgr bool yes Add specific codes (legends etc.) in the output xvg files for the xmgrace

program
-free bool no Use Free energy estimate from autodock for sorting the classes
-rms bool yes Cluster on RMS or distance

-cutoff real 0.2 Maximum RMSD/distance for belonging to the same cluster

D.3 do dssp

do dssp reads a trajectory file and computes the secondary structure for each time frame calling the dssp
program. If you do not have the dssp program, get it. do dssp assumes that the dssp executable is
/usr/local/bin/dssp. If this is not the case, then you should set an environment variable DSSP pointing
to the dssp executable, e.g.:

setenv DSSP /opt/dssp/bin/dssp

The structure assignment for each residue and time is written to an .xpm matrix file. This file can be
visualized with for instance xv and can be converted to postscript with xpm2ps. The number of residues
with each secondary structure type and the total secondary structure (-sss) count as a function of time are
also written to file (-sc).

Solvent accessible surface (SAS) per residue can be calculated, both in absolute values (A2) and in fractions
of the maximal accessible surface of a residue. The maximal accessible surface is defined as the accessible
surface of a residue in a chain of glycines. Note that the program g sas can also compute SAS and that is
more efficient.

Finally, this program can dump the secondary structure in a special file ssdump.dat for usage in the
program g chi. Together these two programs can be used to analyze dihedral properties as a function of
secondary structure type.

D.4. editconf 213

Files
-f traj.xtc Input Trajectory: xtc trr trj gro g96 pdb cpt
-s topol.tpr Input Structure+mass(db): tpr tpb tpa gro g96 pdb
-n index.ndx Input, Opt. Index file

-ssdump ssdump.dat Output, Opt. Generic data file
-map ss.map Input, Lib. File that maps matrix data to colors
-o ss.xpm Output X PixMap compatible matrix file

-sc scount.xvg Output xvgr/xmgr file
-a area.xpm Output, Opt. X PixMap compatible matrix file

-ta totarea.xvg Output, Opt. xvgr/xmgr file
-aa averarea.xvg Output, Opt. xvgr/xmgr file

Other options
-h bool no Print help info and quit

-nice int 19 Set the nicelevel
-b time 0 First frame (ps) to read from trajectory
-e time 0 Last frame (ps) to read from trajectory

-dt time 0 Only use frame when t MOD dt = first time (ps)
-tu enum ps Time unit: ps, fs, ns, us, ms or s
-w bool no View output xvg, xpm, eps and pdb files

-xvgr bool yes Add specific codes (legends etc.) in the output xvg files for the xmgrace
program

-sss string HEBT Secondary structures for structure count

D.4 editconf

editconf converts generic structure format to .gro, .g96 or .pdb.

The box can be modified with options -box, -d and -angles. Both -box and -d will center the system
in the box, unless -noc is used.

Option -bt determines the box type: triclinic is a triclinic box, cubic is a rectangular box with all
sides equal dodecahedron represents a rhombic dodecahedron and octahedron is a truncated octa-
hedron. The last two are special cases of a triclinic box. The length of the three box vectors of the truncated
octahedron is the shortest distance between two opposite hexagons. The volume of a dodecahedron is 0.71
and that of a truncated octahedron is 0.77 of that of a cubic box with the same periodic image distance.

Option -box requires only one value for a cubic box, dodecahedron and a truncated octahedron.

With -d and a triclinic box the size of the system in the x, y and z directions is used. With -d and
cubic, dodecahedron or octahedron boxes, the dimensions are set to the diameter of the system
(largest distance between atoms) plus twice the specified distance.

Option -angles is only meaningful with option -box and a triclinic box and can not be used with option
-d.

When -n or -ndef is set, a group can be selected for calculating the size and the geometric center, other-
wise the whole system is used.

-rotate rotates the coordinates and velocities.

-princ aligns the principal axes of the system along the coordinate axes, this may allow you to decrease
the box volume, but beware that molecules can rotate significantly in a nanosecond.

Scaling is applied before any of the other operations are performed. Boxes and coordinates can be scaled
to give a certain density (option -density). Note that this may be inaccurate in case a gro file is given as

214 Appendix D. Manual Pages

input. A special feature of the scaling option, when the factor -1 is given in one dimension, one obtains a
mirror image, mirrored in one of the plains, when one uses -1 in three dimensions a point-mirror image is
obtained.

Groups are selected after all operations have been applied.

Periodicity can be removed in a crude manner. It is important that the box sizes at the bottom of your input
file are correct when the periodicity is to be removed.

When writing .pdb files, B-factors can be added with the -bf option. B-factors are read from a file with
with following format: first line states number of entries in the file, next lines state an index followed by a
B-factor. The B-factors will be attached per residue unless an index is larger than the number of residues
or unless the -atom option is set. Obviously, any type of numeric data can be added instead of B-factors.
-legend will produce a row of CA atoms with B-factors ranging from the minimum to the maximum
value found, effectively making a legend for viewing.

With the option -mead a special pdb (pqr) file for the MEAD electrostatics program (Poisson-Boltzmann
solver) can be made. A further prerequisite is that the input file is a run input file. The B-factor field is then
filled with the Van der Waals radius of the atoms while the occupancy field will hold the charge.

The option -grasp is similar, but it puts the charges in the B-factor and the radius in the occupancy.

Finally with option -label editconf can add a chain identifier to a pdb file, which can be useful for
analysis with e.g. rasmol.

To convert a truncated octrahedron file produced by a package which uses a cubic box with the corners cut
off (such as Gromos) use:
editconf -f <in> -rotate 0 45 35.264 -bt o -box <veclen> -o <out>
where veclen is the size of the cubic box times sqrt(3)/2.

Files
-f conf.gro Input Structure file: gro g96 pdb tpr tpb tpa
-n index.ndx Input, Opt. Index file
-o out.gro Output, Opt. Structure file: gro g96 pdb

-mead mead.pqr Output, Opt. Coordinate file for MEAD
-bf bfact.dat Input, Opt. Generic data file

Other options
-h bool no Print help info and quit

-nice int 0 Set the nicelevel
-w bool no View output xvg, xpm, eps and pdb files

-ndef bool no Choose output from default index groups
-bt enum

triclinic Box type for -box and -d: triclinic, cubic, dodecahedron or
octahedron

-box vector 0 0 0 Box vector lengths (a,b,c)
-angles vector90 90 90 Angles between the box vectors (bc,ac,ab)

-d real 0 Distance between the solute and the box
-c bool no Center molecule in box (implied by -box and -d)

-center vector 0 0 0 Coordinates of geometrical center
-translate vector 0 0 0 Translation

-rotate vector 0 0 0 Rotation around the X, Y and Z axes in degrees
-princ bool no Orient molecule(s) along their principal axes
-scale vector 1 1 1 Scaling factor

-density real 1000 Density (g/l) of the output box achieved by scaling
-pbc bool no Remove the periodicity (make molecule whole again)

-grasp bool no Store the charge of the atom in the B-factor field and the radius of the
atom in the occupancy field

D.5. eneconv 215

-rvdw real 0.12 Default Van der Waals radius (in nm) if one can not be found in the
database or if no parameters are present in the topology file

-sig56 real 0 Use rmin/2 (minimum in the Van der Waals potential) rather than sigma/2
-vdwread bool no Read the Van der Waals radii from the file vdwradii.dat rather than com-

puting the radii based on the force field
-atom bool no Force B-factor attachment per atom

-legend bool no Make B-factor legend
-label string A Add chain label for all residues

• For complex molecules, the periodicity removal routine may break down, in that case you can use
trjconv

D.5 eneconv

With multiple files specified for the -f option:
Concatenates several energy files in sorted order. In case of double time frames the one in the later file is
used. By specifying -settime you will be asked for the start time of each file. The input files are taken
from the command line, such that the command eneconv -o fixed.edr *.edr should do the trick.

With one file specified for -f:
Reads one energy file and writes another, applying the -dt, -offset, -t0 and -settime options and
converting to a different format if necessary (indicated by file extentions).

-settime is applied first, then -dt/-offset followed by -b and -e to select which frames to write.

Files
-f ener.edr Input, Mult. Energy file: edr ene
-o fixed.edr Output Energy file: edr ene

Other options
-h bool no Print help info and quit

-nice int 19 Set the nicelevel
-b real -1 First time to use
-e real -1 Last time to use

-dt real 0 Only write out frame when t MOD dt = offset
-offset real 0 Time offset for -dt option

-settime bool no Change starting time interactively
-sort bool yes Sort energy files (not frames)

-scalefac real 1 Multiply energy component by this factor
-error bool yes Stop on errors in the file

• When combining trajectories the sigma and E2 (necessary for statistics) are not updated correctly.
Only the actual energy is correct. One thus has to compute statistics in another way.

D.6 g anaeig

g anaeig analyzes eigenvectors. The eigenvectors can be of a covariance matrix (g covar) or of a
Normal Modes anaysis (g nmeig).

When a trajectory is projected on eigenvectors, all structures are fitted to the structure in the eigenvector
file, if present, otherwise to the structure in the structure file. When no run input file is supplied, periodicity

216 Appendix D. Manual Pages

will not be taken into account. Most analyses are performed on eigenvectors -first to -last, but when
-first is set to -1 you will be prompted for a selection.

-comp: plot the vector components per atom of eigenvectors -first to -last.

-rmsf: plot the RMS fluctuation per atom of eigenvectors -first to -last (requires -eig).

-proj: calculate projections of a trajectory on eigenvectors -first to -last. The projections of a
trajectory on the eigenvectors of its covariance matrix are called principal components (pc’s). It is often
useful to check the cosine content the pc’s, since the pc’s of random diffusion are cosines with the number
of periods equal to half the pc index. The cosine content of the pc’s can be calculated with the program
g analyze.

-2d: calculate a 2d projection of a trajectory on eigenvectors -first and -last.

-3d: calculate a 3d projection of a trajectory on the first three selected eigenvectors.

-filt: filter the trajectory to show only the motion along eigenvectors -first to -last.

-extr: calculate the two extreme projections along a trajectory on the average structure and interpolate
-nframes frames between them, or set your own extremes with -max. The eigenvector -first will be
written unless -first and -last have been set explicitly, in which case all eigenvectors will be written
to separate files. Chain identifiers will be added when writing a .pdb file with two or three structures (you
can use rasmol -nmrpdb to view such a pdb file).

Overlap calculations between covariance analysis:
NOTE: the analysis should use the same fitting structure

-over: calculate the subspace overlap of the eigenvectors in file -v2with eigenvectors -first to -last
in file -v.

-inpr: calculate a matrix of inner-products between eigenvectors in files -v and -v2. All eigenvectors
of both files will be used unless -first and -last have been set explicitly.

When -v, -eig, -v2 and -eig2 are given, a single number for the overlap between the covariance ma-
trices is generated. The formulas are:
difference = sqrt(tr((sqrt(M1) - sqrt(M2))2))
normalized overlap = 1 - difference/sqrt(tr(M1) + tr(M2))
shape overlap = 1 - sqrt(tr((sqrt(M1/tr(M1)) - sqrt(M2/tr(M2)))2))
where M1 and M2 are the two covariance matrices and tr is the trace of a matrix. The numbers are pro-
portional to the overlap of the square root of the fluctuations. The normalized overlap is the most useful
number, it is 1 for identical matrices and 0 when the sampled subspaces are orthogonal.

When the -entropy flag is given an entropy estimate will be computed based on the Quasiharmonic
approach and based on Schlitter’s formula.

Files
-v eigenvec.trr Input Full precision trajectory: trr trj cpt
-v2 eigenvec2.trr Input, Opt. Full precision trajectory: trr trj cpt
-f traj.xtc Input, Opt. Trajectory: xtc trr trj gro g96 pdb cpt
-s topol.tpr Input, Opt. Structure+mass(db): tpr tpb tpa gro g96 pdb
-n index.ndx Input, Opt. Index file

-eig eigenval.xvg Input, Opt. xvgr/xmgr file
-eig2 eigenval2.xvg Input, Opt. xvgr/xmgr file
-comp eigcomp.xvg Output, Opt. xvgr/xmgr file
-rmsf eigrmsf.xvg Output, Opt. xvgr/xmgr file
-proj proj.xvg Output, Opt. xvgr/xmgr file

-2d 2dproj.xvg Output, Opt. xvgr/xmgr file
-3d 3dproj.pdb Output, Opt. Structure file: gro g96 pdb

-filt filtered.xtc Output, Opt. Trajectory: xtc trr trj gro g96 pdb cpt

D.7. g analyze 217

-extr extreme.pdb Output, Opt. Trajectory: xtc trr trj gro g96 pdb cpt
-over overlap.xvg Output, Opt. xvgr/xmgr file
-inpr inprod.xpm Output, Opt. X PixMap compatible matrix file

Other options
-h bool no Print help info and quit

-nice int 19 Set the nicelevel
-b time 0 First frame (ps) to read from trajectory
-e time 0 Last frame (ps) to read from trajectory

-dt time 0 Only use frame when t MOD dt = first time (ps)
-tu enum ps Time unit: ps, fs, ns, us, ms or s
-w bool no View output xvg, xpm, eps and pdb files

-xvgr bool yes Add specific codes (legends etc.) in the output xvg files for the xmgrace
program

-first int 1 First eigenvector for analysis (-1 is select)
-last int 8 Last eigenvector for analysis (-1 is till the last)
-skip int 1 Only analyse every nr-th frame
-max real 0 Maximum for projection of the eigenvector on the average structure,

max=0 gives the extremes
-nframes int 2 Number of frames for the extremes output
-split bool no Split eigenvector projections where time is zero

-entropy bool no Compute entropy according to the Quasiharmonic formula or Schlitter’s
method.

-temp real 298.15 Temperature for entropy calculations
-nevskip int 6 Number of eigenvalues to skip when computing the entropy due to the

quasi harmonic approximation. When you do a rotational and/or transla-
tional fit prior to the covariance analysis, you get 3 or 6 eigenvalues that
are very close to zero, and which should not be taken into account when
computing the entropy.

D.7 g analyze

g analyze reads an ascii file and analyzes data sets. A line in the input file may start with a time (see option
-time) and any number of y values may follow. Multiple sets can also be read when they are seperated
by & (option -n), in this case only one y value is read from each line. All lines starting with # and @ are
skipped. All analyses can also be done for the derivative of a set (option -d).

All options, except for -av and -power assume that the points are equidistant in time.

g analyze always shows the average and standard deviation of each set. For each set it also shows the
relative deviation of the third and forth cumulant from those of a Gaussian distribution with the same
standard deviation.

Option -ac produces the autocorrelation function(s).

Option -cc plots the resemblance of set i with a cosine of i/2 periods. The formula is:
2 (int0-T y(t) cos(i pi t) dt)2 / int0-T y(t) y(t) dt
This is useful for principal components obtained from covariance analysis, since the principal components
of random diffusion are pure cosines.

Option -msd produces the mean square displacement(s).

Option -dist produces distribution plot(s).

Option -av produces the average over the sets. Error bars can be added with the option -errbar. The

218 Appendix D. Manual Pages

errorbars can represent the standard deviation, the error (assuming the points are independent) or the interval
containing 90% of the points, by discarding 5% of the points at the top and the bottom.

Option -ee produces error estimates using block averaging. A set is divided in a number of blocks and
averages are calculated for each block. The error for the total average is calculated from the variance
between averages of the m blocks B i as follows: error2 = Sum (B i -)2 / (m*(m-1)). These errors are
plotted as a function of the block size. Also an analytical block average curve is plotted, assuming that the
autocorrelation is a sum of two exponentials. The analytical curve for the block average is:
f(t) = sigma sqrt(2/T (a (tau1 ((exp(-t/tau1) - 1) tau1/t + 1)) +
(1-a) (tau2 ((exp(-t/tau2) - 1) tau2/t + 1)))),
where T is the total time. a, tau1 and tau2 are obtained by fitting f2(t) to error2. When the actual block
average is very close to the analytical curve, the error is sigma*sqrt(2/T (a tau1 + (1-a) tau2)). The complete
derivation is given in B. Hess, J. Chem. Phys. 116:209-217, 2002.

Option -filter prints the RMS high-frequency fluctuation of each set and over all sets with respect to a
filtered average. The filter is proportional to cos(pi t/len) where t goes from -len/2 to len/2. len is supplied
with the option -filter. This filter reduces oscillations with period len/2 and len by a factor of 0.79 and
0.33 respectively.

Option -g fits the data to the function given with option -fitfn.

Option -power fits the data to b tâ, which is accomplished by fitting to a t + b on log-log scale. All points
after the first zero or negative value are ignored.

Option -luzar performs a Luzar & Chandler kinetics analysis on output from g hbond. The input file
can be taken directly from g hbond -ac, and then the same result should be produced.
Files

-f graph.xvg Input xvgr/xmgr file
-ac autocorr.xvg Output, Opt. xvgr/xmgr file

-msd msd.xvg Output, Opt. xvgr/xmgr file
-cc coscont.xvg Output, Opt. xvgr/xmgr file

-dist distr.xvg Output, Opt. xvgr/xmgr file
-av average.xvg Output, Opt. xvgr/xmgr file
-ee errest.xvg Output, Opt. xvgr/xmgr file
-g fitlog.log Output, Opt. Log file

Other options
-h bool no Print help info and quit

-nice int 0 Set the nicelevel
-w bool no View output xvg, xpm, eps and pdb files

-xvgr bool yes Add specific codes (legends etc.) in the output xvg files for the xmgrace
program

-time bool yes Expect a time in the input
-b real -1 First time to read from set
-e real -1 Last time to read from set
-n int 1 Read # sets seperated by &
-d bool no Use the derivative
-bw real 0.1 Binwidth for the distribution

-errbar enum none Error bars for -av: none, stddev, error or 90
-integrate bool no Integrate data function(s) numerically using trapezium rule
-aver start real 0 Start averaging the integral from here

-xydy bool no Interpret second data set as error in the y values for integrating
-regression bool no Perform a linear regression analysis on the data

-luzar bool no Do a Luzar and Chandler analysis on a correlation function and related
as produced by g hbond. When in addition the -xydy flag is given the
second and fourth column will be interpreted as errors in c(t) and n(t).

D.8. g angle 219

-temp real 298.15 Temperature for the Luzar hydrogen bonding kinetics analysis
-fitstart real 1 Time (ps) from which to start fitting the correlation functions in order

to obtain the forward and backward rate constants for HB breaking and
formation

-smooth real -1 If>= 0, the tail of the ACF will be smoothed by fitting it to an exponential
function: y = A exp(-x/tau)

-filter real 0 Print the high-frequency fluctuation after filtering with a cosine filter of
length #

-power bool no Fit data to: b tâ
-subav bool yes Subtract the average before autocorrelating
-oneacf bool no Calculate one ACF over all sets
-acflen int -1 Length of the ACF, default is half the number of frames

-normalize bool yes Normalize ACF
-P enum 0 Order of Legendre polynomial for ACF (0 indicates none): 0, 1, 2 or 3

-fitfn enum none Fit function: none, exp, aexp, exp exp, vac, exp5, exp7 or exp9
-ncskip int 0 Skip N points in the output file of correlation functions

-beginfit real 0 Time where to begin the exponential fit of the correlation function
-endfit real -1 Time where to end the exponential fit of the correlation function, -1 is till

the end

D.8 g angle

g angle computes the angle distribution for a number of angles or dihedrals. This way you can check
whether your simulation is correct. With option -ov you can plot the average angle of a group of angles as
a function of time. With the -all option the first graph is the average, the rest are the individual angles.

With the -of option g angle also calculates the fraction of trans dihedrals (only for dihedrals) as function of
time, but this is probably only fun for a selected few.

With option -oc a dihedral correlation function is calculated.

It should be noted that the indexfile should contain atom-triples for angles or atom-quadruplets for dihedrals.
If this is not the case, the program will crash.

With option -or a trajectory file is dumped containing cos andsin of selected dihedral angles which subse-
quently can be used as input for a PCA analysis using g covar.

Files
-f traj.xtc Input Trajectory: xtc trr trj gro g96 pdb cpt
-n angle.ndx Input Index file

-od angdist.xvg Output xvgr/xmgr file
-ov angaver.xvg Output, Opt. xvgr/xmgr file
-of dihfrac.xvg Output, Opt. xvgr/xmgr file
-ot dihtrans.xvg Output, Opt. xvgr/xmgr file
-oh trhisto.xvg Output, Opt. xvgr/xmgr file
-oc dihcorr.xvg Output, Opt. xvgr/xmgr file
-or traj.trr Output, Opt. Trajectory in portable xdr format

Other options
-h bool no Print help info and quit

-nice int 19 Set the nicelevel
-b time 0 First frame (ps) to read from trajectory
-e time 0 Last frame (ps) to read from trajectory

-dt time 0 Only use frame when t MOD dt = first time (ps)

220 Appendix D. Manual Pages

-w bool no View output xvg, xpm, eps and pdb files
-xvgr bool yes Add specific codes (legends etc.) in the output xvg files for the xmgrace

program
-type enum angle Type of angle to analyse: angle, dihedral, improper or

ryckaert-bellemans
-all bool no Plot all angles separately in the averages file, in the order of appearance

in the index file.
-binwidth real 1 binwidth (degrees) for calculating the distribution
-periodic bool yes Print dihedral angles modulo 360 degrees
-chandler bool no Use Chandler correlation function (N[trans] = 1, N[gauche] = 0) rather

than cosine correlation function. Trans is defined as phi < -60 or phi >
60.

-avercorr bool no Average the correlation functions for the individual angles/dihedrals
-acflen int -1 Length of the ACF, default is half the number of frames

-normalize bool yes Normalize ACF
-P enum 0 Order of Legendre polynomial for ACF (0 indicates none): 0, 1, 2 or 3

-fitfn enum none Fit function: none, exp, aexp, exp exp, vac, exp5, exp7 or exp9
-ncskip int 0 Skip N points in the output file of correlation functions

-beginfit real 0 Time where to begin the exponential fit of the correlation function
-endfit real -1 Time where to end the exponential fit of the correlation function, -1 is till

the end

• Counting transitions only works for dihedrals with multiplicity 3

D.9 g bond

g bond makes a distribution of bond lengths. If all is well a gaussian distribution should be made when
using a harmonic potential. bonds are read from a single group in the index file in order i1-j1 i2-j2 thru
in-jn.

-tol gives the half-width of the distribution as a fraction of the bondlength (-blen). That means, for a
bond of 0.2 a tol of 0.1 gives a distribution from 0.18 to 0.22.

Option -d plots all the distances as a function of time. This requires a structure file for the atom and residue
names in the output. If however the option -averdist is given (as well or separately) the average bond
length is plotted instead.

Files
-f traj.xtc Input Trajectory: xtc trr trj gro g96 pdb cpt
-n index.ndx Input Index file
-s topol.tpr Input, Opt. Structure+mass(db): tpr tpb tpa gro g96 pdb
-o bonds.xvg Output xvgr/xmgr file
-l bonds.log Output, Opt. Log file
-d distance.xvg Output, Opt. xvgr/xmgr file

Other options
-h bool no Print help info and quit

-nice int 19 Set the nicelevel
-b time 0 First frame (ps) to read from trajectory
-e time 0 Last frame (ps) to read from trajectory
-dt time 0 Only use frame when t MOD dt = first time (ps)
-w bool no View output xvg, xpm, eps and pdb files

-xvgr bool yes Add specific codes (legends etc.) in the output xvg files for the xmgrace
program

D.10. g bundle 221

-blen real -1 Bond length. By default length of first bond
-tol real 0.1 Half width of distribution as fraction of blen

-aver bool yes Average bond length distributions
-averdist bool yes Average distances (turns on -d)

• It should be possible to get bond information from the topology.

D.10 g bundle

g bundle analyzes bundles of axes. The axes can be for instance helix axes. The program reads two index
groups and divides both of them in -na parts. The centers of mass of these parts define the tops and bottoms
of the axes. Several quantities are written to file: the axis length, the distance and the z-shift of the axis
mid-points with respect to the average center of all axes, the total tilt, the radial tilt and the lateral tilt with
respect to the average axis.

With options -ok, -okr and -okl the total, radial and lateral kinks of the axes are plotted. An extra index
group of kink atoms is required, which is also divided into -na parts. The kink angle is defined as the angle
between the kink-top and the bottom-kink vectors.

With option -oa the top, mid (or kink when -ok is set) and bottom points of each axis are written to a
pdb file each frame. The residue numbers correspond to the axis numbers. When viewing this file with
rasmol, use the command line option -nmrpdb, and type set axis true to display the reference
axis.

Files
-f traj.xtc Input Trajectory: xtc trr trj gro g96 pdb cpt
-s topol.tpr Input Structure+mass(db): tpr tpb tpa gro g96 pdb
-n index.ndx Input, Opt. Index file

-ol bun len.xvg Output xvgr/xmgr file
-od bun dist.xvg Output xvgr/xmgr file
-oz bun z.xvg Output xvgr/xmgr file
-ot bun tilt.xvg Output xvgr/xmgr file
-otr bun tiltr.xvg Output xvgr/xmgr file
-otl bun tiltl.xvg Output xvgr/xmgr file
-ok bun kink.xvg Output, Opt. xvgr/xmgr file
-okr bun kinkr.xvg Output, Opt. xvgr/xmgr file
-okl bun kinkl.xvg Output, Opt. xvgr/xmgr file
-oa axes.pdb Output, Opt. Protein data bank file

Other options
-h bool no Print help info and quit

-nice int 19 Set the nicelevel
-b time 0 First frame (ps) to read from trajectory
-e time 0 Last frame (ps) to read from trajectory

-dt time 0 Only use frame when t MOD dt = first time (ps)
-tu enum ps Time unit: ps, fs, ns, us, ms or s

-xvgr bool yes Add specific codes (legends etc.) in the output xvg files for the xmgrace
program

-na int 0 Number of axes
-z bool no Use the Z-axis as reference iso the average axis

222 Appendix D. Manual Pages

D.11 g chi

g chi computes phi, psi, omega and chi dihedrals for all your amino acid backbone and sidechains. It
can compute dihedral angle as a function of time, and as histogram distributions. The distributions (histo-
(dihedral)(RESIDUE).xvg) are cumulative over all residues of each type.

If option -corr is given, the program will calculate dihedral autocorrelation functions. The function used
is C(t) = < cos(chi(tau)) cos(chi(tau+t)) >. The use of cosines rather than angles themselves, resolves
the problem of periodicity. (Van der Spoel & Berendsen (1997), Biophys. J. 72, 2032-2041). Separate
files for each dihedral of each residue (corr(dihedral)(RESIDUE)(nresnr).xvg) are output, as well as a file
containing the information for all residues (argument of -corr).

With option -all, the angles themselves as a function of time for each residue are printed to separate files
(dihedral)(RESIDUE)(nresnr).xvg. These can be in radians or degrees.

A log file (argument -g) is also written. This contains
(a) information about the number of residues of each type.
(b) The NMR 3J coupling constants from the Karplus equation.
(c) a table for each residue of the number of transitions between rotamers per nanosecond, and the order
parameter S2 of each dihedral.
(d) a table for each residue of the rotamer occupancy.
All rotamers are taken as 3-fold, except for omegas and chi-dihedrals to planar groups (i.e. chi2 of aromatics
asp and asn, chi3 of glu and gln, and chi4 of arg), which are 2-fold. ”rotamer 0” means that the dihedral
was not in the core region of each rotamer. The width of the core region can be set with -core rotamer

The S2 order parameters are also output to an xvg file (argument -o) and optionally as a pdb file with the
S2 values as B-factor (argument -p). The total number of rotamer transitions per timestep (argument -ot),
the number of transitions per rotamer (argument -rt), and the 3J couplings (argument -jc), can also be
written to .xvg files.

If -chi prod is set (and maxchi > 0), cumulative rotamers, e.g. 1+9(chi1-1)+3(chi2-1)+(chi3-1) (if
the residue has three 3-fold dihedrals and maxchi >= 3) are calculated. As before, if any dihedral is not
in the core region, the rotamer is taken to be 0. The occupancies of these cumulative rotamers (starting
with rotamer 0) are written to the file that is the argument of -cp, and if the -all flag is given, the
rotamers as functions of time are written to chiproduct(RESIDUE)(nresnr).xvg and their occupancies to
histo-chiproduct(RESIDUE)(nresnr).xvg.

The option -r generates a contour plot of the average omega angle as a function of the phi and psi angles,
that is, in a Ramachandran plot the average omega angle is plotted using color coding.

Files
-s conf.gro Input Structure file: gro g96 pdb tpr tpb tpa
-f traj.xtc Input Trajectory: xtc trr trj gro g96 pdb cpt
-o order.xvg Output xvgr/xmgr file
-p order.pdb Output, Opt. Protein data bank file
-ss ssdump.dat Input, Opt. Generic data file
-jc Jcoupling.xvg Output xvgr/xmgr file

-corr dihcorr.xvg Output, Opt. xvgr/xmgr file
-g chi.log Output Log file

-ot dihtrans.xvg Output, Opt. xvgr/xmgr file
-oh trhisto.xvg Output, Opt. xvgr/xmgr file
-rt restrans.xvg Output, Opt. xvgr/xmgr file
-cpchiprodhisto.xvg Output, Opt. xvgr/xmgr file

Other options
-h bool no Print help info and quit

D.11. g chi 223

-nice int 19 Set the nicelevel
-b time 0 First frame (ps) to read from trajectory
-e time 0 Last frame (ps) to read from trajectory

-dt time 0 Only use frame when t MOD dt = first time (ps)
-w bool no View output xvg, xpm, eps and pdb files

-xvgr bool yes Add specific codes (legends etc.) in the output xvg files for the xmgrace
program

-r0 int 1 starting residue
-phi bool no Output for Phi dihedral angles
-psi bool no Output for Psi dihedral angles

-omega bool no Output for Omega dihedrals (peptide bonds)
-rama bool no Generate Phi/Psi and Chi1/Chi2 ramachandran plots
-viol bool no Write a file that gives 0 or 1 for violated Ramachandran angles

-periodic bool yes Print dihedral angles modulo 360 degrees
-all bool no Output separate files for every dihedral.
-rad bool no in angle vs time files, use radians rather than degrees.

-shift bool no Compute chemical shifts from Phi/Psi angles
-binwidth int 1 bin width for histograms (degrees)

-core rotamer real 0.5 only the central -core rotamer*(360/multiplicity) belongs to each rotamer
(the rest is assigned to rotamer 0)

-maxchi enum 0 calculate first ndih Chi dihedrals: 0, 1, 2, 3, 4, 5 or 6
-normhisto bool yes Normalize histograms
-ramomega bool no compute average omega as a function of phi/psi and plot it in an xpm plot

-bfact real -1 B-factor value for pdb file for atoms with no calculated dihedral order
parameter

-chi prod bool no compute a single cumulative rotamer for each residue
-HChi bool no Include dihedrals to sidechain hydrogens
-bmax real 0 Maximum B-factor on any of the atoms that make up a dihedral, for the

dihedral angle to be considere in the statistics. Applies to database work
where a number of X-Ray structures is analyzed. -bmax <= 0 means no
limit.

-acflen int -1 Length of the ACF, default is half the number of frames
-normalize bool yes Normalize ACF

-P enum 0 Order of Legendre polynomial for ACF (0 indicates none): 0, 1, 2 or 3
-fitfn enum none Fit function: none, exp, aexp, exp exp, vac, exp5, exp7 or exp9
-ncskip int 0 Skip N points in the output file of correlation functions

-beginfit real 0 Time where to begin the exponential fit of the correlation function
-endfit real -1 Time where to end the exponential fit of the correlation function, -1 is till

the end

• Produces MANY output files (up to about 4 times the number of residues in the protein, twice that if
autocorrelation functions are calculated). Typically several hundred files are output.

• Phi and psi dihedrals are calculated in a non-standard way, using H-N-CA-C for phi instead of C(-)-
N-CA-C, and N-CA-C-O for psi instead of N-CA-C-N(+). This causes (usually small) discrepancies
with the output of other tools like g rama.

• -r0 option does not work properly

• Rotamers with multiplicity 2 are printed in chi.log as if they had multiplicity 3, with the 3rd (g(+))
always having probability 0

224 Appendix D. Manual Pages

D.12 g cluster

g cluster can cluster structures with several different methods. Distances between structures can be deter-
mined from a trajectory or read from an XPM matrix file with the -dm option. RMS deviation after fitting
or RMS deviation of atom-pair distances can be used to define the distance between structures.

single linkage: add a structure to a cluster when its distance to any element of the cluster is less than
cutoff.

Jarvis Patrick: add a structure to a cluster when this structure and a structure in the cluster have each other
as neighbors and they have a least P neighbors in common. The neighbors of a structure are the M closest
structures or all structures within cutoff.

Monte Carlo: reorder the RMSD matrix using Monte Carlo.

diagonalization: diagonalize the RMSD matrix.

gromos: use algorithm as described in Daura et al. (Angew. Chem. Int. Ed. 1999, 38, pp 236-240). Count
number of neighbors using cut-off, take structure with largest number of neighbors with all its neighbors as
cluster and eleminate it from the pool of clusters. Repeat for remaining structures in pool.

When the clustering algorithm assigns each structure to exactly one cluster (single linkage, Jarvis Patrick
and gromos) and a trajectory file is supplied, the structure with the smallest average distance to the others
or the average structure or all structures for each cluster will be written to a trajectory file. When writing all
structures, separate numbered files are made for each cluster.

Two output files are always written:
-o writes the RMSD values in the upper left half of the matrix and a graphical depiction of the clusters in
the lower right half When -minstruct = 1 the graphical depiction is black when two structures are in
the same cluster. When -minstruct > 1 different colors will be used for each cluster.
-g writes information on the options used and a detailed list of all clusters and their members.

Additionally, a number of optional output files can be written:
-dist writes the RMSD distribution.
-ev writes the eigenvectors of the RMSD matrix diagonalization.
-sz writes the cluster sizes.
-tr writes a matrix of the number transitions between cluster pairs.
-ntr writes the total number of transitions to or from each cluster.
-clid writes the cluster number as a function of time.
-cl writes average (with option -av) or central structure of each cluster or writes numbered files with
cluster members for a selected set of clusters (with option -wcl, depends on -nst and -rmsmin).

Files
-f traj.xtc Input, Opt. Trajectory: xtc trr trj gro g96 pdb cpt
-s topol.tpr Input, Opt. Structure+mass(db): tpr tpb tpa gro g96 pdb
-n index.ndx Input, Opt. Index file
-dm rmsd.xpm Input, Opt. X PixMap compatible matrix file
-o rmsd-clust.xpm Output X PixMap compatible matrix file
-g cluster.log Output Log file

-dist rmsd-dist.xvg Output, Opt. xvgr/xmgr file
-ev rmsd-eig.xvg Output, Opt. xvgr/xmgr file
-sz clust-size.xvg Output, Opt. xvgr/xmgr file
-trclust-trans.xpm Output, Opt. X PixMap compatible matrix file

-ntrclust-trans.xvg Output, Opt. xvgr/xmgr file
-clid clust-id.xvg Output, Opt. xvgr/xmgr file

-cl clusters.pdb Output, Opt. Trajectory: xtc trr trj gro g96 pdb cpt

D.13. g clustsize 225

Other options
-h bool no Print help info and quit

-nice int 19 Set the nicelevel
-b time 0 First frame (ps) to read from trajectory
-e time 0 Last frame (ps) to read from trajectory

-dt time 0 Only use frame when t MOD dt = first time (ps)
-tu enum ps Time unit: ps, fs, ns, us, ms or s
-w bool no View output xvg, xpm, eps and pdb files

-xvgr bool yes Add specific codes (legends etc.) in the output xvg files for the xmgrace
program

-dista bool no Use RMSD of distances instead of RMS deviation
-nlevels int 40 Discretize RMSD matrix in # levels
-cutoff real 0.1 RMSD cut-off (nm) for two structures to be neighbor

-fit bool yes Use least squares fitting before RMSD calculation
-max real -1 Maximum level in RMSD matrix

-skip int 1 Only analyze every nr-th frame
-av bool no Write average iso middle structure for each cluster
-wcl int 0 Write all structures for first # clusters to numbered files
-nst int 1 Only write all structures if more than # per cluster

-rmsmin real 0 minimum rms difference with rest of cluster for writing structures
-method enum linkage Method for cluster determination: linkage, jarvis-patrick,

monte-carlo, diagonalization or gromos
-minstruct int 1 Minimum number of structures in cluster for coloring in the xpm file

-binary bool no Treat the RMSD matrix as consisting of 0 and 1, where the cut-off is
given by -cutoff

-M int 10 Number of nearest neighbors considered for Jarvis-Patrick algorithm, 0
is use cutoff

-P int 3 Number of identical nearest neighbors required to form a cluster
-seed int 1993 Random number seed for Monte Carlo clustering algorithm
-niter int 10000 Number of iterations for MC

-kT real 0.001 Boltzmann weighting factor for Monte Carlo optimization (zero turns off
uphill steps)

D.13 g clustsize

This program computes the size distributions of molecular/atomic clusters in the gas phase. The output is
given in the form of a XPM file. The total number of clusters is written to a XVG file.

When the -mol option is given clusters will be made out of molecules rather than atoms, which allows clus-
tering of large molecules. In this case an index file would still contain atom numbers or your calculcation
will die with a SEGV.

When velocities are present in your trajectory, the temperature of the largest cluster will be printed in a
separate xvg file assuming that the particles are free to move. If you are using constraints, please correct
the temperature. For instance water simulated with SHAKE or SETTLE will yield a temperature that is 1.5
times too low. You can compensate for this with the -ndf option. Remember to take the removal of center
of mass motion into account.

The -mc option will produce an index file containing the atom numbers of the largest cluster.

Files
-f traj.xtc Input Trajectory: xtc trr trj gro g96 pdb cpt
-s topol.tpr Input, Opt. Portable xdr run input file

226 Appendix D. Manual Pages

-n index.ndx Input, Opt. Index file
-o csize.xpm Output X PixMap compatible matrix file

-ow csizew.xpm Output X PixMap compatible matrix file
-nc nclust.xvg Output xvgr/xmgr file
-mc maxclust.xvg Output xvgr/xmgr file
-ac avclust.xvg Output xvgr/xmgr file
-hchisto-clust.xvg Output xvgr/xmgr file

-temp temp.xvg Output, Opt. xvgr/xmgr file
-mcn maxclust.ndx Output, Opt. Index file

Other options
-h bool no Print help info and quit

-nice int 19 Set the nicelevel
-b time 0 First frame (ps) to read from trajectory
-e time 0 Last frame (ps) to read from trajectory
-dt time 0 Only use frame when t MOD dt = first time (ps)
-tu enum ps Time unit: ps, fs, ns, us, ms or s
-w bool no View output xvg, xpm, eps and pdb files

-xvgr bool yes Add specific codes (legends etc.) in the output xvg files for the xmgrace
program

-cut real 0.35 Largest distance (nm) to be considered in a cluster
-mol bool no Cluster molecules rather than atoms (needs tpr file)
-pbc bool yes Use periodic boundary conditions

-nskip int 0 Number of frames to skip between writing
-nlevels int 20 Number of levels of grey in xpm output

-ndf int -1 Number of degrees of freedom of the entire system for temperature cal-
culation. If not set the number of atoms times three is used.

-rgblo vector 1 1 0 RGB values for the color of the lowest occupied cluster size
-rgbhi vector 0 0 1 RGB values for the color of the highest occupied cluster size

D.14 g confrms

g confrms computes the root mean square deviation (RMSD) of two structures after LSQ fitting the second
structure on the first one. The two structures do NOT need to have the same number of atoms, only the
two index groups used for the fit need to be identical. With -name only matching atom names from the
selected groups will be used for the fit and RMSD calculation. This can be useful when comparing mutants
of a protein.

The superimposed structures are written to file. In a .pdb file the two structures will be written as separate
models (use rasmol -nmrpdb). Also in a .pdb file, B-factors calculated from the atomic MSD values
can be written with -bfac.

Files
-f1 conf1.gro Input Structure+mass(db): tpr tpb tpa gro g96 pdb
-f2 conf2.gro Input Structure file: gro g96 pdb tpr tpb tpa
-o fit.pdb Output Structure file: gro g96 pdb
-n1 fit1.ndx Input, Opt. Index file
-n2 fit2.ndx Input, Opt. Index file
-no match.ndx Output, Opt. Index file

Other options
-h bool no Print help info and quit

D.15. g covar 227

-nice int 19 Set the nicelevel
-w bool no View output xvg, xpm, eps and pdb files

-one bool no Only write the fitted structure to file
-mw bool yes Mass-weighted fitting and RMSD
-pbc bool no Try to make molecules whole again
-fit bool yes Do least squares superposition of the target structure to the reference

-name bool no Only compare matching atom names
-label bool no Added chain labels A for first and B for second structure
-bfac bool no Output B-factors from atomic MSD values

D.15 g covar

g covar calculates and diagonalizes the (mass-weighted) covariance matrix. All structures are fitted to
the structure in the structure file. When this is not a run input file periodicity will not be taken into account.
When the fit and analysis groups are identical and the analysis is non mass-weighted, the fit will also be
non mass-weighted.

The eigenvectors are written to a trajectory file (-v). When the same atoms are used for the fit and the
covariance analysis, the reference structure for the fit is written first with t=-1. The average (or reference
when -ref is used) structure is written with t=0, the eigenvectors are written as frames with the eigenvector
number as timestamp.

The eigenvectors can be analyzed with g anaeig.

Option -ascii writes the whole covariance matrix to an ASCII file. The order of the elements is: x1x1,
x1y1, x1z1, x1x2, ...

Option -xpm writes the whole covariance matrix to an xpm file.

Option -xpma writes the atomic covariance matrix to an xpm file, i.e. for each atom pair the sum of the
xx, yy and zz covariances is written.

Files
-f traj.xtc Input Trajectory: xtc trr trj gro g96 pdb cpt
-s topol.tpr Input Structure+mass(db): tpr tpb tpa gro g96 pdb
-n index.ndx Input, Opt. Index file
-o eigenval.xvg Output xvgr/xmgr file
-v eigenvec.trr Output Full precision trajectory: trr trj cpt

-av average.pdb Output Structure file: gro g96 pdb
-l covar.log Output Log file

-ascii covar.dat Output, Opt. Generic data file
-xpm covar.xpm Output, Opt. X PixMap compatible matrix file

-xpma covara.xpm Output, Opt. X PixMap compatible matrix file

Other options
-h bool no Print help info and quit

-nice int 19 Set the nicelevel
-b time 0 First frame (ps) to read from trajectory
-e time 0 Last frame (ps) to read from trajectory

-dt time 0 Only use frame when t MOD dt = first time (ps)
-tu enum ps Time unit: ps, fs, ns, us, ms or s

-xvgr bool yes Add specific codes (legends etc.) in the output xvg files for the xmgrace
program

-fit bool yes Fit to a reference structure

228 Appendix D. Manual Pages

-ref bool no Use the deviation from the conformation in the structure file instead of
from the average

-mwa bool no Mass-weighted covariance analysis
-last int -1 Last eigenvector to write away (-1 is till the last)
-pbc bool yes Apply corrections for periodic boundary conditions

D.16 g current

This is a tool for calculating the current autocorrelation function, the correlation of the rotational and trans-
lational dipole moment of the system, and the resulting static dielectric constant. To obtain a reasonable
result the index group has to be neutral. Furthermore the routine is capable of extracting the static conduc-
tivity from the current autocorrelation function, if velocities are given. Additionally an Einstein-Helfand fit
also allows to get the static conductivity.

The flag -caf is for the output of the current autocorrelation function and -mc writes the correlation of
the rotational and translational part of the dipole moment in the corresponding file. However this option is
only available for trajectories containing velocities.Options -sh and -tr are responsible for the averaging
and integration of the autocorrelation functions. Since averaging proceeds by shifting the starting point
through the trajectory, the shift can be modified with -sh to enable the choice of uncorrelated starting
points. Towards the end, statistical inaccuracy grows and integrating the correlation function only yields
reliable values until a certain point, depending on the number of frames. The option -tr controls the region
of the integral taken into account for calculating the static dielectric constant.

Option -temp sets the temperature required for the computation of the static dielectric constant.

Option -eps controls the dielectric constant of the surrounding medium for simulations using a Reaction
Field or dipole corrections of the Ewald summation (eps=0 corresponds to tin-foil boundary conditions).

-[no]nojump unfolds the coordinates to allow free diffusion. This is required to get a continuous trans-
lational dipole moment, required for the Einstein-Helfand fit. The resuls from the fit allow to determine
the dielectric constant for system of charged molecules. However it is also possible to extract the dielectric
constant from the fluctuations of the total dipole moment in folded coordinates. But this options has to be
used with care, since only very short time spans fulfill the approximation, that the density of the molecules
is approximately constant and the averages are already converged. To be on the safe side, the dielectric
constant should be calculated with the help of the Einstein-Helfand method for the translational part of the
dielectric constant.

Files
-s topol.tpr Input Structure+mass(db): tpr tpb tpa gro g96 pdb
-n index.ndx Input, Opt. Index file
-f traj.xtc Input Trajectory: xtc trr trj gro g96 pdb cpt
-o current.xvg Output xvgr/xmgr file

-caf caf.xvg Output, Opt. xvgr/xmgr file
-dsp dsp.xvg Output xvgr/xmgr file
-md md.xvg Output xvgr/xmgr file
-mj mj.xvg Output xvgr/xmgr file
-mc mc.xvg Output, Opt. xvgr/xmgr file

Other options
-h bool no Print help info and quit

-nice int 0 Set the nicelevel
-b time 0 First frame (ps) to read from trajectory
-e time 0 Last frame (ps) to read from trajectory
-dt time 0 Only use frame when t MOD dt = first time (ps)

D.17. g density 229

-w bool no View output xvg, xpm, eps and pdb files
-xvgr bool yes Add specific codes (legends etc.) in the output xvg files for the xmgrace

program
-sh int 1000 Shift of the frames for averaging the correlation functions and the mean-

square displacement.
-nojump bool yes Removes jumps of atoms across the box.

-eps real 0 Dielectric constant of the surrounding medium. eps=0.0 corresponds to
eps=infinity (thinfoil boundary conditions).

-bfit real 100 Begin of the fit of the straight line to the MSD of the translational fraction
of the dipole moment.

-efit real 400 End of the fit of the straight line to the MSD of the translational fraction
of the dipole moment.

-bvit real 0.5 Begin of the fit of the current autocorrelation function to a*tb̂.
-evit real 5 End of the fit of the current autocorrelation function to a*tb̂.
-tr real 0.25 Fraction of the trajectory taken into account for the integral.

-temp real 300 Temperature for calculating epsilon.

D.17 g density

Compute partial densities across the box, using an index file. Densities in kg/m3, number densities or
electron densities can be calculated. For electron densities, a file describing the number of electrons for
each type of atom should be provided using -ei. It should look like:
2
atomname = nrelectrons
atomname = nrelectrons
The first line contains the number of lines to read from the file. There should be one line for each unique
atom name in your system. The number of electrons for each atom is modified by its atomic partial charge.

Files
-f traj.xtc Input Trajectory: xtc trr trj gro g96 pdb cpt
-n index.ndx Input, Opt. Index file
-s topol.tpr Input Run input file: tpr tpb tpa

-ei electrons.dat Input, Opt. Generic data file
-o density.xvg Output xvgr/xmgr file

Other options
-h bool no Print help info and quit

-nice int 19 Set the nicelevel
-b time 0 First frame (ps) to read from trajectory
-e time 0 Last frame (ps) to read from trajectory

-dt time 0 Only use frame when t MOD dt = first time (ps)
-w bool no View output xvg, xpm, eps and pdb files

-xvgr bool yes Add specific codes (legends etc.) in the output xvg files for the xmgrace
program

-d string Z Take the normal on the membrane in direction X, Y or Z.
-sl int 50 Divide the box in #nr slices.

-dens enum mass Density: mass, number, charge or electron
-ng int 1 Number of groups to compute densities of

-symm bool no Symmetrize the density along the axis, with respect to the center. Useful
for bilayers.

230 Appendix D. Manual Pages

-center bool no Shift the center of mass along the axis to zero. This means if your axis is
Z and your box is bX, bY, bZ, the center of mass will be at bX/2, bY/2,
0.

• When calculating electron densities, atomnames are used instead of types. This is bad.

D.18 g densmap

g densmap computes 2D number-density maps. It can make planar and axial-radial density maps. The
output .xpm file can be visualized with for instance xv and can be converted to postscript with xpm2ps.

The default analysis is a 2-D number-density map for a selected group of atoms in the x-y plane. The
averaging direction can be changed with the option -aver. When -xmin and/or -xmax are set only
atoms that are within the limit(s) in the averaging direction are taken into account. The grid spacing is
set with the option -bin. When -n1 or -n2 is non-zero, the grid size is set by this option. Box size
fluctuations are properly taken into account.

When options -amax and -rmax are set, an axial-radial number-density map is made. Three groups
should be supplied, the centers of mass of the first two groups define the axis, the third defines the analysis
group. The axial direction goes from -amax to +amax, where the center is defined as the midpoint between
the centers of mass and the positive direction goes from the first to the second center of mass. The radial
direction goes from 0 to rmax or from -rmax to +rmax when the -mirror option has been set.

The normalization of the output is set with the -unit option. The default produces a true number density.
Unit nm-2 leaves out the normalization for the averaging or the angular direction. Option count produces
the count for each grid cell. When you do not want the scale in the output to go from zero to the maximum
density, you can set the maximum with the option -dmax.

Files
-f traj.xtc Input Trajectory: xtc trr trj gro g96 pdb cpt
-s topol.tpr Input, Opt. Structure+mass(db): tpr tpb tpa gro g96 pdb
-n index.ndx Input, Opt. Index file
-o densmap.xpm Output X PixMap compatible matrix file

Other options
-h bool no Print help info and quit

-nice int 19 Set the nicelevel
-b time 0 First frame (ps) to read from trajectory
-e time 0 Last frame (ps) to read from trajectory
-dt time 0 Only use frame when t MOD dt = first time (ps)
-w bool no View output xvg, xpm, eps and pdb files

-bin real 0.02 Grid size (nm)
-aver enum z The direction to average over: z, y or x
-xmin real -1 Minimum coordinate for averaging
-xmax real -1 Maximum coordinate for averaging

-n1 int 0 Number of grid cells in the first direction
-n2 int 0 Number of grid cells in the second direction

-amax real 0 Maximum axial distance from the center
-rmax real 0 Maximum radial distance

-mirror bool no Add the mirror image below the axial axis
-unit enum nm-3 Unit for the output: nm-3, nm-2 or count
-dmin real 0 Minimum density in output
-dmax real 0 Maximum density in output (0 means calculate it)

D.19. g dielectric 231

D.19 g dielectric

dielectric calculates frequency dependent dielectric constants from the autocorrelation function of the total
dipole moment in your simulation. This ACF can be generated by g dipoles. For an estimate of the error
you can run g statistics on the ACF, and use the output thus generated for this program. The functional
forms of the available functions are:

One parmeter : y = Exp[-a1 x] Two parmeters : y = a2 Exp[-a1 x] Three parmeter: y = a2 Exp[-a1 x] + (1 -
a2) Exp[-a3 x] Startvalues for the fit procedure can be given on the commandline. It is also possible to fix
parameters at their start value, use -fix with the number of the parameter you want to fix.

Three output files are generated, the first contains the ACF, an exponential fit to it with 1, 2 or 3 parameters,
and the numerical derivative of the combination data/fit. The second file contains the real and imaginary
parts of the frequency-dependent dielectric constant, the last gives a plot known as the Cole-Cole plot, in
which the imaginary component is plotted as a function of the real component. For a pure exponential
relaxation (Debye relaxation) the latter plot should be one half of a circle
Files

-f dipcorr.xvg Input xvgr/xmgr file
-d deriv.xvg Output xvgr/xmgr file
-o epsw.xvg Output xvgr/xmgr file
-c cole.xvg Output xvgr/xmgr file

Other options
-h bool no Print help info and quit

-nice int 19 Set the nicelevel
-b time 0 First frame (ps) to read from trajectory
-e time 0 Last frame (ps) to read from trajectory

-dt time 0 Only use frame when t MOD dt = first time (ps)
-w bool no View output xvg, xpm, eps and pdb files

-xvgr bool yes Add specific codes (legends etc.) in the output xvg files for the xmgrace
program

-fft bool no use fast fourier transform for correlation function
-x1 bool yes use first column as X axis rather than first data set

-eint real 5 Time were to end the integration of the data and start to use the fit
-bfit real 5 Begin time of fit
-efit real 500 End time of fit
-tail real 500 Length of function including data and tail from fit

-A real 0.5 Start value for fit parameter A
-tau1 real 10 Start value for fit parameter tau1
-tau2 real 1 Start value for fit parameter tau2
-eps0 real 80 Epsilon 0 of your liquid
-epsRF real 78.5 Epsilon of the reaction field used in your simulation. A value of 0 means

infinity.
-fix int 0 Fix parameters at their start values, A (2), tau1 (1), or tau2 (4)
-ffn enum none Fit function: none, exp, aexp, exp exp, vac, exp5, exp7 or exp9

-nsmooth int 3 Number of points for smoothing

D.20 g dih

g dih can do two things. The default is to analyze dihedral transitions by merely computing all the dihedral
angles defined in your topology for the whole trajectory. When a dihedral flips over to another minimum
an angle/time plot is made.

232 Appendix D. Manual Pages

The opther option is to discretize the dihedral space into a number of bins, and group each conformation
in dihedral space in the appropriate bin. The output is then given as a number of dihedral conformations
sorted according to occupancy.

Files
-f traj.xtc Input Trajectory: xtc trr trj gro g96 pdb cpt
-s topol.tpr Input Run input file: tpr tpb tpa
-o hello.out Output Generic output file

Other options
-h bool no Print help info and quit

-nice int 19 Set the nicelevel
-b time 0 First frame (ps) to read from trajectory
-e time 0 Last frame (ps) to read from trajectory
-dt time 0 Only use frame when t MOD dt = first time (ps)
-w bool no View output xvg, xpm, eps and pdb files
-sa bool no Perform cluster analysis in dihedral space instead of analysing dihedral

transitions.
-mult int -1 mulitiplicity for dihedral angles (by default read from topology)

D.21 g dipoles

g dipoles computes the total dipole plus fluctuations of a simulation system. From this you can compute
e.g. the dielectric constant for low dielectric media. For molecules with a net charge, the net charge is
subtracted at center of mass of the molecule.

The file Mtot.xvg contains the total dipole moment of a frame, the components as well as the norm of
the vector. The file aver.xvg contains < orMuor2 > and < orMuor >2 during the simulation. The file
dipdist.xvg contains the distribution of dipole moments during the simulation The mu max is used as the
highest value in the distribution graph.

Furthermore the dipole autocorrelation function will be computed when option -corr is used. The output
file name is given with the -c option. The correlation functions can be averaged over all molecules (mol),
plotted per molecule seperately (molsep) or it can be computed over the total dipole moment of the
simulation box (total).

Option -g produces a plot of the distance dependent Kirkwood G-factor, as well as the average cosine of
the angle between the dipoles as a function of the distance. The plot also includes gOO and hOO according
to Nymand & Linse, JCP 112 (2000) pp 6386-6395. In the same plot we also include the energy per scale
computed by taking the inner product of the dipoles divided by the distance to the third power.

EXAMPLES

g dipoles -corr mol -P1 -o dip sqr -mu 2.273 -mumax 5.0 -nofft

This will calculate the autocorrelation function of the molecular dipoles using a first order Legendre poly-
nomial of the angle of the dipole vector and itself a time t later. For this calculation 1001 frames will be
used. Further the dielectric constant will be calculated using an epsilonRF of infinity (default), tempera-
ture of 300 K (default) and an average dipole moment of the molecule of 2.273 (SPC). For the distribution
function a maximum of 5.0 will be used.

Files
-enx ener.edr Input, Opt. Energy file: edr ene
-f traj.xtc Input Trajectory: xtc trr trj gro g96 pdb cpt
-s topol.tpr Input Run input file: tpr tpb tpa
-n index.ndx Input, Opt. Index file

D.21. g dipoles 233

-o Mtot.xvg Output xvgr/xmgr file
-eps epsilon.xvg Output xvgr/xmgr file
-a aver.xvg Output xvgr/xmgr file
-d dipdist.xvg Output xvgr/xmgr file
-c dipcorr.xvg Output, Opt. xvgr/xmgr file
-g gkr.xvg Output, Opt. xvgr/xmgr file

-adip adip.xvg Output, Opt. xvgr/xmgr file
-dip3d dip3d.xvg Output, Opt. xvgr/xmgr file

-cos cosaver.xvg Output, Opt. xvgr/xmgr file
-cmap cmap.xpm Output, Opt. X PixMap compatible matrix file

-q quadrupole.xvg Output, Opt. xvgr/xmgr file
-slab slab.xvg Output, Opt. xvgr/xmgr file

Other options
-h bool no Print help info and quit

-nice int 19 Set the nicelevel
-b time 0 First frame (ps) to read from trajectory
-e time 0 Last frame (ps) to read from trajectory

-dt time 0 Only use frame when t MOD dt = first time (ps)
-w bool no View output xvg, xpm, eps and pdb files

-xvgr bool yes Add specific codes (legends etc.) in the output xvg files for the xmgrace
program

-mu real -1 dipole of a single molecule (in Debye)
-mumax real 5 max dipole in Debye (for histrogram)

-epsilonRF real 0 epsilon of the reaction field used during the simulation, needed for
dieclectric constant calculation. WARNING: 0.0 means infinity (default)

-skip int 0 Skip steps in the output (but not in the computations)
-temp real 300 Average temperature of the simulation (needed for dielectric constant cal-

culation)
-corr enum none Correlation function to calculate: none, mol, molsep or total

-pairs bool yes Calculate orcos thetaor between all pairs of molecules. May be slow
-ncos int 1 Must be 1 or 2. Determines whether the <cos> is computed between all

mole cules in one group, or between molecules in two different groups.
This turns on the -gkr flag.

-axis string Z Take the normal on the computational box in direction X, Y or Z.
-sl int 10 Divide the box in #nr slices.

-gkratom int 0 Use the n-th atom of a molecule (starting from 1) to calculate the dis-
tance between molecules rather than the center of charge (when 0) in the
calculation of distance dependent Kirkwood factors

-gkratom2 int 0 Same as previous option in case ncos = 2, i.e. dipole interaction between
two groups of molecules

-rcmax real 0 Maximum distance to use in the dipole orientation distribution (with ncos
== 2). If zero, a criterium based on the box length will be used.

-phi bool no Plot the ’torsion angle’ defined as the rotation of the two dipole vectors
around the distance vector between the two molecules in the xpm file
from the -cmap option. By default the cosine of the angle between the
dipoles is plotted.

-nlevels int 20 Number of colors in the cmap output
-ndegrees int 90 Number of divisions on the y-axis in the camp output (for 180 degrees)

-acflen int -1 Length of the ACF, default is half the number of frames
-normalize bool yes Normalize ACF

-P enum 0 Order of Legendre polynomial for ACF (0 indicates none): 0, 1, 2 or 3
-fitfn enum none Fit function: none, exp, aexp, exp exp, vac, exp5, exp7 or exp9

234 Appendix D. Manual Pages

-ncskip int 0 Skip N points in the output file of correlation functions
-beginfit real 0 Time where to begin the exponential fit of the correlation function
-endfit real -1 Time where to end the exponential fit of the correlation function, -1 is till

the end

D.22 g disre

g disre computes violations of distance restraints. If necessary all protons can be added to a protein
molecule using the protonate program.

The program always computes the instantaneous violations rather than time-averaged, because this analysis
is done from a trajectory file afterwards it does not make sense to use time averaging. However, the time
averaged values per restraint are given in the log file.

An index file may be used to select specific restraints for printing.

When the optional-q flag is given a pdb file coloured by the amount of average violations.

When the -c option is given, an index file will be read containing the frames in your trajectory correspond-
ing to the clusters (defined in another manner) that you want to analyze. For these clusters the program will
compute average violations using the third power averaging algorithm and print them in the log file.

Files
-s topol.tpr Input Run input file: tpr tpb tpa
-f traj.xtc Input Trajectory: xtc trr trj gro g96 pdb cpt

-ds drsum.xvg Output xvgr/xmgr file
-da draver.xvg Output xvgr/xmgr file
-dn drnum.xvg Output xvgr/xmgr file
-dm drmax.xvg Output xvgr/xmgr file
-dr restr.xvg Output xvgr/xmgr file
-l disres.log Output Log file
-n viol.ndx Input, Opt. Index file
-q viol.pdb Output, Opt. Protein data bank file
-c clust.ndx Input, Opt. Index file
-x matrix.xpm Output, Opt. X PixMap compatible matrix file

Other options
-h bool no Print help info and quit

-nice int 19 Set the nicelevel
-b time 0 First frame (ps) to read from trajectory
-e time 0 Last frame (ps) to read from trajectory
-dt time 0 Only use frame when t MOD dt = first time (ps)
-w bool no View output xvg, xpm, eps and pdb files

-xvgr bool yes Add specific codes (legends etc.) in the output xvg files for the xmgrace
program

-ntop int 0 Number of large violations that are stored in the log file every step
-maxdr real 0 Maximum distance violation in matrix output. If less than or equal to 0

the maximum will be determined by the data.
-nlevels int 20 Number of levels in the matrix output
-third bool yes Use inverse third power averaging or linear for matrix output

D.23. g dist 235

D.23 g dist

g dist can calculate the distance between the centers of mass of two groups of atoms as a function of time.
The total distance and its x, y and z components are plotted.

Or when -dist is set, print all the atoms in group 2 that are closer than a certain distance to the center of
mass of group 1.

With options -lt and -dist the number of contacts of all atoms in group 2 that are closer than a certain
distance to the center of mass of group 1 are plotted as a function of the time that the contact was continously
present.

Other programs that calculate distances are g mindist and g bond.

Files
-f traj.xtc Input Trajectory: xtc trr trj gro g96 pdb cpt
-s topol.tpr Input Run input file: tpr tpb tpa
-n index.ndx Input, Opt. Index file
-o dist.xvg Output, Opt. xvgr/xmgr file

-lt lifetime.xvg Output, Opt. xvgr/xmgr file

Other options
-h bool no Print help info and quit

-nice int 19 Set the nicelevel
-b time 0 First frame (ps) to read from trajectory
-e time 0 Last frame (ps) to read from trajectory

-dt time 0 Only use frame when t MOD dt = first time (ps)
-xvgr bool yes Add specific codes (legends etc.) in the output xvg files for the xmgrace

program
-dist real 0 Print all atoms in group 2 closer than dist to the center of mass of group

1

D.24 g dyndom

g dyndom reads a pdb file output from DynDom http://www.cmp.uea.ac.uk/dyndom/ It reads the coordi-
nates, and the coordinates of the rotation axis furthermore it reads an index file containing the domains.
Furthermore it takes the first and last atom of the arrow file as command line arguments (head and tail) and
finally it takes the translation vector (given in DynDom info file) and the angle of rotation (also as command
line arguments). If the angle determined by DynDom is given, one should be able to recover the second
structure used for generating the DynDom output. Because of limited numerical accuracy this should be
verified by computing an all-atom RMSD (using g confrms) rather than by file comparison (using diff).

The purpose of this program is to interpolate and extrapolate the rotation as found by DynDom. As a result
unphysical structures with long or short bonds, or overlapping atoms may be produced. Visual inspection,
and energy minimization may be necessary to validate the structure.

Files
-f dyndom.pdb Input Protein data bank file
-o rotated.xtc Output Trajectory: xtc trr trj gro g96 pdb
-n domains.ndx Input Index file

Other options
-h bool no Print help info and quit

-nice int 0 Set the nicelevel

236 Appendix D. Manual Pages

-firstangle real 0 Angle of rotation about rotation vector
-lastangle real 0 Angle of rotation about rotation vector

-nframe int 11 Number of steps on the pathway
-maxangle real 0 DymDom dtermined angle of rotation about rotation vector

-trans real 0 Translation (Aangstroem) along rotation vector (see DynDom info file)
-head vector 0 0 0 First atom of the arrow vector
-tail vector 0 0 0 Last atom of the arrow vector

D.25 genbox

Genbox can do one of 3 things:

1) Generate a box of solvent. Specify -cs and -box. Or specify -cs and -cp with a structure file with a box,
but without atoms.

2) Solvate a solute configuration, eg. a protein, in a bath of solvent molecules. Specify -cp (solute) and
-cs (solvent). The box specified in the solute coordinate file (-cp) is used, unless -box is set. If you
want the solute to be centered in the box, the program editconf has sophisticated options to change the
box dimensions and center the solute. Solvent molecules are removed from the box where the distance
between any atom of the solute molecule(s) and any atom of the solvent molecule is less than the sum of
the VanderWaals radii of both atoms. A database (vdwradii.dat) of VanderWaals radii is read by the
program, atoms not in the database are assigned a default distance -vdw.

3) Insert a number (-nmol) of extra molecules (-ci) at random positions. The program iterates until nmol
molecules have been inserted in the box. To test whether an insertion is successful the same VanderWaals
criterium is used as for removal of solvent molecules. When no appropriately sized holes (holes that can
hold an extra molecule) are available the program tries for -nmol * -try times before giving up. Increase
-try if you have several small holes to fill.

The default solvent is Simple Point Charge water (SPC), with coordinates from $GMXLIB/spc216.gro.
Other solvents are also supported, as well as mixed solvents. The only restriction to solvent types is that a
solvent molecule consists of exactly one residue. The residue information in the coordinate files is used, and
should therefore be more or less consistent. In practice this means that two subsequent solvent molecules
in the solvent coordinate file should have different residue number. The box of solute is built by stacking
the coordinates read from the coordinate file. This means that these coordinates should be equlibrated in
periodic boundary conditions to ensure a good alignment of molecules on the stacking interfaces.

The program can optionally rotate the solute molecule to align the longest molecule axis along a box edge.
This way the amount of solvent molecules necessary is reduced. It should be kept in mind that this only
works for short simulations, as eg. an alpha-helical peptide in solution can rotate over 90 degrees, within
500 ps. In general it is therefore better to make a more or less cubic box.

Setting -shell larger than zero will place a layer of water of the specified thickness (nm) around the solute.
Hint: it is a good idea to put the protein in the center of a box first (using editconf).

Finally, genbox will optionally remove lines from your topology file in which a number of solvent molecules
is already added, and adds a line with the total number of solvent molecules in your coordinate file.

Files
-cp protein.gro Input, Opt. Structure file: gro g96 pdb tpr tpb tpa
-cs spc216.gro Input, Opt., Lib.Structure file: gro g96 pdb tpr tpb tpa
-ci insert.gro Input, Opt. Structure file: gro g96 pdb tpr tpb tpa
-o out.gro Output Structure file: gro g96 pdb
-p topol.top In/Out, Opt. Topology file

D.26. genconf 237

Other options
-h bool no Print help info and quit

-nice int 19 Set the nicelevel
-box vector 0 0 0 box size

-nmol int 0 no of extra molecules to insert
-try int 10 try inserting -nmol*-try times

-seed int 1997 random generator seed
-vdwd real 0.105 default vdwaals distance

-shell real 0 thickness of optional water layer around solute
-maxsol int 0 maximum number of solvent molecules to add if they fit in the box. If

zero (default) this is ignored
-vel bool no keep velocities from input solute and solvent

• Molecules must be whole in the initial configurations.

D.26 genconf

genconf multiplies a given coordinate file by simply stacking them on top of each other, like a small child
playing with wooden blocks. The program makes a grid of user defined proportions (-nbox), and inter-
spaces the grid point with an extra space -dist.

When option -rot is used the program does not check for overlap between molecules on grid points. It is
recommended to make the box in the input file at least as big as the coordinates + Van der Waals radius.

If the optional trajectory file is given, conformations are not generated, but read from this file and translated
appropriately to build the grid.

Files
-f conf.gro Input Structure file: gro g96 pdb tpr tpb tpa
-o out.gro Output Structure file: gro g96 pdb

-trj traj.xtc Input, Opt. Trajectory: xtc trr trj gro g96 pdb cpt

Other options
-h bool no Print help info and quit

-nice int 0 Set the nicelevel
-nbox vector 1 1 1 Number of boxes
-dist vector 0 0 0 Distance between boxes
-seed int 0 Random generator seed, if 0 generated from the time
-rot bool no Randomly rotate conformations

-shuffle bool no Random shuffling of molecules
-sort bool no Sort molecules on X coord

-block int 1 Divide the box in blocks on this number of cpus
-nmolat int 3 Number of atoms per molecule, assumed to start from 0. If you set this

wrong, it will screw up your system!
-maxrot vector90 90 90 Maximum random rotation

-renumber bool yes Renumber residues

• The program should allow for random displacement off lattice points.

238 Appendix D. Manual Pages

D.27 g enemat

g enemat extracts an energy matrix from the energy file (-f). With -groups a file must be supplied with
on each line a group of atoms to be used. For these groups matrix of interaction energies will be extracted
from the energy file by looking for energy groups with names corresponding to pairs of groups of atoms.
E.g. if your -groups file contains:
2
Protein
SOL
then energy groups with names like ’Coul-SR:Protein-SOL’ and ’LJ:Protein-SOL’ are expected in the en-
ergy file (although g enemat is most useful if many groups are analyzed simultaneously). Matrices
for different energy types are written out separately, as controlled by the -[no]coul, -[no]coulr,
-[no]coul14, -[no]lj, -[no]lj14, -[no]bham and -[no]free options. Finally, the total in-
teraction energy energy per group can be calculated (-etot).

An approximation of the free energy can be calculated using: E(free) = E0 + kT log(<exp((E-E0)/kT)>
), where ’<>’ stands for time-average. A file with reference free energies can be supplied to calculate the
free energy difference with some reference state. Group names (e.g. residue names) in the reference file
should correspond to the group names as used in the -groups file, but a appended number (e.g. residue
number) in the -groups will be ignored in the comparison.
Files

-f ener.edr Input, Opt. Energy file: edr ene
-groups groups.dat Input Generic data file
-eref eref.dat Input, Opt. Generic data file
-emat emat.xpm Output X PixMap compatible matrix file
-etot energy.xvg Output xvgr/xmgr file

Other options
-h bool no Print help info and quit

-nice int 19 Set the nicelevel
-b time 0 First frame (ps) to read from trajectory
-e time 0 Last frame (ps) to read from trajectory
-dt time 0 Only use frame when t MOD dt = first time (ps)
-w bool no View output xvg, xpm, eps and pdb files

-xvgr bool yes Add specific codes (legends etc.) in the output xvg files for the xmgrace
program

-sum bool no Sum the energy terms selected rather than display them all
-skip int 0 Skip number of frames between data points
-mean bool yes with -groups extracts matrix of mean energies in stead of matrix for each

timestep
-nlevels int 20 number of levels for matrix colors

-max real 1e+20 max value for energies
-min real -1e+20 min value for energies

-coul bool yes extract Coulomb SR energies
-coulr bool no extract Coulomb LR energies

-coul14 bool no extract Coulomb 1-4 energies
-lj bool yes extract Lennard-Jones SR energies
-lj bool no extract Lennard-Jones LR energies

-lj14 bool no extract Lennard-Jones 1-4 energies
-bhamsr bool no extract Buckingham SR energies
-bhamlr bool no extract Buckingham LR energies

-free bool yes calculate free energy
-temp real 300 reference temperature for free energy calculation

D.28. g energy 239

D.28 g energy

g energy extracts energy components or distance restraint data from an energy file. The user is prompted to
interactively select the energy terms she wants.

Average and RMSD are calculated with full precision from the simulation (see printed manual). Drift is
calculated by performing a LSQ fit of the data to a straight line. Total drift is drift multiplied by total time.
The term fluctuation gives the RMSD around the LSQ fit.

When the -viol option is set, the time averaged violations are plotted and the running time-averaged and
instantaneous sum of violations are recalculated. Additionally running time-averaged and instantaneous
distances between selected pairs can be plotted with the -pairs option.

Options -ora, -ort, -oda, -odr and -odt are used for analyzing orientation restraint data. The first
two options plot the orientation, the last three the deviations of the orientations from the experimental
values. The options that end on an ’a’ plot the average over time as a function of restraint. The options
that end on a ’t’ prompt the user for restraint label numbers and plot the data as a function of time. Option
-odr plots the RMS deviation as a function of restraint. When the run used time or ensemble averaged
orientation restraints, option -orinst can be used to analyse the instantaneous, not ensemble-averaged
orientations and deviations instead of the time and ensemble averages.

Option -oten plots the eigenvalues of the molecular order tensor for each orientation restraint experiment.
With option -ovec also the eigenvectors are plotted.

With -fee an estimate is calculated for the free-energy difference with an ideal gas state:
Delta A = A(N,V,T) - A idgas(N,V,T) = kT ln < e(̂Upot/kT) >
Delta G = G(N,p,T) - G idgas(N,p,T) = kT ln < e(̂Upot/kT) >
where k is Boltzmann’s constant, T is set by -fetemp andthe average is over the ensemble (or time in a
trajectory). Note that this is in principle only correct when averaging over the whole (Boltzmann) ensemble
and using the potential energy. This also allows for an entropy estimate using:
Delta S(N,V,T) = S(N,V,T) - S idgas(N,V,T) = (<Upot> - Delta A)/T
Delta S(N,p,T) = S(N,p,T) - S idgas(N,p,T) = (<Upot> + pV - Delta G)/T

When a second energy file is specified (-f2), a free energy difference is calculated dF = -kT ln < e -̂(EB-
EA)/kT >A , where EA and EB are the energies from the first and second energy files, and the average is
over the ensemble A. NOTE that the energies must both be calculated from the same trajectory.
Files

-f ener.edr Input Energy file: edr ene
-f2 ener.edr Input, Opt. Energy file: edr ene
-s topol.tpr Input, Opt. Run input file: tpr tpb tpa
-o energy.xvg Output xvgr/xmgr file

-viol violaver.xvg Output, Opt. xvgr/xmgr file
-pairs pairs.xvg Output, Opt. xvgr/xmgr file

-ora orienta.xvg Output, Opt. xvgr/xmgr file
-ort orientt.xvg Output, Opt. xvgr/xmgr file
-oda orideva.xvg Output, Opt. xvgr/xmgr file
-odr oridevr.xvg Output, Opt. xvgr/xmgr file
-odt oridevt.xvg Output, Opt. xvgr/xmgr file

-oten oriten.xvg Output, Opt. xvgr/xmgr file
-corr enecorr.xvg Output, Opt. xvgr/xmgr file
-vis visco.xvg Output, Opt. xvgr/xmgr file

-ravg runavgdf.xvg Output, Opt. xvgr/xmgr file

240 Appendix D. Manual Pages

Other options
-h bool no Print help info and quit

-nice int 19 Set the nicelevel
-b time 0 First frame (ps) to read from trajectory
-e time 0 Last frame (ps) to read from trajectory
-w bool no View output xvg, xpm, eps and pdb files

-xvgr bool yes Add specific codes (legends etc.) in the output xvg files for the xmgrace
program

-fee bool no Do a free energy estimate
-fetemp real 300 Reference temperature for free energy calculation

-zero real 0 Subtract a zero-point energy
-sum bool no Sum the energy terms selected rather than display them all
-dp bool no Print energies in high precision

-mutot bool no Compute the total dipole moment from the components
-uni bool yes Skip non-uniformly spaced frames

-skip int 0 Skip number of frames between data points
-aver bool no Print also the X1,t and sigma1,t, only if only 1 energy is requested
-nmol int 1 Number of molecules in your sample: the energies are divided by this

number
-ndf int 3 Number of degrees of freedom per molecule. Necessary for calculating

the heat capacity
-fluc bool no Calculate autocorrelation of energy fluctuations rather than energy itself

-orinst bool no Analyse instantaneous orientation data
-ovec bool no Also plot the eigenvectors with -oten

-acflen int -1 Length of the ACF, default is half the number of frames
-normalize bool yes Normalize ACF

-P enum 0 Order of Legendre polynomial for ACF (0 indicates none): 0, 1, 2 or 3
-fitfn enum none Fit function: none, exp, aexp, exp exp, vac, exp5, exp7 or exp9

-ncskip int 0 Skip N points in the output file of correlation functions
-beginfit real 0 Time where to begin the exponential fit of the correlation function
-endfit real -1 Time where to end the exponential fit of the correlation function, -1 is till

the end

D.29 genion

genion replaces solvent molecules by monoatomic ions at the position of the first atoms with the most favor-
able electrostatic potential or at random. The potential is calculated on all atoms, using normal GROMACS
particle based methods (in contrast to other methods based on solving the Poisson-Boltzmann equation).
The potential is recalculated after every ion insertion. If specified in the run input file, a reaction field,
shift function or user function can be used. For the user function a table file can be specified with the
option -table. The group of solvent molecules should be continuous and all molecules should have the
same number of atoms. The user should add the ion molecules to the topology file and include the file
ions.itp. Ion names for Gromos96 should include the charge.

With the option -pot the potential can be written as B-factors in a pdb file (for visualisation using e.g.
rasmol). The unit of the potential is 1000 kJ/(mol e), the scaling be changed with the -scale option.

For larger ions, e.g. sulfate we recommended to use genbox.

Files
-s topol.tpr Input Run input file: tpr tpb tpa

-table table.xvg Input, Opt. xvgr/xmgr file
-n index.ndx Input, Opt. Index file

D.30. genrestr 241

-o out.gro Output Structure file: gro g96 pdb
-g genion.log Output Log file

-pot pot.pdb Output, Opt. Protein data bank file
-p topol.top In/Out, Opt. Topology file

Other options
-h bool no Print help info and quit

-nice int 19 Set the nicelevel
-xvgr bool yes Add specific codes (legends etc.) in the output xvg files for the xmgrace

program
-np int 0 Number of positive ions

-pname string Na Name of the positive ion
-pq int 1 Charge of the positive ion
-nn int 0 Number of negative ions

-nname string Cl Name of the negative ion
-nq int -1 Charge of the negative ion

-rmin real 0.6 Minimum distance between ions
-random bool yes Use random placement of ions instead of based on potential. The rmin

option should still work
-seed int 1993 Seed for random number generator

-scale real 0.001 Scaling factor for the potential for -pot
-conc real 0 Specify salt concentration (mol/liter). This will add sufficient ions to

reach up to the specified concentration as computed from the volume of
the cell in the input tpr file. Overrides the -np and nn options.

-neutral bool no This option will add enough ions to neutralize the system. In combination
with the concentration option a neutral system at a given salt concentra-
tion will be generated.

• Calculation of the potential is not reliable, therefore the -random option is now turned on by default.

• If you specify a salt concentration existing ions are not taken into account. In effect you therefore
specify the amount of salt to be added.

D.30 genrestr

genrestr produces an include file for a topology containing a list of atom numbers and three force constants
for the X, Y and Z direction. A single isotropic force constant may be given on the command line instead
of three components.

WARNING: position restraints only work for the one molecule at a time. Position restraints are interactions
within molecules, therefore they should be included within the correct [moleculetype] block in the
topology. Since the atom numbers in every moleculetype in the topology start at 1 and the numbers in the
input file for genpr number consecutively from 1, genpr will only produce a useful file for the first molecule.

The -of option produces an index file that can be used for freezing atoms. In this case the input file must be
a pdb file.

With the -disre option half a matrix of distance restraints is generated instead of position restraints. With
this matrix, that one typically would apply to C-alpha atoms in a protein, one can maintain the overall
conformation of a protein without tieing it to a specific position (as with position restraints).

Files
-f conf.gro Input Structure file: gro g96 pdb tpr tpb tpa
-n index.ndx Input, Opt. Index file

242 Appendix D. Manual Pages

-o posre.itp Output Include file for topology
-of freeze.ndx Output, Opt. Index file

Other options
-h bool no Print help info and quit

-nice int 0 Set the nicelevel
-fc vector
1000 1000 1000 force constants (kJ mol-1 nm-2)

-freeze real 0 if the -of option or this one is given an index file will be written containing
atom numbers of all atoms that have a B-factor less than the level given
here

-disre bool no Generate a distance restraint matrix for all the atoms in index
-disre dist real 0.1 Distance range around the actual distance for generating distance re-

straints
-disre frac real 0 Fraction of distance to be used as interval rather than a fixed distance. If

the fraction of the distance that you specify here is less than the distance
given in the previous option, that one is used instead.

-disre up2 real 1 Distance between upper bound for distance restraints, and the distance at
which the force becomes constant (see manual)

-constr bool no Generate a constraint matrix rather than distance restraints

D.31 g filter

g filter performs frequency filtering on a trajectory. The filter shape is cos(pi t/A) + 1 from -A to +A, where
A is given by the option -nf times the time step in the input trajectory. This filter reduces fluctuations with
period A by 85%, with period 2*A by 50% and with period 3*A by 17% for low-pass filtering. Both a
low-pass and high-pass filtered trajectory can be written.

Option -ol writes a low-pass filtered trajectory. A frame is written every nf input frames. This ratio of
filter length and output interval ensures a good suppression of aliasing of high-frequency motion, which
is useful for making smooth movies. Also averages of properties which are linear in the coordinates are
preserved, since all input frames are weighted equally in the output. When all frames are needed, use the
-all option.

Option -oh writes a high-pass filtered trajectory. The high-pass filtered coordinates are added to the coor-
dinates from the structure file. When using high-pass filtering use -fit or make sure you use a trajectory
which has been fitted on the coordinates in the structure file.

Files
-f traj.xtc Input Trajectory: xtc trr trj gro g96 pdb cpt
-s topol.tpr Input, Opt. Structure+mass(db): tpr tpb tpa gro g96 pdb
-n index.ndx Input, Opt. Index file
-ol lowpass.xtc Output, Opt. Trajectory: xtc trr trj gro g96 pdb
-oh highpass.xtc Output, Opt. Trajectory: xtc trr trj gro g96 pdb

Other options
-h bool no Print help info and quit

-nice int 19 Set the nicelevel
-b time 0 First frame (ps) to read from trajectory
-e time 0 Last frame (ps) to read from trajectory
-dt time 0 Only use frame when t MOD dt = first time (ps)
-w bool no View output xvg, xpm, eps and pdb files
-nf int 10 Sets the filter length as well as the output interval for low-pass filtering

D.32. g gyrate 243

-all bool no Write all low-pass filtered frames
-nojump bool yes Remove jumps of atoms across the box

-fit bool no Fit all frames to a reference structure

D.32 g gyrate

g gyrate computes the radius of gyration of a group of atoms and the radii of gyration about the x, y and z
axes, as a function of time. The atoms are explicitly mass weighted.

With the -nmol option the radius of gyration will be calculated for multiple molecules by splitting the
analysis group in equally sized parts.

With the option -nz 2D radii of gyration in the x-y plane of slices along the z-axis are calculated.
Files

-f traj.xtc Input Trajectory: xtc trr trj gro g96 pdb cpt
-s topol.tpr Input Structure+mass(db): tpr tpb tpa gro g96 pdb
-n index.ndx Input, Opt. Index file
-o gyrate.xvg Output xvgr/xmgr file

-acf moi-acf.xvg Output, Opt. xvgr/xmgr file

Other options
-h bool no Print help info and quit

-nice int 19 Set the nicelevel
-b time 0 First frame (ps) to read from trajectory
-e time 0 Last frame (ps) to read from trajectory

-dt time 0 Only use frame when t MOD dt = first time (ps)
-w bool no View output xvg, xpm, eps and pdb files

-xvgr bool yes Add specific codes (legends etc.) in the output xvg files for the xmgrace
program

-nmol int 1 The number of molecules to analyze
-q bool no Use absolute value of the charge of an atom as weighting factor instead

of mass
-p bool no Calculate the radii of gyration about the principal axes.

-moi bool no Calculate the moments of inertia (defined by the principal axes).
-nz int 0 Calculate the 2D radii of gyration of # slices along the z-axis

-acflen int -1 Length of the ACF, default is half the number of frames
-normalize bool yes Normalize ACF

-P enum 0 Order of Legendre polynomial for ACF (0 indicates none): 0, 1, 2 or 3
-fitfn enum none Fit function: none, exp, aexp, exp exp, vac, exp5, exp7 or exp9

-ncskip int 0 Skip N points in the output file of correlation functions
-beginfit real 0 Time where to begin the exponential fit of the correlation function

-endfit real -1 Time where to end the exponential fit of the correlation function, -1 is till
the end

D.33 g h2order

Compute the orientation of water molecules with respect to the normal of the box. The program determines
the average cosine of the angle between de dipole moment of water and an axis of the box. The box is
divided in slices and the average orientation per slice is printed. Each water molecule is assigned to a slice,
per time frame, based on the position of the oxygen. When -nm is used the angle between the water dipole
and the axis from the center of mass to the oxygen is calculated instead of the angle between the dipole and
a box axis.

244 Appendix D. Manual Pages

Files
-f traj.xtc Input Trajectory: xtc trr trj gro g96 pdb cpt
-n index.ndx Input Index file

-nm index.ndx Input, Opt. Index file
-s topol.tpr Input Run input file: tpr tpb tpa
-o order.xvg Output xvgr/xmgr file

Other options
-h bool no Print help info and quit

-nice int 19 Set the nicelevel
-b time 0 First frame (ps) to read from trajectory
-e time 0 Last frame (ps) to read from trajectory
-dt time 0 Only use frame when t MOD dt = first time (ps)
-w bool no View output xvg, xpm, eps and pdb files

-xvgr bool yes Add specific codes (legends etc.) in the output xvg files for the xmgrace
program

-d string Z Take the normal on the membrane in direction X, Y or Z.
-sl int 0 Calculate order parameter as function of boxlength, dividing the box in

#nr slices.

• The program assigns whole water molecules to a slice, based on the firstatom of three in the index
file group. It assumes an order O,H,H.Name is not important, but the order is. If this demand is not
met,assigning molecules to slices is different.

D.34 g hbond

g hbond computes and analyzes hydrogen bonds. Hydrogen bonds are determined based on cutoffs for the
angle Acceptor - Donor - Hydrogen (zero is extended) and the distance Hydrogen - Acceptor. OH and NH
groups are regarded as donors, O is an acceptor always, N is an acceptor by default, but this can be switched
using -nitacc. Dummy hydrogen atoms are assumed to be connected to the first preceding non-hydrogen
atom.

You need to specify two groups for analysis, which must be either identical or non-overlapping. All hydro-
gen bonds between the two groups are analyzed.

If you set -shell, you will be asked for an additional index group which should contain exactly one atom. In
this case, only hydrogen bonds between atoms within the shell distance from the one atom are considered.

[selected]
20 21 24
25 26 29
1 3 6

Note that the triplets need not be on separate lines. Each atom triplet specifies a hydrogen bond to be
analyzed, note also that no check is made for the types of atoms.

-ins turns on computing solvent insertion into hydrogen bonds. In this case an additional group must be
selected, specifying the solvent molecules.

Output:
-num: number of hydrogen bonds as a function of time.
-ac: average over all autocorrelations of the existence functions (either 0 or 1) of all hydrogen bonds.
-dist: distance distribution of all hydrogen bonds.
-ang: angle distribution of all hydrogen bonds.

D.34. g hbond 245

-hx: the number of n-n+i hydrogen bonds as a function of time where n and n+i stand for residue numbers
and i ranges from 0 to 6. This includes the n-n+3, n-n+4 and n-n+5 hydrogen bonds associated with helices
in proteins.
-hbn: all selected groups, donors, hydrogens and acceptors for selected groups, all hydrogen bonded atoms
from all groups and all solvent atoms involved in insertion.
-hbm: existence matrix for all hydrogen bonds over all frames, this also contains information on solvent
insertion into hydrogen bonds. Ordering is identical to that in -hbn index file.
-dan: write out the number of donors and acceptors analyzed for each timeframe. This is especially usefull
when using -shell.
-nhbdist: compute the number of HBonds per hydrogen in order to compare results to Raman Spec-
troscopy.

Note: options -ac, -life, -hbn and -hbm require an amount of memory proportional to the total num-
bers of donors times the total number of acceptors in the selected group(s).
Files

-f traj.xtc Input Trajectory: xtc trr trj gro g96 pdb cpt
-s topol.tpr Input Run input file: tpr tpb tpa
-n index.ndx Input, Opt. Index file

-num hbnum.xvg Output xvgr/xmgr file
-g hbond.log Output, Opt. Log file

-ac hbac.xvg Output, Opt. xvgr/xmgr file
-dist hbdist.xvg Output, Opt. xvgr/xmgr file
-ang hbang.xvg Output, Opt. xvgr/xmgr file
-hx hbhelix.xvg Output, Opt. xvgr/xmgr file
-hbn hbond.ndx Output, Opt. Index file
-hbm hbmap.xpm Output, Opt. X PixMap compatible matrix file
-don donor.xvg Output, Opt. xvgr/xmgr file
-dan danum.xvg Output, Opt. xvgr/xmgr file

-life hblife.xvg Output, Opt. xvgr/xmgr file
-nhbdist nhbdist.xvg Output, Opt. xvgr/xmgr file

Other options
-h bool no Print help info and quit

-nice int 19 Set the nicelevel
-b time 0 First frame (ps) to read from trajectory
-e time 0 Last frame (ps) to read from trajectory

-dt time 0 Only use frame when t MOD dt = first time (ps)
-xvgr bool yes Add specific codes (legends etc.) in the output xvg files for the xmgrace

program
-ins bool no Analyze solvent insertion

-a real 30 Cutoff angle (degrees, Acceptor - Donor - Hydrogen)
-r real 0.35 Cutoff radius (nm, X - Acceptor, see next option)

-da bool yes Use distance Donor-Acceptor (if TRUE) or Hydrogen-Acceptor (FALSE)
-r2 real 0 Second cutoff radius. Mainly useful with -contact and -ac

-abin real 1 Binwidth angle distribution (degrees)
-rbin real 0.005 Binwidth distance distribution (nm)

-nitacc bool yes Regard nitrogen atoms as acceptors
-contact bool no Do not look for hydrogen bonds, but merely for contacts within the cut-

off distance
-shell real -1 when > 0, only calculate hydrogen bonds within # nm shell around one

particle
-fitstart real 1 Time (ps) from which to start fitting the correlation functions in order

to obtain the forward and backward rate constants for HB breaking and
formation

246 Appendix D. Manual Pages

-temp real 298.15 Temperature (K) for computing the Gibbs energy corresponding to HB
breaking and reforming

-smooth real -1 If>= 0, the tail of the ACF will be smoothed by fitting it to an exponential
function: y = A exp(-x/tau)

-dump int 0 Dump the first N hydrogen bond ACFs in a single xvg file for debugging
-max hb real 0 Theoretical maximum number of hydrogen bonds used for normalizing

HB autocorrelation function. Can be useful in case the program estimates
it wrongly

-merge bool yes H-bonds between the same donor and acceptor, but with different hydro-
gen are treated as a single H-bond. Mainly important for the ACF.

-acflen int -1 Length of the ACF, default is half the number of frames
-normalize bool yes Normalize ACF

-P enum 0 Order of Legendre polynomial for ACF (0 indicates none): 0, 1, 2 or 3
-fitfn enum none Fit function: none, exp, aexp, exp exp, vac, exp5, exp7 or exp9

-ncskip int 0 Skip N points in the output file of correlation functions
-beginfit real 0 Time where to begin the exponential fit of the correlation function
-endfit real -1 Time where to end the exponential fit of the correlation function, -1 is till

the end

• The option -sel that used to work on selected hbonds is out of order, and therefore not available
for the time being.

D.35 g helix

g helix computes all kind of helix properties. First, the peptide is checked to find the longest helical part.
This is determined by Hydrogen bonds and Phi/Psi angles. That bit is fitted to an ideal helix around the
Z-axis and centered around the origin. Then the following properties are computed:

1. Helix radius (file radius.xvg). This is merely the RMS deviation in two dimensions for all Calpha atoms.
it is calced as sqrt((SUM i(x2(i)+y2(i)))/N), where N is the number of backbone atoms. For an ideal helix
the radius is 0.23 nm
2. Twist (file twist.xvg). The average helical angle per residue is calculated. For alpha helix it is 100
degrees, for 3-10 helices it will be smaller, for 5-helices it will be larger.
3. Rise per residue (file rise.xvg). The helical rise per residue is plotted as the difference in Z-coordinate
between Ca atoms. For an ideal helix this is 0.15 nm
4. Total helix length (file len-ahx.xvg). The total length of the helix in nm. This is simply the average rise
(see above) times the number of helical residues (see below).
5. Number of helical residues (file n-ahx.xvg). The title says it all.
6. Helix Dipole, backbone only (file dip-ahx.xvg).
7. RMS deviation from ideal helix, calculated for the Calpha atoms only (file rms-ahx.xvg).
8. Average Calpha-Calpha dihedral angle (file phi-ahx.xvg).
9. Average Phi and Psi angles (file phipsi.xvg).
10. Ellipticity at 222 nm according to Hirst and Brooks

Files
-s topol.tpr Input Run input file: tpr tpb tpa
-n index.ndx Input Index file
-f traj.xtc Input Trajectory: xtc trr trj gro g96 pdb cpt
-to gtraj.g87 Output, Opt. Gromos-87 ASCII trajectory format
-cz zconf.gro Output Structure file: gro g96 pdb
-co waver.gro Output Structure file: gro g96 pdb

D.36. g helixorient 247

Other options
-h bool no Print help info and quit

-nice int 19 Set the nicelevel
-b time 0 First frame (ps) to read from trajectory
-e time 0 Last frame (ps) to read from trajectory

-dt time 0 Only use frame when t MOD dt = first time (ps)
-w bool no View output xvg, xpm, eps and pdb files

-r0 int 1 The first residue number in the sequence
-q bool no Check at every step which part of the sequence is helical
-F bool yes Toggle fit to a perfect helix

-db bool no Print debug info
-prop enum RAD Select property to weight eigenvectors with. WARNING experimental

stuff: RAD, TWIST, RISE, LEN, NHX, DIP, RMS, CPHI, RMSA, PHI,
PSI, HB3, HB4, HB5 or CD222

-ev bool no Write a new ’trajectory’ file for ED
-ahxstart int 0 First residue in helix

-ahxend int 0 Last residue in helix

D.36 g helixorient

g helixorient calculates coordinates and direction of the average axis inside an alpha helix, and the direc-
tion/vectors of both the alpha carbon and (optionally) a sidechain atom relative to the axis.

As input, you need to specify an index group with alpha carbon atoms corresponding to an alpha helix of
continuous residues. Sidechain directions require a second index group of the same size, containing the
heavy atom in each residue that should represent the sidechain.

Note that this program does not do any fitting of structures.

We need four Calpha coordinates to define the local direction of the helix axis.

The tilt/rotation is calculated from Euler rotations, where we define the helix axis as the local X axis,
the residues/CA-vector as Y, and the Z axis from their cross product. We use the Euler Y-Z-X rotation,
meaning we first tilt the helix axis (1) around and (2) orthogonal to the residues vector, and finally apply the
(3) rotation around it. For debugging or other purposes, we also write out the actual Euler rotation angles
as theta1-3.xvg

Files
-s topol.tpr Input Run input file: tpr tpb tpa
-f traj.xtc Input Trajectory: xtc trr trj gro g96 pdb cpt
-n index.ndx Input, Opt. Index file

-oaxis helixaxis.dat Output Generic data file
-ocenter center.dat Output Generic data file

-orise rise.xvg Output xvgr/xmgr file
-oradius radius.xvg Output xvgr/xmgr file
-otwist twist.xvg Output xvgr/xmgr file

-obending bending.xvg Output xvgr/xmgr file
-otilt tilt.xvg Output xvgr/xmgr file
-orot rotation.xvg Output xvgr/xmgr file

Other options
-h bool no Print help info and quit

-nice int 19 Set the nicelevel
-b time 0 First frame (ps) to read from trajectory

248 Appendix D. Manual Pages

-e time 0 Last frame (ps) to read from trajectory
-dt time 0 Only use frame when t MOD dt = first time (ps)

-xvgr bool yes Add specific codes (legends etc.) in the output xvg files for the xmgrace
program

-sidechain bool no Calculate sidechain directions relative to helix axis too.
-incremental bool no Calculate incremental rather than total rotation/tilt.

D.37 g lie

g lie computes a free energy estimate based on an energy analysis from. One needs an energy file with the
following components: Coul (A-B) LJ-SR (A-B) etc.

Files
-f ener.edr Input Energy file: edr ene
-o lie.xvg Output xvgr/xmgr file

Other options
-h bool no Print help info and quit

-nice int 19 Set the nicelevel
-b time 0 First frame (ps) to read from trajectory
-e time 0 Last frame (ps) to read from trajectory
-dt time 0 Only use frame when t MOD dt = first time (ps)
-w bool no View output xvg, xpm, eps and pdb files

-xvgr bool yes Add specific codes (legends etc.) in the output xvg files for the xmgrace
program

-Elj real 0 Lennard-Jones interaction between ligand and solvent
-Eqq real 0 Coulomb interaction between ligand and solvent
-Clj real 0.181 Factor in the LIE equation for Lennard-Jones component of energy
-Cqq real 0.5 Factor in the LIE equation for Coulomb component of energy

-ligand string none Name of the ligand in the energy file

D.38 g mdmat

g mdmat makes distance matrices consisting of the smallest distance between residue pairs. With -frames
these distance matrices can be stored as a function of time, to be able to see differences in tertiary structure
as a funcion of time. If you choose your options unwise, this may generate a large output file. Default
only an averaged matrix over the whole trajectory is output. Also a count of the number of different atomic
contacts between residues over the whole trajectory can be made. The output can be processed with xpm2ps
to make a PostScript (tm) plot.

Files
-f traj.xtc Input Trajectory: xtc trr trj gro g96 pdb cpt
-s topol.tpr Input Structure+mass(db): tpr tpb tpa gro g96 pdb
-n index.ndx Input, Opt. Index file

-mean dm.xpm Output X PixMap compatible matrix file
-frames dmf.xpm Output, Opt. X PixMap compatible matrix file

-no num.xvg Output, Opt. xvgr/xmgr file

D.39. g mindist 249

Other options
-h bool no Print help info and quit

-nice int 19 Set the nicelevel
-b time 0 First frame (ps) to read from trajectory
-e time 0 Last frame (ps) to read from trajectory

-dt time 0 Only use frame when t MOD dt = first time (ps)
-xvgr bool yes Add specific codes (legends etc.) in the output xvg files for the xmgrace

program
-t real 1.5 trunc distance

-nlevels int 40 Discretize distance in # levels

D.39 g mindist

g mindist computes the distance between one group and a number of other groups. Both the minimum
distance (between any pair of atoms from the respective groups) and the number of contacts within a given
distance are written to two separate output files. With -or, minimum distances to each residue in the first
group are determined and plotted as a function of reisdue number.

With option -pi the minimum distance of a group to its periodic image is plotted. This is useful for
checking if a protein has seen its periodic image during a simulation. Only one shift in each direction is
considered, giving a total of 26 shifts. It also plots the maximum distance within the group and the lengths
of the three box vectors.

Other programs that calculate distances are g dist and g bond.

Files
-f traj.xtc Input Trajectory: xtc trr trj gro g96 pdb cpt
-s topol.tpr Input, Opt. Structure+mass(db): tpr tpb tpa gro g96 pdb
-n index.ndx Input, Opt. Index file

-od mindist.xvg Output xvgr/xmgr file
-on numcont.xvg Output, Opt. xvgr/xmgr file
-o atm-pair.out Output, Opt. Generic output file

-ox mindist.xtc Output, Opt. Trajectory: xtc trr trj gro g96 pdb
-or mindistres.xvg Output, Opt. xvgr/xmgr file

Other options
-h bool no Print help info and quit

-nice int 19 Set the nicelevel
-b time 0 First frame (ps) to read from trajectory
-e time 0 Last frame (ps) to read from trajectory

-dt time 0 Only use frame when t MOD dt = first time (ps)
-tu enum ps Time unit: ps, fs, ns, us, ms or s
-w bool no View output xvg, xpm, eps and pdb files

-xvgr bool yes Add specific codes (legends etc.) in the output xvg files for the xmgrace
program

-matrix bool no Calculate half a matrix of group-group distances
-max bool no Calculate *maximum* distance instead of minimum

-d real 0.6 Distance for contacts
-pi bool no Calculate minimum distance with periodic images

-split bool no Split graph where time is zero
-ng int 1 Number of secondary groups to compute distance to a central group

-pbc bool yes Take periodic boundary conditions into account

250 Appendix D. Manual Pages

D.40 g morph

g morph does a linear interpolation of conformations in order to create intermediates. Of course these are
completely unphysical, but that you may try to justify yourself. Output is in the form of a generic trajectory.
The number of intermediates can be controlled with the -ninterm flag. The first and last flag correspond to
the way of interpolating: 0 corresponds to input structure 1 while 1 corresponds to input strucutre 2. If you
specify first < 0 or last > 1 extrapolation will be on the path from input structure x1 to x2. In general the
coordinates of the intermediate x(i) out of N total intermidates correspond to:

x(i) = x1 + (first+(i/(N-1))*(last-first))*(x2-x1)

Finally the RMSD with respect to both input structures can be computed if explicitly selected (-or option).
In that case an index file may be read to select what group RMS is computed from.

Files
-f1 conf1.gro Input Structure file: gro g96 pdb tpr tpb tpa
-f2 conf2.gro Input Structure file: gro g96 pdb tpr tpb tpa
-o interm.xtc Output Trajectory: xtc trr trj gro g96 pdb

-or rms-interm.xvg Output, Opt. xvgr/xmgr file
-n index.ndx Input, Opt. Index file

Other options
-h bool no Print help info and quit

-nice int 0 Set the nicelevel
-w bool no View output xvg, xpm, eps and pdb files

-xvgr bool yes Add specific codes (legends etc.) in the output xvg files for the xmgrace
program

-ninterm int 11 Number of intermediates
-first real 0 Corresponds to first generated structure (0 is input x0, see above)
-last real 1 Corresponds to last generated structure (1 is input x1, see above)
-fit bool yes Do a least squares fit of the second to the first structure before interpolat-

ing

D.41 g msd

g msd computes the mean square displacement (MSD) of atoms from their initial positions. This provides
an easy way to compute the diffusion constant using the Einstein relation. The time between additional
starting points for the MSD calculation is set with -trestart. The diffusion constant is calculated by
least squares fitting a straight line through the MSD from -beginfit to -endfit. An error estimate
given, which is the difference of the diffusion coefficients obtained from fits over the two halfs of the fit
interval.

There are three, mutually exclusive, options to determine different types of mean square displacement:
-type, -lateral and -ten. Option -ten writes the full MSD tensor for each group, the order in the
output is: trace xx yy zz yx zx zy.

Option -mol plots the MSD for molecules, this implies With option -rmcomm center of mass motion can
be removed. For trajectories produced with GROMACS this is usually not necessary as mdrun usually
already removes the center of mass motion. When you use this option be sure that the whole system is
stored in the trajectory file.

-mw, i.e. for each inidividual molecule an diffusion constant is computed for its center of mass. The chosen
index group will be split into molecules. The diffusion coefficient is determined by linear regression of
the MSD, where, unlike for the normal output of D, the times are weighted according to the number of

D.42. gmxcheck 251

restart point, i.e. short times have a higher weight. Also when -beginfit=-1,fitting starts at 0 and when
-endfit=-1, fitting goes to the end. Using this option one also gets an accurate error estimate based on
the statistics between individual molecules. Note that this diffusion coefficient and error estimate are only
accurate when the MSD is completely linear between -beginfit and -endfit.

Option -pdb writes a pdb file with the coordinates of the frame at time -tpdb with in the B-factor field
the square root of the diffusion coefficient of the molecule. This option implies option -mol.

Files
-f traj.xtc Input Trajectory: xtc trr trj gro g96 pdb cpt
-s topol.tpr Input Structure+mass(db): tpr tpb tpa gro g96 pdb
-n index.ndx Input, Opt. Index file
-o msd.xvg Output xvgr/xmgr file

-mol diff mol.xvg Output, Opt. xvgr/xmgr file
-pdb diff mol.pdb Output, Opt. Protein data bank file

Other options
-h bool no Print help info and quit

-nice int 19 Set the nicelevel
-b time 0 First frame (ps) to read from trajectory
-e time 0 Last frame (ps) to read from trajectory

-dt time 0 Only use frame when t MOD dt = first time (ps)
-tu enum ps Time unit: ps, fs, ns, us, ms or s
-w bool no View output xvg, xpm, eps and pdb files

-xvgr bool yes Add specific codes (legends etc.) in the output xvg files for the xmgrace
program

-type enum no Compute diffusion coefficient in one direction: no, x, y or z
-lateral enum no Calculate the lateral diffusion in a plane perpendicular to: no, x, y or z

-ten bool no Calculate the full tensor
-ngroup int 1 Number of groups to calculate MSD for

-mw bool yes Mass weighted MSD
-rmcomm bool no Remove center of mass motion

-tpdb time 0 The frame to use for option -pdb (ps)
-trestart time 10 Time between restarting points in trajectory (ps)
-beginfit time -1 Start time for fitting the MSD (ps), -1 is 10%

-endfit time -1 End time for fitting the MSD (ps), -1 is 90%

D.42 gmxcheck

gmxcheck reads a trajectory (.trj, .trr or .xtc), an energy file (.ene or .edr) or an index file
(.ndx) and prints out useful information about them.

Option -c checks for presence of coordinates, velocities and box in the file, for close contacts (smaller than
-vdwfac and not bonded, i.e. not between -bonlo and -bonhi, all relative to the sum of both Van
der Waals radii) and atoms outside the box (these may occur often and are no problem). If velocities are
present, an estimated temperature will be calculated from them.

If an index file is given it’s contents will be sumamrized.

If both a trajectory and a tpr file are given (with -s1) the program will check whether the bond lengths
defined in the tpr file are indeed correct in the trajectory. If not you may have non-matching files due to e.g.
deshuffling or due to problems with virtual sites. With these flags, gmxcheck provides a quick check for
such problems.

252 Appendix D. Manual Pages

The program can compare run two input (.tpr, .tpb or .tpa) files when both -s1 and -s2 are supplied.
Similarly a pair of trajectory files can be compared (using the -f2 option), or a pair of energy files (using
the -e2 option).

For free energy simulations the A and B state topology from one run input file can be compared with options
-s1 and -ab.

In case the -m flag is given a LaTeX file will be written consisting a rough outline for a methods section for
a paper.

Files
-f traj.xtc Input, Opt. Trajectory: xtc trr trj gro g96 pdb cpt
-f2 traj.xtc Input, Opt. Trajectory: xtc trr trj gro g96 pdb cpt
-s1 top1.tpr Input, Opt. Run input file: tpr tpb tpa
-s2 top2.tpr Input, Opt. Run input file: tpr tpb tpa
-c topol.tpr Input, Opt. Structure+mass(db): tpr tpb tpa gro g96 pdb
-e ener.edr Input, Opt. Energy file: edr ene

-e2 ener2.edr Input, Opt. Energy file: edr ene
-n index.ndx Input, Opt. Index file
-m doc.tex Output, Opt. LaTeX file

Other options
-h bool no Print help info and quit

-nice int 0 Set the nicelevel
-vdwfac real 0.8 Fraction of sum of VdW radii used as warning cutoff
-bonlo real 0.4 Min. fract. of sum of VdW radii for bonded atoms
-bonhi real 0.7 Max. fract. of sum of VdW radii for bonded atoms

-tol real 0.001 Relative tolerance for comparing real values defined as 2*(a-
b)/(oraor+orbor)

-ab bool no Compare the A and B topology from one file
-lastener string Last energy term to compare (if not given all are tested). It makes sense

to go up until the Pressure.

D.43 gmxdump

gmxdump reads a run input file (.tpa/.tpr/.tpb), a trajectory (.trj/.trr/.xtc) or an energy file
(.ene/.edr) and prints that to standard output in a readable format. This program is essential for checking
your run input file in case of problems.

When requesting to dump a topology file the program will dump the processed topology, since not all
original information is maintained in tpr files.

Files
-s topol.tpr Input, Opt. Run input file: tpr tpb tpa
-f traj.xtc Input, Opt. Trajectory: xtc trr trj gro g96 pdb cpt
-e ener.edr Input, Opt. Energy file: edr ene

-cp state.cpt Input, Opt. Checkpoint file
-om grompp.mdp Output, Opt. grompp input file with MD parameters

Other options
-h bool no Print help info and quit

-nice int 0 Set the nicelevel
-nr bool yes Show index numbers in output (leaving them out makes comparison eas-

ier, but creates a useless topology)

D.44. g nmeig 253

D.44 g nmeig

g nmeig calculates the eigenvectors/values of a (Hessian) matrix, which can be calculated with mdrun. The
eigenvectors are written to a trajectory file (-v). The structure is written first with t=0. The eigenvectors
are written as frames with the eigenvector number as timestamp. The eigenvectors can be analyzed with
g anaeig. An ensemble of structures can be generated from the eigenvectors with g nmens. When
mass weighting is used, the generated eigenvectors will be scaled back to plain cartesian coordinates before
generating the output - in this case they will no longer be exactly orthogonal in the standard cartesian norm
(But in the mass weighted norm they would be).
Files

-f hessian.mtx Input Hessian matrix
-s topol.tpr Input Structure+mass(db): tpr tpb tpa gro g96 pdb

-of eigenfreq.xvg Output xvgr/xmgr file
-ol eigenval.xvg Output xvgr/xmgr file
-v eigenvec.trr Output Full precision trajectory: trr trj cpt

Other options
-h bool no Print help info and quit

-nice int 19 Set the nicelevel
-xvgr bool yes Add specific codes (legends etc.) in the output xvg files for the xmgrace

program
-m bool yes Divide elements of Hessian by product of sqrt(mass) of involved atoms

prior to diagonalization. This should be used for ’Normal Modes’ analy-
sis

-first int 1 First eigenvector to write away
-last int 50 Last eigenvector to write away

D.45 g nmens

g nmens generates an ensemble around an average structure in a subspace which is defined by a set of
normal modes (eigenvectors). The eigenvectors are assumed to be mass-weighted. The position along each
eigenvector is randomly taken from a Gaussian distribution with variance kT/eigenvalue.

By default the starting eigenvector is set to 7, since the first six normal modes are the translational and
rotational degrees of freedom.
Files

-v eigenvec.trr Input Full precision trajectory: trr trj cpt
-e eigenval.xvg Input xvgr/xmgr file
-s topol.tpr Input Structure+mass(db): tpr tpb tpa gro g96 pdb
-n index.ndx Input, Opt. Index file
-o ensemble.xtc Output Trajectory: xtc trr trj gro g96 pdb

Other options
-h bool no Print help info and quit

-nice int 19 Set the nicelevel
-xvgr bool yes Add specific codes (legends etc.) in the output xvg files for the xmgrace

program
-temp real 300 Temperature in Kelvin
-seed int -1 Random seed, -1 generates a seed from time and pid
-num int 100 Number of structures to generate

-first int 7 First eigenvector to use (-1 is select)
-last int -1 Last eigenvector to use (-1 is till the last)

254 Appendix D. Manual Pages

D.46 g nmtraj

g nmtraj generates an virtual trajectory from an eigenvector, corresponding to a harmonic cartesian os-
cillation around the average structure. The eigenvectors should normally be mass-weighted, but you can use
non-weighted eigenvectors to generate orthogonal motions. The output frames are written as a trajectory
file covering an entire period, and the first frame is the average structure. If you write the trajectory in (or
convert to) PDB format you can view it directly in PyMol and also render a photorealistic movie. Motion
amplitudes are calculated from the eigenvalues and a preset temperature, assuming equipartition of the en-
ergy over all modes. To make the motion clearly visible in PyMol you might want to amplify it by setting
an unrealistic high temperature. However, be aware that both the linear cartesian displacements and mass
weighting will lead to serious structure deformation for high amplitudes - this is is simply a limitation of
the cartesian normal mode model. By default the selected eigenvector is set to 7, since the first six normal
modes are the translational and rotational degrees of freedom.

Files
-s topol.tpr Input Structure+mass(db): tpr tpb tpa gro g96 pdb
-v eigenvec.trr Input Full precision trajectory: trr trj cpt
-o nmtraj.xtc Output Trajectory: xtc trr trj gro g96 pdb

Other options
-h bool no Print help info and quit

-nice int 19 Set the nicelevel
-eignr string 7 String of eigenvectors to use (first is 1)

-phases string 0.0 String of phases (default is 0.0)
-temp real 300 Temperature in Kelvin

-amplitude real 0.25 Amplitude for modes with eigenvalue<=0
-nframes int 30 Number of frames to generate

D.47 g order

Compute the order parameter per atom for carbon tails. For atom i the vector i-1, i+1 is used together with
an axis. The index file has to contain a group with all equivalent atoms in all tails for each atom the order
parameter has to be calculated for. The program can also give all diagonal elements of the order tensor and
even calculate the deuterium order parameter Scd (default). If the option -szonly is given, only one order
tensor component (specified by the -d option) is given and the order parameter per slice is calculated as
well. If -szonly is not selected, all diagonal elements and the deuterium order parameter is given.

The tetrahedrality order parameters can be determined around an atom. Both angle an distance order pa-
rameters are calculated. See P.-L. Chau and A.J. Hardwick, Mol. Phys., 93, (1998), 511-518. for more
details.

Files
-f traj.xtc Input Trajectory: xtc trr trj gro g96 pdb cpt
-n index.ndx Input Index file
-s topol.tpr Input Run input file: tpr tpb tpa
-o order.xvg Output xvgr/xmgr file

-od deuter.xvg Output xvgr/xmgr file
-os sliced.xvg Output xvgr/xmgr file
-Sg sg-ang.xvg Output xvgr/xmgr file
-Sk sk-dist.xvg Output xvgr/xmgr file

D.48. g polystat 255

Other options
-h bool no Print help info and quit

-nice int 19 Set the nicelevel
-b time 0 First frame (ps) to read from trajectory
-e time 0 Last frame (ps) to read from trajectory

-dt time 0 Only use frame when t MOD dt = first time (ps)
-w bool no View output xvg, xpm, eps and pdb files

-xvgr bool yes Add specific codes (legends etc.) in the output xvg files for the xmgrace
program

-d enum z Direction of the normal on the membrane: z, x or y
-sl int 1 Calculate order parameter as function of boxlength, dividing the box in

#nr slices.
-szonly bool no Only give Sz element of order tensor. (axis can be specified with -d)
-unsat bool no Calculate order parameters for unsaturated carbons. Note that this cannot

be mixed with normal order parameters.

D.48 g polystat

g polystat plots static properties of polymers as a function of time and prints the average.

By default it determines the average end-to-end distance and radii of gyration of polymers. It asks for an
index group and split this into molecules. The end-to-end distance is then determined using the first and the
last atom in the index group for each molecules. For the radius of gyration the total and the three principal
components for the average gyration tensor are written. With option -v the eigenvectors are written. With
option -pc also the average eigenvalues of the individual gyration tensors are written.

With option -p the presistence length is determined. The chosen index group should consist of atoms
that are consecutively bonded in the polymer mainchains. The presistence length is then determined from
the cosine of the angles between bonds with an index difference that is even, the odd pairs are not used,
because straight polymer backbones are usually all trans and therefore only every second bond aligns. The
persistence length is defined as number of bonds where the average cos reaches a value of 1/e. This point is
determined by a linear interpolation of log(<cos>).
Files

-s topol.tpr Input Run input file: tpr tpb tpa
-f traj.xtc Input Trajectory: xtc trr trj gro g96 pdb cpt
-n index.ndx Input, Opt. Index file
-o polystat.xvg Output xvgr/xmgr file
-v polyvec.xvg Output, Opt. xvgr/xmgr file
-p persist.xvg Output, Opt. xvgr/xmgr file

Other options
-h bool no Print help info and quit

-nice int 19 Set the nicelevel
-b time 0 First frame (ps) to read from trajectory
-e time 0 Last frame (ps) to read from trajectory

-dt time 0 Only use frame when t MOD dt = first time (ps)
-tu enum ps Time unit: ps, fs, ns, us, ms or s
-w bool no View output xvg, xpm, eps and pdb files

-xvgr bool yes Add specific codes (legends etc.) in the output xvg files for the xmgrace
program

-mw bool yes Use the mass weighting for radii of gyration
-pc bool no Plot average eigenvalues

256 Appendix D. Manual Pages

D.49 g potential

Compute the electrostatical potential across the box. The potential iscalculated by first summing the charges
per slice and then integratingtwice of this charge distribution. Periodic boundaries are not taken into ac-
count. Reference of potential is taken to be the left side ofthe box. It’s also possible to calculate the
potential in sphericalcoordinates as function of r by calculating a charge distribution inspherical slices and
twice integrating them. epsilon r is taken as 1,2 is more appropriate in many cases

Files
-f traj.xtc Input Trajectory: xtc trr trj gro g96 pdb cpt
-n index.ndx Input Index file
-s topol.tpr Input Run input file: tpr tpb tpa
-o potential.xvg Output xvgr/xmgr file

-oc charge.xvg Output xvgr/xmgr file
-of field.xvg Output xvgr/xmgr file

Other options
-h bool no Print help info and quit

-nice int 19 Set the nicelevel
-b time 0 First frame (ps) to read from trajectory
-e time 0 Last frame (ps) to read from trajectory
-dt time 0 Only use frame when t MOD dt = first time (ps)
-w bool no View output xvg, xpm, eps and pdb files

-xvgr bool yes Add specific codes (legends etc.) in the output xvg files for the xmgrace
program

-d string Z Take the normal on the membrane in direction X, Y or Z.
-sl int 10 Calculate potential as function of boxlength, dividing the box in #nr

slices.
-cb int 0 Discard first #nr slices of box for integration
-ce int 0 Discard last #nr slices of box for integration
-tz real 0 Translate all coordinates <distance> in the direction of the box

-spherical bool no Calculate spherical thingie
-ng int 1 Number of groups to consider

-correct bool no Assume net zero charge of groups to improve accuracy

• Discarding slices for integration should not be necessary.

D.50 g principal

g principal calculates the three principal axes of inertia for a group of atoms.

Files
-f traj.xtc Input Trajectory: xtc trr trj gro g96 pdb cpt
-s topol.tpr Input Structure+mass(db): tpr tpb tpa gro g96 pdb
-n index.ndx Input, Opt. Index file

-a1 axis1.dat Output Generic data file
-a2 axis2.dat Output Generic data file
-a3 axis3.dat Output Generic data file
-om moi.dat Output Generic data file

D.51. g rama 257

Other options
-h bool no Print help info and quit

-nice int 19 Set the nicelevel
-b time 0 First frame (ps) to read from trajectory
-e time 0 Last frame (ps) to read from trajectory

-dt time 0 Only use frame when t MOD dt = first time (ps)
-tu enum ps Time unit: ps, fs, ns, us, ms or s
-w bool no View output xvg, xpm, eps and pdb files

-foo bool no Dummy option to avoid empty array

D.51 g rama

g rama selects the Phi/Psi dihedral combinations from your topology file and computes these as a function
of time. Using simple Unix tools such as grep you can select out specific residues.

Files
-f traj.xtc Input Trajectory: xtc trr trj gro g96 pdb cpt
-s topol.tpr Input Run input file: tpr tpb tpa
-o rama.xvg Output xvgr/xmgr file

Other options
-h bool no Print help info and quit

-nice int 19 Set the nicelevel
-b time 0 First frame (ps) to read from trajectory
-e time 0 Last frame (ps) to read from trajectory

-dt time 0 Only use frame when t MOD dt = first time (ps)
-w bool no View output xvg, xpm, eps and pdb files

-xvgr bool yes Add specific codes (legends etc.) in the output xvg files for the xmgrace
program

D.52 g rdf

The structure of liquids can be studied by either neutron or X-ray scattering. The most common way to
describe liquid structure is by a radial distribution function. However, this is not easy to obtain from a
scattering experiment.

g rdf calculates radial distribution functions in different ways. The normal method is around a (set of)
particle(s), the other method is around the center of mass of a set of particles. With both methods rdf’s can
also be calculated around axes parallel to the z-axis with option -xy.

The option -rdf sets the type of rdf to be computed. Default is for atoms or particles, but one can also
select center of mass or geometry of molecules or residues. In all cases only the atoms in the index groups
are taken into account. For molecules and/or the center of mass option a run input file is required. Other
weighting than COM or COG can currently only be achieved by providing a run input file with different
masses. Option -com also works in conjunction with -rdf.

If a run input file is supplied (-s) and -rdf is set to atom, exclusions defined in that file are taken into
account when calculating the rdf. The option -cut is meant as an alternative way to avoid intramolecular
peaks in the rdf plot. It is however better to supply a run input file with a higher number of exclusions. For
eg. benzene a topology with nrexcl set to 5 would eliminate all intramolecular contributions to the rdf. Note
that all atoms in the selected groups are used, also the ones that don’t have Lennard-Jones interactions.

258 Appendix D. Manual Pages

Option -cn produces the cumulative number rdf, i.e. the average number of particles within a distance r.

To bridge the gap between theory and experiment structure factors can be computed (option -sq). The
algorithm uses FFT, the gridspacing of which is determined by option -grid.

Files
-f traj.xtc Input Trajectory: xtc trr trj gro g96 pdb cpt
-s topol.tpr Input, Opt. Structure+mass(db): tpr tpb tpa gro g96 pdb
-n index.ndx Input, Opt. Index file
-o rdf.xvg Output, Opt. xvgr/xmgr file
-sq sq.xvg Output, Opt. xvgr/xmgr file
-cn rdf cn.xvg Output, Opt. xvgr/xmgr file
-hq hq.xvg Output, Opt. xvgr/xmgr file

Other options
-h bool no Print help info and quit

-nice int 19 Set the nicelevel
-b time 0 First frame (ps) to read from trajectory
-e time 0 Last frame (ps) to read from trajectory
-dt time 0 Only use frame when t MOD dt = first time (ps)
-w bool no View output xvg, xpm, eps and pdb files

-xvgr bool yes Add specific codes (legends etc.) in the output xvg files for the xmgrace
program

-bin real 0.002 Binwidth (nm)
-com bool no RDF with respect to the center of mass of first group
-rdf enum atom RDF type: atom, mol com, mol cog, res com or res cog
-pbc bool yes Use periodic boundary conditions for computing distances. Without PBC

the maximum range will be three times the larges box edge.
-norm bool yes Normalize for volume and density

-xy bool no Use only the x and y components of the distance
-cut real 0 Shortest distance (nm) to be considered
-ng int 1 Number of secondary groups to compute RDFs around a central group

-fade real 0 From this distance onwards the RDF is tranformed by g’(r) = 1 + [g(r)-1]
exp(-(r/fade-1)2 to make it go to 1 smoothly. If fade is 0.0 nothing is
done.

-nlevel int 20 Number of different colors in the diffraction image
-startq real 0 Starting q (1/nm)

-endq real 60 Ending q (1/nm)
-energy real 12 Energy of the incoming X-ray (keV)

D.53 g rms

g rms compares two structures by computing the root mean square deviation (RMSD), the size-independent
’rho’ similarity parameter (rho) or the scaled rho (rhosc), see Maiorov & Crippen, PROTEINS 22, 273
(1995). This is selected by -what.

Each structure from a trajectory (-f) is compared to a reference structure. The reference structure is taken
from the structure file (-s).

With option -mir also a comparison with the mirror image of the reference structure is calculated. This is
useful as a reference for ’significant’ values, see Maiorov & Crippen, PROTEINS 22, 273 (1995).

Option -prev produces the comparison with a previous frame the specified number of frames ago.

D.53. g rms 259

Option -m produces a matrix in .xpm format of comparison values of each structure in the trajectory with
respect to each other structure. This file can be visualized with for instance xv and can be converted to
postscript with xpm2ps.

Option -fit controls the least-squares fitting of the structures on top of each other: complete fit (rotation
and translation), translation only, or no fitting at all.

Option -mw controls whether mass weighting is done or not. If you select the option (default) and supply a
valid tpr file masses will be taken from there, otherwise the masses will be deduced from the atommass.dat
file in the GROMACS library directory. This is fine for proteins but not necessarily for other molecules. A
default mass of 12.011 amu (Carbon) is assigned to unknown atoms. You can check whether this happend
by turning on the -debug flag and inspecting the log file.

With -f2, the ’other structures’ are taken from a second trajectory, this generates a comparison matrix of
one trajectory versus the other.

Option -bin does a binary dump of the comparison matrix.

Option -bm produces a matrix of average bond angle deviations analogously to the -m option. Only bonds
between atoms in the comparison group are considered.

Files
-s topol.tpr Input Structure+mass(db): tpr tpb tpa gro g96 pdb
-f traj.xtc Input Trajectory: xtc trr trj gro g96 pdb cpt

-f2 traj.xtc Input, Opt. Trajectory: xtc trr trj gro g96 pdb cpt
-n index.ndx Input, Opt. Index file
-o rmsd.xvg Output xvgr/xmgr file

-mir rmsdmir.xvg Output, Opt. xvgr/xmgr file
-a avgrp.xvg Output, Opt. xvgr/xmgr file

-dist rmsd-dist.xvg Output, Opt. xvgr/xmgr file
-m rmsd.xpm Output, Opt. X PixMap compatible matrix file

-bin rmsd.dat Output, Opt. Generic data file
-bm bond.xpm Output, Opt. X PixMap compatible matrix file

Other options
-h bool no Print help info and quit

-nice int 19 Set the nicelevel
-b time 0 First frame (ps) to read from trajectory
-e time 0 Last frame (ps) to read from trajectory

-dt time 0 Only use frame when t MOD dt = first time (ps)
-tu enum ps Time unit: ps, fs, ns, us, ms or s
-w bool no View output xvg, xpm, eps and pdb files

-xvgr bool yes Add specific codes (legends etc.) in the output xvg files for the xmgrace
program

-what enum rmsd Structural difference measure: rmsd, rho or rhosc
-pbc bool yes PBC check
-fit enum

rot+trans Fit to reference structure: rot+trans, translation or none
-prev int 0 Compare with previous frame
-split bool no Split graph where time is zero
-skip int 1 Only write every nr-th frame to matrix
-skip2 int 1 Only write every nr-th frame to matrix

-max real -1 Maximum level in comparison matrix
-min real -1 Minimum level in comparison matrix

-bmax real -1 Maximum level in bond angle matrix
-bmin real -1 Minimum level in bond angle matrix

260 Appendix D. Manual Pages

-mw bool yes Use mass weighting for superposition
-nlevels int 80 Number of levels in the matrices

-ng int 1 Number of groups to compute RMS between

D.54 g rmsdist

g rmsdist computes the root mean square deviation of atom distances, which has the advantage that no fit
is needed like in standard RMS deviation as computed by g rms. The reference structure is taken from the
structure file. The rmsd at time t is calculated as the rms of the differences in distance between atom-pairs
in the reference structure and the structure at time t.

g rmsdist can also produce matrices of the rms distances, rms distances scaled with the mean distance and
the mean distances and matrices with NMR averaged distances (1/r3 and 1/r6 averaging). Finally, lists of
atom pairs with 1/r3 and 1/r6 averaged distance below the maximum distance (-max, which will default to
0.6 in this case) can be generated, by default averaging over equivalent hydrogens (all triplets of hydrogens
named *[123]). Additionally a list of equivalent atoms can be supplied (-equiv), each line containing a
set of equivalent atoms specified as residue number and name and atom name; e.g.:

3 SER HB1 3 SER HB2

Residue and atom names must exactly match those in the structure file, including case. Specifying non-
sequential atoms is undefined.
Files

-f traj.xtc Input Trajectory: xtc trr trj gro g96 pdb cpt
-s topol.tpr Input Structure+mass(db): tpr tpb tpa gro g96 pdb
-n index.ndx Input, Opt. Index file

-equiv equiv.dat Input, Opt. Generic data file
-o distrmsd.xvg Output xvgr/xmgr file

-rms rmsdist.xpm Output, Opt. X PixMap compatible matrix file
-scl rmsscale.xpm Output, Opt. X PixMap compatible matrix file
-mean rmsmean.xpm Output, Opt. X PixMap compatible matrix file
-nmr3 nmr3.xpm Output, Opt. X PixMap compatible matrix file
-nmr6 nmr6.xpm Output, Opt. X PixMap compatible matrix file
-noe noe.dat Output, Opt. Generic data file

Other options
-h bool no Print help info and quit

-nice int 19 Set the nicelevel
-b time 0 First frame (ps) to read from trajectory
-e time 0 Last frame (ps) to read from trajectory
-dt time 0 Only use frame when t MOD dt = first time (ps)
-w bool no View output xvg, xpm, eps and pdb files

-xvgr bool yes Add specific codes (legends etc.) in the output xvg files for the xmgrace
program

-nlevels int 40 Discretize rms in # levels
-max real -1 Maximum level in matrices
-sumh bool yes average distance over equivalent hydrogens

D.55 g rmsf

g rmsf computes the root mean square fluctuation (RMSF, i.e. standard deviation) of atomic positions after
(optionally) fitting to a reference frame.

D.56. grompp 261

With option -oq the RMSF values are converted to B-factor values, which are written to a pdb file with the
coordinates, of the structure file, or of a pdb file when -q is specified. Option -ox writes the B-factors to
a file with the average coordinates.

With the option -od the root mean square deviation with respect to the reference structure is calculated.

With the option aniso g rmsf will compute anisotropic temperature factors and then it will also output
average coordinates and a pdb file with ANISOU records (corresonding to the -oq or -ox option). Please
note that the U values are orientation dependent, so before comparison with experimental data you should
verify that you fit to the experimental coordinates.

When a pdb input file is passed to the program and the -aniso flag is set a correlation plot of the Uij will
be created, if any anisotropic temperature factors are present in the pdb file.

With option -dir the average MSF (3x3) matrix is diagonalized. This shows the directions in which the
atoms fluctuate the most and the least.

Files
-f traj.xtc Input Trajectory: xtc trr trj gro g96 pdb cpt
-s topol.tpr Input Structure+mass(db): tpr tpb tpa gro g96 pdb
-n index.ndx Input, Opt. Index file
-q eiwit.pdb Input, Opt. Protein data bank file

-oq bfac.pdb Output, Opt. Protein data bank file
-ox xaver.pdb Output, Opt. Protein data bank file
-o rmsf.xvg Output xvgr/xmgr file

-od rmsdev.xvg Output, Opt. xvgr/xmgr file
-oc correl.xvg Output, Opt. xvgr/xmgr file
-dir rmsf.log Output, Opt. Log file

Other options
-h bool no Print help info and quit

-nice int 19 Set the nicelevel
-b time 0 First frame (ps) to read from trajectory
-e time 0 Last frame (ps) to read from trajectory

-dt time 0 Only use frame when t MOD dt = first time (ps)
-w bool no View output xvg, xpm, eps and pdb files

-xvgr bool yes Add specific codes (legends etc.) in the output xvg files for the xmgrace
program

-res bool no Calculate averages for each residue
-aniso bool no Compute anisotropic termperature factors

-fit bool yes Do a least squares superposition before computing RMSF. Without this
you must make sure that the reference structure and the trajectory match.

D.56 grompp

The gromacs preprocessor reads a molecular topology file, checks the validity of the file, expands the
topology from a molecular description to an atomic description. The topology file contains information
about molecule types and the number of molecules, the preprocessor copies each molecule as needed.
There is no limitation on the number of molecule types. Bonds and bond-angles can be converted into
constraints, separately for hydrogens and heavy atoms. Then a coordinate file is read and velocities can be
generated from a Maxwellian distribution if requested. grompp also reads parameters for the mdrun (eg.
number of MD steps, time step, cut-off), and others such as NEMD parameters, which are corrected so that
the net acceleration is zero. Eventually a binary file is produced that can serve as the sole input file for the
MD program.

262 Appendix D. Manual Pages

grompp uses the atom names from the topology file. The atom names in the coordinate file (option -c)
are only read to generate warnings when they do not match the atom names in the topology. Note that
the atom names are irrelevant for the simulation as only the atom types are used for generating interaction
parameters.

grompp calls a preprocessor to resolve includes, macros etcetera. By default we use the cpp in your path. To
specify a different macro-preprocessor (e.g. m4) or alternative location you can put a line in your parameter
file specifying the path to that program. Specifying -pp will get the pre-processed topology file written
out.

If your system does not have a c-preprocessor, you can still use grompp, but you do not have access to the
features from the cpp. Command line options to the c-preprocessor can be given in the .mdp file. See your
local manual (man cpp).

When using position restraints a file with restraint coordinates can be supplied with -r, otherwise restrain-
ing will be done with respect to the conformation from the -c option. For free energy calculation the the
coordinates for the B topology can be supplied with -rb, otherwise they will be equal to those of the A
topology.

Starting coordinates can be read from trajectory with -t. The last frame with coordinates and velocities
will be read, unless the -time option is used. Note that these velocities will not be used when gen vel =
yes in your .mdp file. An energy file can be supplied with -e to have exact restarts when using pressure
and/or Nose-Hoover temperature coupling. For an exact restart do not forget to turn off velocity generation
and turn on unconstrained starting when constraints are present in the system. If you want to continue a
crashed run, it is easier to use tpbconv.

Using the -morse option grompp can convert the harmonic bonds in your topology to morse potentials.
This makes it possible to break bonds. For this option to work you need an extra file in your $GMXLIB
with dissociation energy. Use the -debug option to get more information on the workings of this option
(look for MORSE in the grompp.log file using less or something like that).

By default all bonded interactions which have constant energy due to virtual site constructions will be
removed. If this constant energy is not zero, this will result in a shift in the total energy. All bonded
interactions can be kept by turning off -rmvsbds. Additionally, all constraints for distances which will
be constant anyway because of virtual site constructions will be removed. If any constraints remain which
involve virtual sites, a fatal error will result.

To verify your run input file, please make notice of all warnings on the screen, and correct where necessary.
Do also look at the contents of the mdout.mdp file, this contains comment lines, as well as the input that
grompp has read. If in doubt you can start grompp with the -debug option which will give you more
information in a file called grompp.log (along with real debug info). Finally, you can see the contents of the
run input file with the gmxdump program.

Files
-f grompp.mdp Input, Opt. grompp input file with MD parameters
-po mdout.mdp Output grompp input file with MD parameters
-c conf.gro Input Structure file: gro g96 pdb tpr tpb tpa
-r conf.gro Input, Opt. Structure file: gro g96 pdb tpr tpb tpa
-rb conf.gro Input, Opt. Structure file: gro g96 pdb tpr tpb tpa
-n index.ndx Input, Opt. Index file
-p topol.top Input Topology file
-pp processed.top Output, Opt. Topology file
-o topol.tpr Output Run input file: tpr tpb tpa
-t traj.trr Input, Opt. Full precision trajectory: trr trj cpt
-e ener.edr Input, Opt. Energy file: edr ene

Other options

D.57. g rotacf 263

-h bool no Print help info and quit
-nice int 0 Set the nicelevel

-v bool yes Be loud and noisy
-time real -1 Take frame at or first after this time.

-rmvsbds bool yes Remove constant bonded interactions with virtual sites
-maxwarn int 0 Number of allowed warnings during input processing

-zero bool no Set parameters for bonded interactions without defaults to zero instead of
generating an error

-renum bool yes Renumber atomtypes and minimize number of atomtypes

D.57 g rotacf

g rotacf calculates the rotational correlation function for molecules. Three atoms (i,j,k) must be given in
the index file, defining two vectors ij and jk. The rotational acf is calculated as the autocorrelation function
of the vector n = ij x jk, i.e. the cross product of the two vectors. Since three atoms span a plane, the order
of the three atoms does not matter. Optionally, controlled by the -d switch, you can calculate the rotational
correlation function for linear molecules by specifying two atoms (i,j) in the index file.

EXAMPLES

g rotacf -P 1 -nparm 2 -fft -n index -o rotacf-x-P1 -fa expfit-x-P1 -beginfit 2.5 -endfit 20.0

This will calculate the rotational correlation function using a first order Legendre polynomial of the angle
of a vector defined by the index file. The correlation function will be fitted from 2.5 ps till 20.0 ps to a two
parameter exponential

Files
-f traj.xtc Input Trajectory: xtc trr trj gro g96 pdb cpt
-s topol.tpr Input Run input file: tpr tpb tpa
-n index.ndx Input Index file
-o rotacf.xvg Output xvgr/xmgr file

Other options
-h bool no Print help info and quit

-nice int 19 Set the nicelevel
-b time 0 First frame (ps) to read from trajectory
-e time 0 Last frame (ps) to read from trajectory

-dt time 0 Only use frame when t MOD dt = first time (ps)
-w bool no View output xvg, xpm, eps and pdb files

-xvgr bool yes Add specific codes (legends etc.) in the output xvg files for the xmgrace
program

-d bool no Use index doublets (vectors) for correlation function instead of triplets
(planes)

-aver bool yes Average over molecules
-acflen int -1 Length of the ACF, default is half the number of frames

-normalize bool yes Normalize ACF
-P enum 0 Order of Legendre polynomial for ACF (0 indicates none): 0, 1, 2 or 3

-fitfn enum none Fit function: none, exp, aexp, exp exp, vac, exp5, exp7 or exp9
-ncskip int 0 Skip N points in the output file of correlation functions

-beginfit real 0 Time where to begin the exponential fit of the correlation function
-endfit real -1 Time where to end the exponential fit of the correlation function, -1 is till

the end

264 Appendix D. Manual Pages

D.58 g saltbr

g saltbr plots the distance between all combination of charged groups as a function of time. The groups are
combined in different ways.A minimum distance can be given, (eg. the cut-off), then groups that are never
closer than that distance will not be plotted.
Output will be in a number of fixed filenames, min-min.xvg, plus-min.xvg and plus-plus.xvg, or files for
every individual ion-pair if selected

Files
-f traj.xtc Input Trajectory: xtc trr trj gro g96 pdb cpt
-s topol.tpr Input Run input file: tpr tpb tpa

Other options
-h bool no Print help info and quit

-nice int 19 Set the nicelevel
-b time 0 First frame (ps) to read from trajectory
-e time 0 Last frame (ps) to read from trajectory
-dt time 0 Only use frame when t MOD dt = first time (ps)
-t real 1000 trunc distance

-sep bool no Use separate files for each interaction (may be MANY)

D.59 g sas

g sas computes hydrophobic, hydrophilic and total solvent accessible surface area. As a side effect the
Connolly surface can be generated as well in a pdb file where the nodes are represented as atoms and the
vertices connecting the nearest nodes as CONECT records. The program will ask for a group for the surface
calculation and a group for the output. The calculation group should always consists of all the non-solvent
atoms in the system. The output group can be the whole or part of the calculation group. The area can be
plotted per residue and atom as well (options -or and -oa). In combination with the latter option an itp
file can be generated (option -i) which can be used to restrain surface atoms.

By default, periodic boundary conditions are taken into account, this can be turned off using the -nopbc
option.

With the -tv option the total volume and density of the molecule can be computed. Please consider whether
the normal probe radius is appropriate in this case or whether you would rather use e.g. 0. It is good to keep
in mind that the results for volume and density are very approximate, in e.g. ice Ih one can easily fit water
molecules in the pores which would yield too low volume, too high surface area and too high density.

Files
-f traj.xtc Input Trajectory: xtc trr trj gro g96 pdb cpt
-s topol.tpr Input Run input file: tpr tpb tpa
-o area.xvg Output xvgr/xmgr file
-or resarea.xvg Output, Opt. xvgr/xmgr file
-oa atomarea.xvg Output, Opt. xvgr/xmgr file
-tv volume.xvg Output, Opt. xvgr/xmgr file
-q connelly.pdb Output, Opt. Protein data bank file
-n index.ndx Input, Opt. Index file
-i surfat.itp Output, Opt. Include file for topology

Other options
-h bool no Print help info and quit

-nice int 19 Set the nicelevel

D.60. g sdf 265

-b time 0 First frame (ps) to read from trajectory
-e time 0 Last frame (ps) to read from trajectory

-dt time 0 Only use frame when t MOD dt = first time (ps)
-w bool no View output xvg, xpm, eps and pdb files

-xvgr bool yes Add specific codes (legends etc.) in the output xvg files for the xmgrace
program

-probe real 0.14 Radius of the solvent probe (nm)
-ndots int 24 Number of dots per sphere, more dots means more accuracy
-qmax real 0.2 The maximum charge (e, absolute value) of a hydrophobic atom

-f index bool no Determine from a group in the index file what are the hydrophobic atoms
rather than from the charge

-minarea real 0.5 The minimum area (nm2) to count an atom as a surface atom when writ-
ing a position restraint file (see help)

-pbc bool yes Take periodicity into account
-prot bool yes Output the protein to the connelly pdb file too
-dgs real 0 default value for solvation free energy per area (kJ/mol/nm2)

D.60 g sdf

g sdf calculates the spatial distribution function (SDF) of a set of atoms within a coordinate system defined
by three atoms. There is single body, two body and three body SDF implemented (select with option -
mode). In the single body case the local coordinate system is defined by using a triple of atoms from one
single molecule, for the two and three body case the configurations are dynamically searched complexes of
two or three molecules (or residues) meeting certain distance consitions (see below).

The program needs a trajectory, a GROMACS run input file and an index file to work. You have to setup 4
groups in the index file before using g sdf:

The first three groups are used to define the SDF coordinate system. The programm will dynamically
generate the atom tripels according to the selected -mode: In -mode 1 the triples will be just the 1st, 2nd,
3rd, ... atoms from groups 1, 2 and 3. Hence the nth entries in groups 1, 2 and 3 must be from the same
residue. In -mode 2 the triples will be 1st, 2nd, 3rd, ... atoms from groups 1 and 2 (with the nth entries in
groups 1 and 2 having the same res-id). For each pair from groups 1 and 2 group 3 is searched for an atom
meeting the distance conditions set with -triangle and -dtri relative to atoms 1 and 2. In -mode 3 for each
atom in group 1 group 2 is searched for an atom meeting the distance condition and if a pair is found group
3 is searched for an atom meeting the further conditions. The triple will only be used if all three atoms have
different res-id’s.

The local coordinate system is always defined using the following scheme: Atom 1 will be used as the point
of origin for the SDF. Atom 1 and 2 will define the principle axis (Z) of the coordinate system. The other
two axis will be defined inplane (Y) and normal (X) to the plane through Atoms 1, 2 and 3. The fourth
group contains the atoms for which the SDF will be evaluated.

For -mode 2 and 3 you have to define the distance conditions for the 2 resp. 3 molecule complexes to be
searched for using -triangle and -dtri.

The SDF will be sampled in cartesian coordinates. Use ’-grid x y z’ to define the size of the SDF grid
around the reference molecule. The Volume of the SDF grid will be V=x*y*z (nm3). Use -bin to set the
binwidth for grid.

The output will be a binary 3D-grid file (gom plt.dat) in the .plt format that can be be read directly by
gOpenMol. The option -r will generate a .gro file with the reference molecule(s) transfered to the SDF coor-
dinate system. Load this file into gOpenMol and display the SDF as a contour plot (see http://www.csc.fi/gopenmol/index.phtml
for further documentation).

266 Appendix D. Manual Pages

For further information about SDF’s have a look at: A. Vishnyakov, JPC A, 105, 2001, 1702 and the
references cited within.

Files
-f traj.xtc Input Trajectory: xtc trr trj gro g96 pdb cpt
-n index.ndx Input Index file
-s topol.tpr Input, Opt. Structure+mass(db): tpr tpb tpa gro g96 pdb
-o gom plt.dat Output Generic data file
-r refmol.gro Output, Opt. Structure file: gro g96 pdb

Other options
-h bool no Print help info and quit

-nice int 19 Set the nicelevel
-b time 0 First frame (ps) to read from trajectory
-e time 0 Last frame (ps) to read from trajectory
-dt time 0 Only use frame when t MOD dt = first time (ps)

-mode int 1 SDF in [1,2,3] particle mode
-triangle vector 0 0 0 r(1,3), r(2,3), r(1,2)

-dtri vector
0.03 0.03 0.03 dr(1,3), dr(2,3), dr(1,2)

-bin real 0.05 Binwidth for the 3D-grid (nm)
-grid vector 1 1 1 Size of the 3D-grid (nm,nm,nm)

D.61 g sgangle

Compute the angle and distance between two groups. The groups are defined by a number of atoms given
in an index file and may be two or three atoms in size. If -one is set, only one group should be specified
in the index file and the angle between this group at time 0 and t will be computed. The angles calculated
depend on the order in which the atoms are given. Giving for instance 5 6 will rotate the vector 5-6 with
180 degrees compared to giving 6 5.

If three atoms are given, the normal on the plane spanned by those three atoms will be calculated, using the
formula P1P2 x P1P3. The cos of the angle is calculated, using the inproduct of the two normalized vectors.

Here is what some of the file options do:
-oa: Angle between the two groups specified in the index file. If a group contains three atoms the normal
to the plane defined by those three atoms will be used. If a group contains two atoms, the vector defined by
those two atoms will be used.
-od: Distance between two groups. Distance is taken from the center of one group to the center of the other
group.
-od1: If one plane and one vector is given, the distances for each of the atoms from the center of the plane
is given seperately.
-od2: For two planes this option has no meaning.

Files
-f traj.xtc Input Trajectory: xtc trr trj gro g96 pdb cpt
-n index.ndx Input Index file
-s topol.tpr Input Run input file: tpr tpb tpa

-oa sg angle.xvg Output xvgr/xmgr file
-od sg dist.xvg Output, Opt. xvgr/xmgr file

-od1 sg dist1.xvg Output, Opt. xvgr/xmgr file
-od2 sg dist2.xvg Output, Opt. xvgr/xmgr file

D.62. g sham 267

Other options
-h bool no Print help info and quit

-nice int 19 Set the nicelevel
-b time 0 First frame (ps) to read from trajectory
-e time 0 Last frame (ps) to read from trajectory

-dt time 0 Only use frame when t MOD dt = first time (ps)
-w bool no View output xvg, xpm, eps and pdb files

-xvgr bool yes Add specific codes (legends etc.) in the output xvg files for the xmgrace
program

-one bool no Only one group compute angle between vector at time zero and time t
-z bool no Use the Z-axis as reference

D.62 g sham

g sham makes multi-dimensional free-energy, enthalpy and entropy plots. g sham reads one or more xvg
files and analyzes data sets. g sham basic purpose is plotting Gibbs free energy landscapes (option -ls)
by Bolzmann inverting multi-dimensional histograms (option -lp) but it can also make enthalpy (option
-lsh) and entropy (option -lss) plots. The histograms can be made for any quantities the user supplies.
A line in the input file may start with a time (see option -time) and any number of y values may follow.
Multiple sets can also be read when they are seperated by & (option -n), in this case only one y value is
read from each line. All lines starting with # and @ are skipped.

Option -ge can be used to supply a file with free energies when the ensemble is not a Boltzmann ensemble,
but needs to be biased by this free energy. One free energy value is required for each (multi-dimensional)
data point in the -f input.

Option -ene can be used to supply a file with energies. These energies are used as a weighting function
in the single histogram analysis method due to Kumar et. al. When also temperatures are supplied (as a
second column in the file) an experimental weighting scheme is applied. In addition the vales are used for
making enthalpy and entropy plots.

With option -dim dimensions can be gives for distances. When a distance is 2- or 3-dimensional, the
circumference or surface sampled by two particles increases with increasing distance. Depending on what
one would like to show, one can choose to correct the histogram and free-energy for this volume effect.
The probability is normalized by r and r2 for a dimension of 2 and 3 respectively. A value of -1 is used to
indicate an angle in degrees between two vectors: a sin(angle) normalization will be applied. Note that for
angles between vectors the inner-product or cosine is the natural quantity to use, as it will produce bins of
the same volume.

Files
-f graph.xvg Input xvgr/xmgr file

-ge gibbs.xvg Input, Opt. xvgr/xmgr file
-ene esham.xvg Input, Opt. xvgr/xmgr file

-dist ener.xvg Output, Opt. xvgr/xmgr file
-histo edist.xvg Output, Opt. xvgr/xmgr file

-bin bindex.ndx Output, Opt. Index file
-lp prob.xpm Output, Opt. X PixMap compatible matrix file
-ls gibbs.xpm Output, Opt. X PixMap compatible matrix file
-lsh enthalpy.xpm Output, Opt. X PixMap compatible matrix file
-lss entropy.xpm Output, Opt. X PixMap compatible matrix file
-map map.xpm Output, Opt. X PixMap compatible matrix file
-ls3 gibbs3.pdb Output, Opt. Protein data bank file

-mdata mapdata.xvg Output, Opt. xvgr/xmgr file

268 Appendix D. Manual Pages

-g shamlog.log Output, Opt. Log file

Other options
-h bool no Print help info and quit

-nice int 19 Set the nicelevel
-w bool no View output xvg, xpm, eps and pdb files

-xvgr bool yes Add specific codes (legends etc.) in the output xvg files for the xmgrace
program

-time bool yes Expect a time in the input
-b real -1 First time to read from set
-e real -1 Last time to read from set

-ttol real 0 Tolerance on time in appropriate units (usually ps)
-n int 1 Read # sets seperated by &
-d bool no Use the derivative
-bw real 0.1 Binwidth for the distribution

-sham bool yes Turn off energy weighting even if energies are given
-tsham real 298.15 Temperature for single histogram analysis
-pmin real 0 Minimum probability. Anything lower than this will be set to zero
-dim vector 1 1 1 Dimensions for distances, used for volume correction (max 3 values, di-

mensions > 3 will get the same value as the last)
-ngrid vector32 32 32 Number of bins for energy landscapes (max 3 values, dimensions > 3

will get the same value as the last)
-xmin vector 0 0 0 Minimum for the axes in energy landscape (see above for > 3 dimen-

sions)
-xmax vector 1 1 1 Maximum for the axes in energy landscape (see above for > 3 dimen-

sions)
-pmax real 0 Maximum probability in output, default is calculate
-gmax real 0 Maximum free energy in output, default is calculate
-emin real 0 Minimum enthalpy in output, default is calculate
-emax real 0 Maximum enthalpy in output, default is calculate

-nlevels int 25 Number of levels for energy landscape
-mname string Legend label for the custom landscape

D.63 g sorient

g sorient analyzes solvent orientation around solutes. It calculates two angles between the vector from one
or more reference positions to the first atom of each solvent molecule:
theta1: the angle with the vector from the first atom of the solvent molecule to the midpoint between atoms
2 and 3.
theta2: the angle with the normal of the solvent plane, defined by the same three atoms, or when the option
-v23 is set the angle with the vector between atoms 2 and 3.
The reference can be a set of atoms or the center of mass of a set of atoms. The group of solvent atoms
should consist of 3 atoms per solvent molecule. Only solvent molecules between -rmin and -rmax are
considered for -o and -no each frame.

-o: distribtion of cos(theta1) for rmin<=r<=rmax.

-no: distribution of cos(theta2) for rmin<=r<=rmax.

-ro: <cos(theta1)> and <3cos2(theta2)-1> as a function of the distance.

-co: the sum over all solvent molecules within distance r of cos(theta1) and 3cos2(theta2)-1 as a function
of r.

-rc: the distribution of the solvent molecules as a function of r

D.64. g spatial 269

Files
-f traj.xtc Input Trajectory: xtc trr trj gro g96 pdb cpt
-s topol.tpr Input Structure+mass(db): tpr tpb tpa gro g96 pdb
-n index.ndx Input, Opt. Index file
-o sori.xvg Output xvgr/xmgr file

-no snor.xvg Output xvgr/xmgr file
-ro sord.xvg Output xvgr/xmgr file
-co scum.xvg Output xvgr/xmgr file
-rc scount.xvg Output xvgr/xmgr file

Other options
-h bool no Print help info and quit

-nice int 19 Set the nicelevel
-b time 0 First frame (ps) to read from trajectory
-e time 0 Last frame (ps) to read from trajectory

-dt time 0 Only use frame when t MOD dt = first time (ps)
-w bool no View output xvg, xpm, eps and pdb files

-xvgr bool yes Add specific codes (legends etc.) in the output xvg files for the xmgrace
program

-com bool no Use the center of mass as the reference postion
-v23 bool no Use the vector between atoms 2 and 3
-rmin real 0 Minimum distance (nm)
-rmax real 0.5 Maximum distance (nm)
-cbin real 0.02 Binwidth for the cosine
-rbin real 0.02 Binwidth for r (nm)
-pbc bool no Check PBC for the center of mass calculation. Only necessary when your

reference group consists of several molecules.

D.64 g spatial

g cluster can cluster structures with several different methods. Distances between structures can be deter-
mined from a trajectory or read from an XPM matrix file with the -dm option. RMS deviation after fitting
or RMS deviation of atom-pair distances can be used to define the distance between structures.

single linkage: add a structure to a cluster when its distance to any element of the cluster is less than
cutoff.

Jarvis Patrick: add a structure to a cluster when this structure and a structure in the cluster have each other
as neighbors and they have a least P neighbors in common. The neighbors of a structure are the M closest
structures or all structures within cutoff.

Monte Carlo: reorder the RMSD matrix using Monte Carlo.

diagonalization: diagonalize the RMSD matrix.

gromos: use algorithm as described in Daura et al. (Angew. Chem. Int. Ed. 1999, 38, pp 236-240). Count
number of neighbors using cut-off, take structure with largest number of neighbors with all its neighbors as
cluster and eleminate it from the pool of clusters. Repeat for remaining structures in pool.

When the clustering algorithm assigns each structure to exactly one cluster (single linkage, Jarvis Patrick
and gromos) and a trajectory file is supplied, the structure with the smallest average distance to the others
or the average structure or all structures for each cluster will be written to a trajectory file. When writing all
structures, separate numbered files are made for each cluster.

Two output files are always written:
-o writes the RMSD values in the upper left half of the matrix and a graphical depiction of the clusters in

270 Appendix D. Manual Pages

the lower right half When -minstruct = 1 the graphical depiction is black when two structures are in
the same cluster. When -minstruct > 1 different colors will be used for each cluster.
-g writes information on the options used and a detailed list of all clusters and their members.

Additionally, a number of optional output files can be written:
-dist writes the RMSD distribution.
-ev writes the eigenvectors of the RMSD matrix diagonalization.
-sz writes the cluster sizes.
-tr writes a matrix of the number transitions between cluster pairs.
-ntr writes the total number of transitions to or from each cluster.
-clid writes the cluster number as a function of time.
-cl writes average (with option -av) or central structure of each cluster or writes numbered files with
cluster members for a selected set of clusters (with option -wcl, depends on -nst and -rmsmin).

Files
-f traj.xtc Input, Opt. Trajectory: xtc trr trj gro g96 pdb cpt
-s topol.tpr Input, Opt. Structure+mass(db): tpr tpb tpa gro g96 pdb
-n index.ndx Input, Opt. Index file
-dm rmsd.xpm Input, Opt. X PixMap compatible matrix file
-o rmsd-clust.xpm Output X PixMap compatible matrix file
-g cluster.log Output Log file

-dist rmsd-dist.xvg Output, Opt. xvgr/xmgr file
-ev rmsd-eig.xvg Output, Opt. xvgr/xmgr file
-sz clust-size.xvg Output, Opt. xvgr/xmgr file
-trclust-trans.xpm Output, Opt. X PixMap compatible matrix file

-ntrclust-trans.xvg Output, Opt. xvgr/xmgr file
-clid clust-id.xvg Output, Opt. xvgr/xmgr file

-cl clusters.pdb Output, Opt. Trajectory: xtc trr trj gro g96 pdb cpt

Other options
-h bool no Print help info and quit

-nice int 19 Set the nicelevel
-b time 0 First frame (ps) to read from trajectory
-e time 0 Last frame (ps) to read from trajectory
-dt time 0 Only use frame when t MOD dt = first time (ps)
-tu enum ps Time unit: ps, fs, ns, us, ms or s
-w bool no View output xvg, xpm, eps and pdb files

-xvgr bool yes Add specific codes (legends etc.) in the output xvg files for the xmgrace
program

-dista bool no Use RMSD of distances instead of RMS deviation
-nlevels int 40 Discretize RMSD matrix in # levels
-cutoff real 0.1 RMSD cut-off (nm) for two structures to be neighbor

-fit bool yes Use least squares fitting before RMSD calculation
-max real -1 Maximum level in RMSD matrix
-skip int 1 Only analyze every nr-th frame

-av bool no Write average iso middle structure for each cluster
-wcl int 0 Write all structures for first # clusters to numbered files
-nst int 1 Only write all structures if more than # per cluster

-rmsmin real 0 minimum rms difference with rest of cluster for writing structures
-method enum linkage Method for cluster determination: linkage, jarvis-patrick,

monte-carlo, diagonalization or gromos
-minstruct int 1 Minimum number of structures in cluster for coloring in the xpm file

-binary bool no Treat the RMSD matrix as consisting of 0 and 1, where the cut-off is
given by -cutoff

D.65. g spol 271

-M int 10 Number of nearest neighbors considered for Jarvis-Patrick algorithm, 0
is use cutoff

-P int 3 Number of identical nearest neighbors required to form a cluster
-seed int 1993 Random number seed for Monte Carlo clustering algorithm

-niter int 10000 Number of iterations for MC
-kT real 0.001 Boltzmann weighting factor for Monte Carlo optimization (zero turns off

uphill steps)

D.65 g spol

g spol analyzes dipoles around a solute; it is especially useful for polarizable water. A group of reference
atoms, or a center of mass reference (option -com) and a group of solvent atoms is required. The program
splits the group of solvent atoms into molecules. For each solvent molecule the distance to the closest atom
in reference group or to the COM is determined. A cumulative distribution of these distances is plotted.
For each distance between -rmin and -rmax the inner product of the distance vector and the dipole of
the solvent molecule is determined. The average of these dipole components is printed. The same is done
for the polarization, where the average dipole is subtracted from the instantaneous dipole. The magnitude
of the average dipole is set with the option -dip, the direction is defined by the vector from the first atom
in the selected solvent group to the midpoint between the second and the third atom.

Files
-f traj.xtc Input Trajectory: xtc trr trj gro g96 pdb cpt
-s topol.tpr Input Run input file: tpr tpb tpa
-n index.ndx Input, Opt. Index file
-o scdist.xvg Output xvgr/xmgr file

Other options
-h bool no Print help info and quit

-nice int 19 Set the nicelevel
-b time 0 First frame (ps) to read from trajectory
-e time 0 Last frame (ps) to read from trajectory

-dt time 0 Only use frame when t MOD dt = first time (ps)
-w bool no View output xvg, xpm, eps and pdb files

-xvgr bool yes Add specific codes (legends etc.) in the output xvg files for the xmgrace
program

-com bool no Use the center of mass as the reference postion
-refat int 1 The reference atom of the solvent molecule
-rmin real 0 Maximum distance (nm)
-rmax real 0.32 Maximum distance (nm)
-dip real 0 The average dipole (D)
-bw real 0.01 The bin width

D.66 g tcaf

g tcaf computes tranverse current autocorrelations. These are used to estimate the shear viscosity eta. For
details see: Palmer, JCP 49 (1994) pp 359-366.

Transverse currents are calculated using the k-vectors (1,0,0) and (2,0,0) each also in the y- and z-direction,
(1,1,0) and (1,-1,0) each also in the 2 other plains (these vectors are not independent) and (1,1,1) and the 3
other box diagonals (also not independent). For each k-vector the sine and cosine are used, in combination

272 Appendix D. Manual Pages

with the velocity in 2 perpendicular directions. This gives a total of 16*2*2=64 transverse currents. One
autocorrelation is calculated fitted for each k-vector, which gives 16 tcaf’s. Each of these tcaf’s is fitted to
f(t) = exp(-v)(cosh(Wv) + 1/W sinh(Wv)), v = -t/(2 tau), W = sqrt(1 - 4 tau eta/rho k2), which gives 16 tau’s
and eta’s. The fit weights decay with time as exp(-t/wt), the tcaf and fit are calculated up to time 5*wt. The
eta’s should be fitted to 1 - a eta(k) k2, from which one can estimate the shear viscosity at k=0.

When the box is cubic, one can use the option -oc, which averages the tcaf’s over all k-vectors with the
same length. This results in more accurate tcaf’s. Both the cubic tcaf’s and fits are written to -oc The cubic
eta estimates are also written to -ov.

With option -mol the transverse current is determined of molecules instead of atoms. In this case the index
group should consist of molecule numbers instead of atom numbers.

The k-dependent viscosities in the -ov file should be fitted to eta(k) = eta0 (1 - a k2) to obtain the viscosity
at infinite wavelength.

NOTE: make sure you write coordinates and velocities often enough. The initial, non-exponential, part of
the autocorrelation function is very important for obtaining a good fit.
Files

-f traj.trr Input Full precision trajectory: trr trj cpt
-s topol.tpr Input, Opt. Structure+mass(db): tpr tpb tpa gro g96 pdb
-n index.ndx Input, Opt. Index file
-ot transcur.xvg Output, Opt. xvgr/xmgr file
-oa tcaf all.xvg Output xvgr/xmgr file
-o tcaf.xvg Output xvgr/xmgr file

-of tcaf fit.xvg Output xvgr/xmgr file
-oc tcaf cub.xvg Output, Opt. xvgr/xmgr file
-ov visc k.xvg Output xvgr/xmgr file

Other options
-h bool no Print help info and quit

-nice int 19 Set the nicelevel
-b time 0 First frame (ps) to read from trajectory
-e time 0 Last frame (ps) to read from trajectory
-dt time 0 Only use frame when t MOD dt = first time (ps)
-w bool no View output xvg, xpm, eps and pdb files

-xvgr bool yes Add specific codes (legends etc.) in the output xvg files for the xmgrace
program

-mol bool no Calculate tcaf of molecules
-k34 bool no Also use k=(3,0,0) and k=(4,0,0)
-wt real 5 Exponential decay time for the TCAF fit weights

-acflen int -1 Length of the ACF, default is half the number of frames
-normalize bool yes Normalize ACF

-P enum 0 Order of Legendre polynomial for ACF (0 indicates none): 0, 1, 2 or 3
-fitfn enum none Fit function: none, exp, aexp, exp exp, vac, exp5, exp7 or exp9

-ncskip int 0 Skip N points in the output file of correlation functions
-beginfit real 0 Time where to begin the exponential fit of the correlation function
-endfit real -1 Time where to end the exponential fit of the correlation function, -1 is till

the end

D.67 g traj

g traj plots coordinates, velocities, forces and/or the box. With -com the coordinates, velocities and forces
are calculated for the center of mass of each group. When -mol is set, the numbers in the index file are

D.67. g traj 273

interpreted as molecule numbers and the same procedure as with -com is used for each molecule.

Option -ot plots the temperature of each group, provided velocities are present in the trajectory file. No
corrections are made for constrained degrees of freedom! This implies -com.

Options -ekt and -ekr plot the translational and rotational kinetic energy of each group, provided veloc-
ities are present in the trajectory file. This implies -com.

Options -cv and -cf write the average velocities and average forces as temperature factors to a pdb file
with the average coordinates. The temperature factors are scaled such that the maximum is 10. The scaling
can be changed with the option -scale. To get the velocities or forces of one frame set both -b and -e
to the time of desired frame. When averaging over frames you might need to use the -nojump option to
obtain the correct average coordinates. If you select either of these option the average force and velocity
for each atom are written to an xvg file as well (specified with -av or -af).

Option -vd computes a velocity distribution, i.e. the norm of the vector is plotted. In addition in the same
graph the kinetic energy distribution is given.
Files

-f traj.xtc Input Trajectory: xtc trr trj gro g96 pdb cpt
-s topol.tpr Input Structure+mass(db): tpr tpb tpa gro g96 pdb
-n index.ndx Input, Opt. Index file
-ox coord.xvg Output, Opt. xvgr/xmgr file

-oxt coord.xtc Output, Opt. Trajectory: xtc trr trj gro g96 pdb cpt
-ov veloc.xvg Output, Opt. xvgr/xmgr file
-of force.xvg Output, Opt. xvgr/xmgr file
-ob box.xvg Output, Opt. xvgr/xmgr file
-ot temp.xvg Output, Opt. xvgr/xmgr file

-ekt ektrans.xvg Output, Opt. xvgr/xmgr file
-ekr ekrot.xvg Output, Opt. xvgr/xmgr file
-vd veldist.xvg Output, Opt. xvgr/xmgr file
-cv veloc.pdb Output, Opt. Protein data bank file
-cf force.pdb Output, Opt. Protein data bank file
-av all veloc.xvg Output, Opt. xvgr/xmgr file
-af all force.xvg Output, Opt. xvgr/xmgr file

Other options
-h bool no Print help info and quit

-nice int 19 Set the nicelevel
-b time 0 First frame (ps) to read from trajectory
-e time 0 Last frame (ps) to read from trajectory

-dt time 0 Only use frame when t MOD dt = first time (ps)
-tu enum ps Time unit: ps, fs, ns, us, ms or s
-w bool no View output xvg, xpm, eps and pdb files

-xvgr bool yes Add specific codes (legends etc.) in the output xvg files for the xmgrace
program

-com bool no Plot data for the com of each group
-mol bool no Index contains molecule numbers iso atom numbers

-nojump bool no Remove jumps of atoms across the box
-x bool yes Plot X-component
-y bool yes Plot Y-component
-z bool yes Plot Z-component

-ng int 1 Number of groups to consider
-len bool no Plot vector length
-bin real 1 Binwidth for velocity histogram (nm/ps)

-scale real 0 Scale factor for pdb output, 0 is autoscale

274 Appendix D. Manual Pages

D.68 g vanhove

g vanhove computes the Van Hove correlation function. The Van Hove G(r,t) is the probability that a
particle that is at r0 at time zero can be found at position r0+r at time t. g vanhove determines G not for a
vector r, but for the length of r. Thus it gives the probability that a particle moves a distance of r in time
t. Jumps across the periodic boundaries are removed. Corrections are made for scaling due to isotropic or
anisotropic pressure coupling.

With option -om the whole matrix can be written as a function of t and r or as a function of sqrt(t) and r
(option -sqrt).

With option -or the Van Hove function is plotted for one or more values of t. Option -nr sets the number
of times, option -fr the number spacing between the times. The binwidth is set with option -rbin. The
number of bins is determined automatically.

With option -ot the integral up to a certain distance (option -rt) is plotted as a function of time.

For all frames that are read the coordinates of the selected particles are stored in memory. Therefore the
program may use a lot of memory. For options -om and -ot the program may be slow. This is because the
calculation scales as the number of frames times -fm or -ft. Note that with the -dt option the memory
usage and calculation time can be reduced.

Files
-f traj.xtc Input Trajectory: xtc trr trj gro g96 pdb cpt
-s topol.tpr Input Structure+mass(db): tpr tpb tpa gro g96 pdb
-n index.ndx Input, Opt. Index file
-om vanhove.xpm Output, Opt. X PixMap compatible matrix file
-or vanhove r.xvg Output, Opt. xvgr/xmgr file
-ot vanhove t.xvg Output, Opt. xvgr/xmgr file

Other options
-h bool no Print help info and quit

-nice int 19 Set the nicelevel
-b time 0 First frame (ps) to read from trajectory
-e time 0 Last frame (ps) to read from trajectory
-dt time 0 Only use frame when t MOD dt = first time (ps)
-w bool no View output xvg, xpm, eps and pdb files

-xvgr bool yes Add specific codes (legends etc.) in the output xvg files for the xmgrace
program

-sqrt real 0 Use sqrt(t) on the matrix axis which binspacing # in sqrt(ps)
-fm int 0 Number of frames in the matrix, 0 is plot all

-rmax real 2 Maximum r in the matrix (nm)
-rbin real 0.01 Binwidth in the matrix and for -or (nm)
-mmax real 0 Maximum density in the matrix, 0 is calculate (1/nm)

-nlevels int 81 Number of levels in the matrix
-nr int 1 Number of curves for the -or output
-fr int 0 Frame spacing for the -or output
-rt real 0 Integration limit for the -ot output (nm)
-ft int 0 Number of frames in the -ot output, 0 is plot all

D.69. g velacc 275

D.69 g velacc

g velacc computes the velocity autocorrelation function. When the -m option is used, the momentum
autocorrelation function is calculated.

With option -mol the velocity autocorrelation function of molecules is calculated. In this case the index
group should consist of molecule numbers instead of atom numbers.

Files
-f traj.trr Input Full precision trajectory: trr trj cpt
-s topol.tpr Input, Opt. Structure+mass(db): tpr tpb tpa gro g96 pdb
-n index.ndx Input, Opt. Index file
-o vac.xvg Output xvgr/xmgr file

Other options
-h bool no Print help info and quit

-nice int 19 Set the nicelevel
-b time 0 First frame (ps) to read from trajectory
-e time 0 Last frame (ps) to read from trajectory

-dt time 0 Only use frame when t MOD dt = first time (ps)
-w bool no View output xvg, xpm, eps and pdb files

-xvgr bool yes Add specific codes (legends etc.) in the output xvg files for the xmgrace
program

-m bool no Calculate the momentum autocorrelation function
-mol bool no Calculate the velocity acf of molecules

-acflen int -1 Length of the ACF, default is half the number of frames
-normalize bool yes Normalize ACF

-P enum 0 Order of Legendre polynomial for ACF (0 indicates none): 0, 1, 2 or 3
-fitfn enum none Fit function: none, exp, aexp, exp exp, vac, exp5, exp7 or exp9

-ncskip int 0 Skip N points in the output file of correlation functions
-beginfit real 0 Time where to begin the exponential fit of the correlation function

-endfit real -1 Time where to end the exponential fit of the correlation function, -1 is till
the end

D.70 g wham

This is an analysis program that implements the Weighted Histogram Analysis Method (WHAM). It is
intended to analyze .pdo files generated by mdrun using umbrella sampling tocreate a potential of mean
force (PMF). The options are
-o name of the PMF output file
-hist name of the histograms output file
-min minimum coordinate to use
-max maximum coordinate to use

Note: the program will throw out any data that is outside of min - max. The program will output the true
min and max after completion, so you can use these values the next time. or you can use:
-noprof only calculate min and max
-bins number of bins to use in calculation

Files
-o profile.xvg Output xvgr/xmgr file

-hist histo.xvg Output xvgr/xmgr file

276 Appendix D. Manual Pages

Other options
-h bool no Print help info and quit

-nice int 0 Set the nicelevel
-w bool no View output xvg, xpm, eps and pdb files

-xvgr bool yes Add specific codes (legends etc.) in the output xvg files for the xmgrace
program

-min real 0 Minimum coordinate in profile
-max real 0 Maximum coordinate in profile

-bins int 100 Number of bins in profile
-prof bool yes Only calculate min and max
-temp real 298 Temperature
-flip bool no Combine halves of profile
-tol real 0.01 Tolerance

D.71 highway

highway is the gromacs highway simulator. It is an X-windows gadget that shows a (periodic) Autobahn
with a user defined number of cars. Fog can be turned on or off to increase the number of crashes. Nice for
a background CPU-eater. A sample input file is in $GMXDATA/top/highway.dat

Files
-f highway.dat Input Generic data file

Other options
-h bool no Print help info and quit

-nice int 0 Set the nicelevel

D.72 make edi

make edi generates an essential dynamics (ED) sampling input file to be used with mdrun based on eigen-
vectors of a covariance matrix (g covar) or from a normal modes anaysis (g nmeig). ED sampling can be
used to manipulate the position along collective coordinates (eigenvectors) of (biological) macromolecules
during a simulation. Particularly, it may be used to enhance the sampling efficiency of MD simulations by
stimulating the system to explore new regions along these collective coordinates. A number of different
algorithms are implemented to drive the system along the eigenvectors (-linfix, -linacc, -radfix,
-radacc, -radcon), to keep the position along a certain (set of) coordinate(s) fixed (-linfix), or to
only monitor the projections of the positions onto these coordinates (-mon).

References:
A. Amadei, A.B.M. Linssen, B.L. de Groot, D.M.F. van Aalten and H.J.C. Berendsen; An efficient method
for sampling the essential subspace of proteins., J. Biomol. Struct. Dyn. 13:615-626 (1996)
B.L. de Groot, A. Amadei, D.M.F. van Aalten and H.J.C. Berendsen; Towards an exhaustive sampling of
the configurational spaces of the two forms of the peptide hormone guanylin,J. Biomol. Struct. Dyn. 13 :
741-751 (1996)
B.L. de Groot, A.Amadei, R.M. Scheek, N.A.J. van Nuland and H.J.C. Berendsen; An extended sampling
of the configurational space of HPr from E. coli PROTEINS: Struct. Funct. Gen. 26: 314-322 (1996)

You will be prompted for one or more index groups that correspond to the eigenvectors, reference structure,
target positions, etc.

-mon: monitor projections of the coordinates onto selected eigenvectors.

D.72. make edi 277

-linfix: perform fixed-step linear expansion along selected eigenvectors.

-linacc: perform acceptance linear expansion along selected eigenvectors. (steps in the desired direc-
tions will be accepted, others will be rejected).

-radfix: perform fixed-step radius expansion along selected eigenvectors.

-radacc: perform acceptance radius expansion along selected eigenvectors. (steps in the desired direction
will be accepted, others will be rejected). Note: by default the starting MD structure will be taken as origin
of the first expansion cycle for radius expansion. If -ori is specified, you will be able to read in a structure
file that defines an external origin.

-radcon: perform acceptance radius contraction along selected eigenvectors towards a target structure
specified with -tar.

NOTE: each eigenvector can be selected only once.

-outfrq: frequency (in steps) of writing out projections etc. to .edo file

-slope: minimal slope in acceptance radius expansion. A new expansion cycle will be started if the
spontaneous increase of the radius (in nm/step) is less than the value specified.

-maxedsteps: maximum number of steps per cycle in radius expansion before a new cycle is started.

Note on the parallel implementation: since ED sampling is a ’global’ thing (collective coordinates etc.), at
least on the ’protein’ side, ED sampling is not very parallel-friendly from an implentation point of view.
Because parallel ED requires much extra communication, expect the performance to be lower as in a free
MD simulation, especially on a large number of nodes.

All output of mdrun (specify with -eo) is written to a .edo file. In the output file, per OUTFRQ step the
following information is present:

* the step number
the number of the ED dataset. (Note that you can impose multiple ED constraints in a single simulation -
on different molecules e.g. - if several .edi files were concatenated first. The constraints are applied in the
order they appear in the .edi file.)
RMSD (for atoms involved in fitting prior to calculating the ED constraints)
projections of the positions onto selected eigenvectors

FLOODING:

with -flood you can specify which eigenvectors are used to compute a flooding potential, which will lead
to extra forces expelling the structure out of the region described by the covariance matrix. If you switch
-restrain the potential is inverted and the structure is kept in that region.

The origin is normally the average structure stored in the eigvec.trr file. It can be changed with -ori to
an arbitrary position in configurational space. With -tau, -deltaF0 and -Eflnull you control the flooding
behaviour. Efl is the flooding strength, it is updated according to the rule of adaptive flooding. Tau is the
time constant of adaptive flooding, high tau means slow adaption (i.e. growth). DeltaF0 is the flooding
strength you want to reach after tau ps of simulation. To use constant Efl set -tau to zero.

-alpha is a fudge parameter to control the width of the flooding potential. A value of 2 has been found to
give good results for most standard cases in flooding of proteins. Alpha basically accounts for incomplete
sampling, if you sampled further the width of the ensemble would increase, this is mimicked by alpha>1.
For restraining alpha<1 can give you smaller width in the restraining potential.

RESTART and FLOODING: If you want to restart a crashed flooding simulation please find the values
deltaF and Efl in the output file and manually put them into the .edi file under DELTA F0 and EFL NULL.

Files
-f eigenvec.trr Input Full precision trajectory: trr trj cpt

278 Appendix D. Manual Pages

-eig eigenval.xvg Input, Opt. xvgr/xmgr file
-s topol.tpr Input Structure+mass(db): tpr tpb tpa gro g96 pdb
-n index.ndx Input, Opt. Index file

-tar target.gro Input, Opt. Structure file: gro g96 pdb tpr tpb tpa
-ori origin.gro Input, Opt. Structure file: gro g96 pdb tpr tpb tpa

-o sam.edi Output ED sampling input

Other options
-h bool no Print help info and quit

-nice int 0 Set the nicelevel
-xvgr bool yes Add specific codes (legends etc.) in the output xvg files for the xmgrace

program
-mon string Indices of eigenvectors for projections of x (e.g. 1,2-5,9) or 1-100:10

means 1 11 21 31 ... 91
-linfix string Indices of eigenvectors for fixed increment linear sampling
-linacc string Indices of eigenvectors for acceptance linear sampling
-flood string Indices of eigenvectors for flooding

-radfix string Indices of eigenvectors for fixed increment radius expansion
-radacc string Indices of eigenvectors for acceptance radius expansion
-radcon string Indices of eigenvectors for acceptance radius contraction
-outfrq int 100 Freqency (in steps) of writing output in .edo file
-slope real 0 Minimal slope in acceptance radius expansion

-maxedsteps int 0 Max nr of steps per cycle
-deltaF0 real 150 Target destabilization energy - used for flooding
-deltaF real 0 Start deltaF with this parameter - default 0, i.e. nonzero values only

needed for restart
-tau real 0.1 Coupling constant for adaption of flooding strength according to deltaF0,

0 = infinity i.e. constant flooding strength
-eqsteps int 0 Number of steps to run without any perturbations
-Eflnull real 0 This is the starting value of the flooding strength. The flooding strength

is updated according to the adaptive flooding scheme. To use a constant
flooding strength use -tau 0.

-T real 300 T is temperature, the value is needed if you want to do flooding
-alpha real 1 Scale width of gaussian flooding potential with alpha2

-linstep string Stepsizes (nm/step) for fixed increment linear sampling (put in quotes!
”1.0 2.3 5.1 -3.1”)

-accdir string Directions for acceptance linear sampling - only sign counts! (put in
quotes! ”-1 +1 -1.1”)

-radstep real 0 Stepsize (nm/step) for fixed increment radius expansion
-restrain bool no Use the flooding potential with inverted sign -> effects as quasiharmonic

restraining potential
-hessian bool no The eigenvectors and eigenvalues are from a Hessian matrix

-harmonic bool no The eigenvalues are interpreted as spring constant

D.73 make ndx

Index groups are necessary for almost every gromacs program. All these programs can generate default
index groups. You ONLY have to use make ndx when you need SPECIAL index groups. There is a default
index group for the whole system, 9 default index groups are generated for proteins, a default index group
is generated for every other residue name.

When no index file is supplied, also make ndx will generate the default groups. With the index editor you
can select on atom, residue and chain names and numbers. When a run input file is supplied you can also

D.74. mdrun 279

select on atom type. You can use NOT, AND and OR, you can split groups into chains, residues or atoms.
You can delete and rename groups.

The atom numbering in the editor and the index file starts at 1.
Files

-f conf.gro Input, Opt. Structure file: gro g96 pdb tpr tpb tpa
-n index.ndx Input, Opt., Mult.Index file
-o index.ndx Output Index file

Other options
-h bool no Print help info and quit

-nice int 0 Set the nicelevel
-natoms int 0 set number of atoms (default: read from coordinate or index file)

D.74 mdrun

The mdrun program is the main computational chemistry engine within GROMACS. Obviously, it performs
Molecular Dynamics simulations, but it can also perform Stochastic Dynamics, Energy Minimization, test
particle insertion or (re)calculation of energies. Normal mode analysis is another option. In this case mdrun
builds a Hessian matrix from single conformation. For usual Normal Modes-like calculations, make sure
that the structure provided is properly energy-minimized. The generated matrix can be diagonalized by
g nmeig.

The mdrun program reads the run input file (-s) and distributes the topology over nodes if needed. mdrun
produces at least four output files. A single log file (-g) is written, unless the option -seppot is used,
in which case each node writes a log file. The trajectory file (-o), contains coordinates, velocities and
optionally forces. The structure file (-c) contains the coordinates and velocities of the last step. The energy
file (-e) contains energies, the temperature, pressure, etc, a lot of these things are also printed in the log
file. Optionally coordinates can be written to a compressed trajectory file (-x).

The option -dgdl is only used when free energy perturbation is turned on.

When mdrun is started using MPI with more than 1 node, parallelization is used. By default domain
decomposition is used, unless the -pd option is set, which selects particle decomposition.

With domain decomposition, the spatial decomposition can be set with option -dd. By default mdrun se-
lects a good decomposition. The user only needs to change this when the system is very inhomogeneous.
Dynamic load balancing is set with the option -dlb, which can give a significant performance improve-
ment, especially for inhomogeneous systems. The only disadvantage of dynamic load balancing is that runs
are no longer binary reproducible, but in most cases this is not important. By default the dynamic load
balancing is automatically turned on when the measured performance loss due to load imbalance is 5%
or more. At low parallelization these are the only important options for domain decomposition. At high
parallelization the options in the next two sections could be important for increasing the performace.

When PME is used with domain decomposition, separate nodes can be assigned to do only the PME mesh
calculation; this is computationally more efficient starting at about 12 nodes. The number of PME nodes is
set with option -npme, this can not be more than half of the nodes. By default mdrun makes a guess for
the number of PME nodes when the number of nodes is larger than 11 or performance wise not compatible
with the PME grid x dimension. But the user should optimize npme. Performance statistics on this issue
are written at the end of the log file. For good load balancing at high parallelization, the PME grid x and y
dimensions should be divisible by the number of PME nodes (the simulation will run correctly also when
this is not the case).

This section lists all options that affect the domain decomposition.
Option -rdd can be used to set the required maximum distance for inter charge-group bonded interactions.

280 Appendix D. Manual Pages

Communication for two-body bonded interactions below the non-bonded cut-off distance always comes for
free with the non-bonded communication. Atoms beyond the non-bonded cut-off are only communicated
when they have missing bonded interactions; this means that the extra cost is minor and nearly indepedent
of the value of -rdd. With dynamic load balancing option -rdd also sets the lower limit for the domain
decomposition cell sizes. By default -rdd is determined by mdrun based on the initial coordinates. The
chosen value will be a balance between interaction range and communication cost.
When inter charge-group bonded interactions are beyond the bonded cut-off distance, mdrun terminates
with an error message. For pair interactions and tabulated bonds that do not generate exclusions, this check
can be turned off with the option -noddcheck.
When constraints are present, option -rcon influences the cell size limit as well. Atoms connected by
NC constraints, where NC is the LINCS order plus 1, should not be beyond the smallest cell size. A error
message is generated when this happens and the user should change the decomposition or decrease the
LINCS order and increase the number of LINCS iterations. By default mdrun estimates the minimum cell
size required for P-LINCS in a conservative fashion. For high parallelization it can be useful to set the
distance required for P-LINCS with the option -rcon.
The -dds option sets the minimum allowed x, y and/or z scaling of the cells with dynamic load balancing.
mdrun will ensure that the cells can scale down by at least this factor. This option is used for the automated
spatial decomposition (when not using -dd) as well as for determining the number of grid pulses, which in
turn sets the minimum allowed cell size. Under certain circumstances the value of -dds might need to be
adjusted to account for high or low spatial inhomogeneity of the system.

The option -nosum can be used to only sum the energies at every neighbor search step and energy output
step. This can improve performance for highly parallel simulations where this global communication step
becomes the bottleneck. For a global thermostat and/or barostat the temperature and/or pressure will also
only be updated every nstlist steps. With this option the energy file will not contain averages and fluctuations
over all integration steps.

With -rerun an input trajectory can be given for which forces and energies will be (re)calculated. Neigh-
bor searching will be performed for every frame, unless nstlist is zero (see the .mdp file).

ED (essential dynamics) sampling is switched on by using the -ei flag followed by an .edi file. The
.edi file can be produced using options in the essdyn menu of the WHAT IF program. mdrun produces a
.edo file that contains projections of positions, velocities and forces onto selected eigenvectors.

When user-defined potential functions have been selected in the .mdp file the -table option is used to
pass mdrun a formatted table with potential functions. The file is read from either the current directory or
from the GMXLIB directory. A number of pre-formatted tables are presented in the GMXLIB dir, for 6-8,
6-9, 6-10, 6-11, 6-12 Lennard Jones potentials with normal Coulomb. When pair interactions are present a
separate table for pair interaction functions is read using the -tablep option.

When tabulated bonded functions are present in the topology, interaction functions are read using the
-tableb option. For each different tabulated interaction type the table file name is modified in a dif-
ferent way: before the file extension an underscore is appended, then a b for bonds, an a for angles or a d
for dihedrals and finally the table number of the interaction type.

The options -pi, -po, -pd, -pn are used for potential of mean force calculations and umbrella sampling.
See manual.

With -multi multiple systems are simulated in parallel. As many input files are required as the number of
systems. The system number is appended to the run input and each output filename, for instance topol.tpr
becomes topol0.tpr, topol1.tpr etc. The number of nodes per system is the total number of nodes divided
by the number of systems. One use of this option is for NMR refinement: when distance or orientation
restraints are present these can be ensemble averaged over all the systems.

With -replex replica exchange is attempted every given number of steps. The number of replicas is set
with the -multi option, see above. All run input files should use a different coupling temperature, the
order of the files is not important. The random seed is set with -reseed. The velocities are scaled and

D.74. mdrun 281

neighbor searching is performed after every exchange.

Finally some experimental algorithms can be tested when the appropriate options have been given. Cur-
rently under investigation are: polarizability, glass simulations and X-Ray bombardments.

The option -pforce is useful when you suspect a simulation crashes due to too large forces. With this
option coordinates and forces of atoms with a force larger than a certain value will be printed to stderr.

Checkpoints containing the complete state of the system are written at regular intervals (option -cpt) to
the file -cpo, unless option -cpt is set to -1. A simulation can be continued by reading the full state from
file with option -cpi. This option is intelligent in the way that if no checkpoint file is found, Gromacs just
assumes a normal run and starts from the first step of the tpr file.

With checkpointing you can also use the option -append to just continue writing to the previous output
files. This is not enabled by default since it is potentially dangerous if you move files, but if you just
leave all your files in place and restart mdrun with exactly the same command (with options -cpi and
-append) the result will be the same as from a single run. The contents will be binary identical (unless
you use dynamic load balancing), but for technical reasons there might be some extra energy frames when
using checkpointing (necessary for restarts without appending).

With option -maxh a simulation is terminated and a checkpoint file is written at the first neighbor search
step where the run time exceeds -maxh*0.99 hours.

When mdrun receives a TERM signal, it will set nsteps to the current step plus one. When mdrun receives
a USR1 signal, it will stop after the next neighbor search step (with nstlist=0 at the next step). In both cases
all the usual output will be written to file. When running with MPI, a signal to one of the mdrun processes
is sufficient, this signal should not be sent to mpirun or the mdrun process that is the parent of the others.

When mdrun is started with MPI, it does not run niced by default.

Files
-s topol.tpr Input Run input file: tpr tpb tpa
-o traj.trr Output Full precision trajectory: trr trj cpt
-x traj.xtc Output, Opt. Compressed trajectory (portable xdr format)

-cpi state.cpt Input, Opt. Checkpoint file
-cpo state.cpt Output, Opt. Checkpoint file
-c confout.gro Output Structure file: gro g96 pdb
-e ener.edr Output Energy file: edr ene
-g md.log Output Log file

-dgdl dgdl.xvg Output, Opt. xvgr/xmgr file
-field field.xvg Output, Opt. xvgr/xmgr file
-table table.xvg Input, Opt. xvgr/xmgr file

-tablep tablep.xvg Input, Opt. xvgr/xmgr file
-tableb table.xvg Input, Opt. xvgr/xmgr file
-rerun rerun.xtc Input, Opt. Trajectory: xtc trr trj gro g96 pdb cpt

-tpi tpi.xvg Output, Opt. xvgr/xmgr file
-tpid tpidist.xvg Output, Opt. xvgr/xmgr file

-ei sam.edi Input, Opt. ED sampling input
-eo sam.edo Output, Opt. ED sampling output
-j wham.gct Input, Opt. General coupling stuff

-jo bam.gct Output, Opt. General coupling stuff
-ffout gct.xvg Output, Opt. xvgr/xmgr file

-devout deviatie.xvg Output, Opt. xvgr/xmgr file
-runav runaver.xvg Output, Opt. xvgr/xmgr file

-px pullx.xvg Output, Opt. xvgr/xmgr file
-pf pullf.xvg Output, Opt. xvgr/xmgr file
-mtx nm.mtx Output, Opt. Hessian matrix

282 Appendix D. Manual Pages

-dn dipole.ndx Output, Opt. Index file

Other options
-h bool no Print help info and quit

-nice int 19 Set the nicelevel
-deffnm string Set the default filename for all file options
-xvgr bool yes Add specific codes (legends etc.) in the output xvg files for the xmgrace

program
-pd bool no Use particle decompostion
-dd vector 0 0 0 Domain decomposition grid, 0 is optimize

-npme int -1 Number of separate nodes to be used for PME, -1 is guess
-ddorder enum

interleave DD node order: interleave, pp pme or cartesian
-ddcheck bool yes Check for all bonded interactions with DD

-rdd real 0 The maximum distance for bonded interactions with DD (nm), 0 is deter-
mine from initial coordinates

-rcon real 0 Maximum distance for P-LINCS (nm), 0 is estimate
-dlb enum auto Dynamic load balancing (with DD): auto, no or yes
-dds real 0.8 Minimum allowed dlb scaling of the DD cell size
-sum bool yes Sum the energies at every step
-v bool no Be loud and noisy

-compact bool yes Write a compact log file
-seppot bool no Write separate V and dVdl terms for each interaction type and node to

the log file(s)
-pforce real -1 Print all forces larger than this (kJ/mol nm)
-reprod bool no Try to avoid optimizations that affect binary reproducibility

-cpt real 15 Checkpoint interval (minutes)
-append bool no Append to previous output files when restarting from checkpoint

-maxh real -1 Terminate after 0.99 times this time (hours)
-multi int 0 Do multiple simulations in parallel

-replex int 0 Attempt replica exchange every # steps
-reseed int -1 Seed for replica exchange, -1 is generate a seed

-glas bool no Do glass simulation with special long range corrections
-ionize bool no Do a simulation including the effect of an X-Ray bombardment on your

system

D.75 mk angndx

mk angndx makes an index file for calculation of angle distributions etc. It uses a run input file (.tpx) for
the definitions of the angles, dihedrals etc.

Files
-s topol.tpr Input Run input file: tpr tpb tpa
-n angle.ndx Output Index file

Other options
-h bool no Print help info and quit

-nice int 0 Set the nicelevel
-type enum angle Type of angle: angle, dihedral, improper or

ryckaert-bellemans
-hyd bool yes Include angles with atoms with mass < 1.5

D.76. ngmx 283

D.76 ngmx

ngmx is the Gromacs trajectory viewer. This program reads a trajectory file, a run input file and an index
file and plots a 3D structure of your molecule on your standard X Window screen. No need for a high end
graphics workstation, it even works on Monochrome screens.

The following features have been implemented: 3D view, rotation, translation and scaling of your molecule(s),
labels on atoms, animation of trajectories, hardcopy in PostScript format, user defined atom-filters runs on
MIT-X (real X), open windows and motif, user friendly menus, option to remove periodicity, option to show
computational box.

Some of the more common X command line options can be used:
-bg, -fg change colors, -font fontname, changes the font.

Files
-f traj.xtc Input Trajectory: xtc trr trj gro g96 pdb cpt
-s topol.tpr Input Run input file: tpr tpb tpa
-n index.ndx Input, Opt. Index file

Other options
-h bool no Print help info and quit

-nice int 0 Set the nicelevel
-b time 0 First frame (ps) to read from trajectory
-e time 0 Last frame (ps) to read from trajectory

-dt time 0 Only use frame when t MOD dt = first time (ps)

• Balls option does not work

• Some times dumps core without a good reason

D.77 pdb2gmx

This program reads a pdb file, reads some database files, adds hydrogens to the molecules and generates
coordinates in Gromacs (Gromos) format and a topology in Gromacs format. These files can subsequently
be processed to generate a run input file.

The force fields in the distribution are currently:

oplsaa OPLS-AA/L all-atom force field (2001 aminoacid dihedrals)
G43b1 GROMOS96 43b1 Vacuum Forcefield
G43a1 GROMOS96 43a1 Forcefield
G43a2 GROMOS96 43a2 Forcefield (improved alkane dihedrals)
G45a3 GROMOS96 45a3 Forcefield
G53a5 GROMOS96 53a5 Forcefield
G53a6 GROMOS96 53a6 Forcefield
gmx Gromacs Forcefield (a modified GROMOS87, see manual)
encads Encad all-atom force field, using scaled-down vacuum charges
encadv Encad all-atom force field, using full solvent charges

The corresponding data files can be found in the library directory with names like ffXXXX.YYY. Check
chapter 5 of the manual for more information about file formats. By default the forcefield selection is
interactive, but you can use the -ff option to specify one of the short names above on the command line
instead. In that case pdb2gmx just looks for the corresponding file.

284 Appendix D. Manual Pages

Note that a pdb file is nothing more than a file format, and it need not necessarily contain a protein structure.
Every kind of molecule for which there is support in the database can be converted. If there is no support
in the database, you can add it yourself.

The program has limited intelligence, it reads a number of database files, that allow it to make special
bonds (Cys-Cys, Heme-His, etc.), if necessary this can be done manually. The program can prompt the
user to select which kind of LYS, ASP, GLU, CYS or HIS residue she wants. For LYS the choice is
between LYS (two protons on NZ) or LYSH (three protons, default), for ASP and GLU unprotonated
(default) or protonated, for HIS the proton can be either on ND1 (HISA), on NE2 (HISB) or on both
(HISH). By default these selections are done automatically. For His, this is based on an optimal hydrogen
bonding conformation. Hydrogen bonds are defined based on a simple geometric criterium, specified by
the maximum hydrogen-donor-acceptor angle and donor-acceptor distance, which are set by -angle and
-dist respectively.

Option -merge will ask if you want to merge consecutive chains into one molecule definition, this can be
useful for connecting chains with a disulfide brigde or intermolecular distance restraints.

pdb2gmx will also check the occupancy field of the pdb file. If any of the occupanccies are not one,
indicating that the atom is not resolved well in the structure, a warning message is issued. When a pdb file
does not originate from an X-Ray structure determination all occupancy fields may be zero. Either way, it
is up to the user to verify the correctness of the input data (read the article!).

During processing the atoms will be reordered according to Gromacs conventions. With -n an index file
can be generated that contains one group reordered in the same way. This allows you to convert a Gromos
trajectory and coordinate file to Gromos. There is one limitation: reordering is done after the hydrogens are
stripped from the input and before new hydrogens are added. This means that you should not use -ignh.

The .gro and .g96 file formats do not support chain identifiers. Therefore it is useful to enter a pdb file
name at the -o option when you want to convert a multichain pdb file.

The option -vsite removes hydrogen and fast improper dihedral motions. Angular and out-of-plane mo-
tions can be removed by changing hydrogens into virtual sites and fixing angles, which fixes their position
relative to neighboring atoms. Additionally, all atoms in the aromatic rings of the standard amino acids
(i.e. PHE, TRP, TYR and HIS) can be converted into virtual sites, elminating the fast improper dihedral
fluctuations in these rings. Note that in this case all other hydrogen atoms are also converted to virtual sites.
The mass of all atoms that are converted into virtual sites, is added to the heavy atoms.

Also slowing down of dihedral motion can be done with -heavyh done by increasing the hydrogen-mass
by a factor of 4. This is also done for water hydrogens to slow down the rotational motion of water. The
increase in mass of the hydrogens is subtracted from the bonded (heavy) atom so that the total mass of the
system remains the same.
Files

-f eiwit.pdb Input Structure file: gro g96 pdb tpr tpb tpa
-o conf.gro Output Structure file: gro g96 pdb
-p topol.top Output Topology file
-i posre.itp Output Include file for topology
-n clean.ndx Output, Opt. Index file
-q clean.pdb Output, Opt. Structure file: gro g96 pdb

Other options
-h bool no Print help info and quit

-nice int 0 Set the nicelevel
-merge bool no Merge chains into one molecule definition

-ff string select Force field, interactive by default. Use -h for information.
-water enum spc Water model to use: with GROMOS we recommend SPC, with OPLS,

TIP4P: spc, spce, tip3p, tip4p, tip5p or f3c
-inter bool no Set the next 8 options to interactive

D.78. protonate 285

-ss bool no Interactive SS bridge selection
-ter bool no Interactive termini selection, iso charged
-lys bool no Interactive Lysine selection, iso charged
-arg bool no Interactive Arganine selection, iso charged
-asp bool no Interactive Aspartic Acid selection, iso charged
-glu bool no Interactive Glutamic Acid selection, iso charged
-gln bool no Interactive Glutamine selection, iso neutral
-his bool no Interactive Histidine selection, iso checking H-bonds

-angle real 135 Minimum hydrogen-donor-acceptor angle for a H-bond (degrees)
-dist real 0.3 Maximum donor-acceptor distance for a H-bond (nm)
-una bool no Select aromatic rings with united CH atoms on Phenylalanine, Trypto-

phane and Tyrosine
-ignh bool no Ignore hydrogen atoms that are in the pdb file

-missing bool no Continue when atoms are missing, dangerous
-v bool no Be slightly more verbose in messages

-posrefc real 1000 Force constant for position restraints
-vsite enum none Convert atoms to virtual sites: none, hydrogens or aromatics
-heavyh bool no Make hydrogen atoms heavy

-deuterate bool no Change the mass of hydrogens to 2 amu

D.78 protonate

protonate reads (a) conformation(s) and adds all missing hydrogens as defined in ffgmx2.hdb. If
only -s is specified, this conformation will be protonated, if also -f is specified, the conformation(s) will
be read from this file which can be either a single conformation or a trajectory.

If a pdb file is supplied, residue names might not correspond to to the GROMACS naming conventions, in
which case these residues will probably not be properly protonated.

If an index file is specified, please note that the atom numbers should correspond to the protonated state.

Files
-s topol.tpr Input Structure+mass(db): tpr tpb tpa gro g96 pdb
-f traj.xtc Input, Opt. Trajectory: xtc trr trj gro g96 pdb cpt
-n index.ndx Input, Opt. Index file
-o protonated.xtc Output Trajectory: xtc trr trj gro g96 pdb

Other options
-h bool no Print help info and quit

-nice int 0 Set the nicelevel
-b time 0 First frame (ps) to read from trajectory
-e time 0 Last frame (ps) to read from trajectory

-dt time 0 Only use frame when t MOD dt = first time (ps)

D.79 sigeps

Sigeps is a simple utility that converts c6/c12 or c6/cn combinations to sigma and epsilon, or vice versa.
It can also plot the potential in file. In addition it makes an approximation of a Buckingham potential to a
Lennard Jones potential.

Files
-o potje.xvg Output xvgr/xmgr file

286 Appendix D. Manual Pages

Other options
-h bool no Print help info and quit

-nice int 0 Set the nicelevel
-w bool no View output xvg, xpm, eps and pdb files

-xvgr bool yes Add specific codes (legends etc.) in the output xvg files for the xmgrace
program

-c6 real 0.001 c6
-cn real 1e-06 constant for repulsion

-pow int 12 power of the repulsion term
-sig real 0.3 sig
-eps real 1 eps

-A real 100000 Buckingham A
-B real 32 Buckingham B
-C real 0.001 Buckingham C
-qi real 0 qi
-qj real 0 qj

-sigfac real 0.7 Factor in front of sigma for starting the plot

D.80 tpbconv

tpbconv can edit run input files in four ways.

1st. by modifying the number of steps in a run input file with option -nsteps or option -runtime.

2st. (OBSOLETE) by creating a run input file for a continuation run when your simulation has crashed
due to e.g. a full disk, or by making a continuation run input file. This option is obsolete, since mdrun
now writes and reads checkpoint files. Note that a frame with coordinates and velocities is needed. When
pressure and/or Nose-Hoover temperature coupling is used an energy file can be supplied to get an exact
continuation of the original run.

3nd. by creating a tpx file for a subset of your original tpx file, which is useful when you want to remove
the solvent from your tpx file, or when you want to make e.g. a pure Ca tpx file. WARNING: this tpx file
is not fully functional. 4rd. by setting the charges of a specified group to zero. This is useful when doing
free energy estimates using the LIE (Linear Interaction Energy) method.

Files
-s topol.tpr Input Run input file: tpr tpb tpa
-f traj.trr Input, Opt. Full precision trajectory: trr trj cpt
-e ener.edr Input, Opt. Energy file: edr ene
-n index.ndx Input, Opt. Index file
-o tpxout.tpr Output Run input file: tpr tpb tpa

Other options
-h bool no Print help info and quit

-nice int 0 Set the nicelevel
-nsteps int -1 Change the number of steps
-runtime real -1 Set the run time (ps)

-time real -1 Continue from frame at this time (ps) instead of the last frame
-extend real 0 Extend runtime by this amount (ps)
-until real 0 Extend runtime until this ending time (ps)
-zeroq bool no Set the charges of a group (from the index) to zero
-cont bool yes For exact continuation, the constraints should not be solved before the

first step

D.81. trjcat 287

D.81 trjcat

trjcat concatenates several input trajectory files in sorted order. In case of double time frames the one in
the later file is used. By specifying -settime you will be asked for the start time of each file. The input
files are taken from the command line, such that a command like trjcat -o fixed.trr *.trr
should do the trick. Using -cat you can simply paste several files together without removal of frames with
identical time stamps.

One important option is inferred when the output file is amongst the input files. In that case that particular
file will be appended to which implies you do not need to store double the amount of data. Obviously the
file to append to has to be the one with lowest starting time since one can only append at the end of a file.

If the -demux option is given, the N trajectories that are read, are written in another order as specified in
the xvg file.The xvg file should contain something like:

0 0 1 2 3 4 5
2 1 0 2 3 5 4
Where the first number is the time, and subsequent numbers point to trajectory indices. The frames corre-
sponding to the numbers present at the first line are collected into the output trajectory. If the number of
frames in the trajectory does not match that in the xvg file then the program tries to be smart. Beware.

Files
-f traj.xtc Input, Mult. Trajectory: xtc trr trj gro g96 pdb cpt
-o trajout.xtc Output, Mult. Trajectory: xtc trr trj gro g96 pdb
-n index.ndx Input, Opt. Index file

-demux remd.xvg Input, Opt. xvgr/xmgr file

Other options
-h bool no Print help info and quit

-nice int 19 Set the nicelevel
-tu enum ps Time unit: ps, fs, ns, us, ms or s

-xvgr bool yes Add specific codes (legends etc.) in the output xvg files for the xmgrace
program

-b time -1 First time to use (ps)
-e time -1 Last time to use (ps)

-dt time 0 Only write frame when t MOD dt = first time (ps)
-prec int 3 Precision for .xtc and .gro writing in number of decimal places
-vel bool yes Read and write velocities if possible

-settime bool no Change starting time interactively
-sort bool yes Sort trajectory files (not frames)

-keeplast bool no keep overlapping frames at end of trajectory
-cat bool no do not discard double time frames

D.82 trjconv

trjconv can convert trajectory files in many ways:
1. from one format to another
2. select a subset of atoms
3. change the periodicity representation
4. keep multimeric molecules together
5. center atoms in the box
6. fit atoms to reference structure
7. reduce the number of frames

288 Appendix D. Manual Pages

8. change the timestamps of the frames (-t0 and -timestep)
9. cut the trajectory in small subtrajectories according to information in an index file. This allows subse-
quent analysis of the subtrajectories that could, for example be the result of a cluster analysis. Use option
-sub. This assumes that the entries in the index file are frame numbers and dumps each group in the index
file to a separate trajectory file.
10. select frames within a certain range of a quantity given in an .xvg file.

The program trjcat can concatenate multiple trajectory files.

Currently seven formats are supported for input and output: .xtc, .trr, .trj, .gro, .g96, .pdb and
.g87. The file formats are detected from the file extension. The precision of .xtc and .gro output is
taken from the input file for .xtc, .gro and .pdb, and from the -ndec option for other input formats.
The precision is always taken from -ndec, when this option is set. All other formats have fixed precision.
.trr and .trj output can be single or double precision, depending on the precision of the trjconv binary.
Note that velocities are only supported in .trr, .trj, .gro and .g96 files.

Option -app can be used to append output to an existing trajectory file. No checks are performed to ensure
integrity of the resulting combined trajectory file.

Option -sep can be used to write every frame to a seperate .gro, .g96 or .pdb file, default all frames all
written to one file. .pdb files with all frames concatenated can be viewed with rasmol -nmrpdb.

It is possible to select part of your trajectory and write it out to a new trajectory file in order to save disk
space, e.g. for leaving out the water from a trajectory of a protein in water. ALWAYS put the original
trajectory on tape! We recommend to use the portable .xtc format for your analysis to save disk space
and to have portable files.

There are two options for fitting the trajectory to a reference either for essential dynamics analysis or for
whatever. The first option is just plain fitting to a reference structure in the structure file, the second option
is a progressive fit in which the first timeframe is fitted to the reference structure in the structure file to
obtain and each subsequent timeframe is fitted to the previously fitted structure. This way a continuous
trajectory is generated, which might not be the case when using the regular fit method, e.g. when your
protein undergoes large conformational transitions.

Option -pbc sets the type of periodic boundary condition treatment:
mol puts the center of mass of molecules in the box.
res puts the center of mass of residues in the box.
atom puts all the atoms in the box.
nojump checks if atoms jump across the box and then puts them back. This has the effect that all molecules
will remain whole (provided they were whole in the initial conformation), note that this ensures a continuous
trajectory but molecules may diffuse out of the box. The starting configuration for this procedure is taken
from the structure file, if one is supplied, otherwise it is the first frame.
cluster clusters all the atoms in the selected index such that they are all closest to the center of mass of
the cluster which is iteratively updated. Note that this will only give meaningful results if you in fact have a
cluster. Luckily that can be checked afterwards using a trajectory viewer. Note also that if your molecules
are broken this will not work either.
whole only makes broken molecules whole.

Option -ur sets the unit cell representation for options mol, res and atom of -pbc. All three options
give different results for triclinc boxes and identical results for rectangular boxes. rect is the ordinary
brick shape. tric is the triclinic unit cell. compact puts all atoms at the closest distance from the center
of the box. This can be useful for visualizing e.g. truncated octahedrons. The center for options tric and
compact is tric (see below), unless the option -boxcenter is set differently.

Option -center centers the system in the box. The user can select the group which is used to determine
the geometrical center. Option -boxcenter sets the location of the center of the box for options -pbc
and -center. The center options are: tric: half of the sum of the box vectors, rect: half of the box

D.82. trjconv 289

diagonal, zero: zero. Use option -pbc mol in addition to -center when you want all molecules in
the box after the centering.

With -dt it is possible to reduce the number of frames in the output. This option relies on the accuracy
of the times in your input trajectory, so if these are inaccurate use the -timestep option to modify the
time (this can be done simultaneously). For making smooth movies the program g filter can reduce the
number of frames while using low-pass frequency filtering, this reduces aliasing of high frequency motions.

Using -trunc trjconv can truncate .trj in place, i.e. without copying the file. This is useful when a run
has crashed during disk I/O (one more disk full), or when two contiguous trajectories must be concatenated
without have double frames.

trjcat is more suitable for concatenating trajectory files.

Option -dump can be used to extract a frame at or near one specific time from your trajectory.

Option -drop reads an .xvg file with times and values. When options -dropunder and/or -dropover
are set, frames with a value below and above the value of the respective options will not be written.

Files
-f traj.xtc Input Trajectory: xtc trr trj gro g96 pdb cpt
-o trajout.xtc Output Trajectory: xtc trr trj gro g96 pdb
-s topol.tpr Input, Opt. Structure+mass(db): tpr tpb tpa gro g96 pdb
-n index.ndx Input, Opt. Index file

-fr frames.ndx Input, Opt. Index file
-sub cluster.ndx Input, Opt. Index file

-drop drop.xvg Input, Opt. xvgr/xmgr file

Other options
-h bool no Print help info and quit

-nice int 19 Set the nicelevel
-b time 0 First frame (ps) to read from trajectory
-e time 0 Last frame (ps) to read from trajectory

-tu enum ps Time unit: ps, fs, ns, us, ms or s
-w bool no View output xvg, xpm, eps and pdb files

-xvgr bool yes Add specific codes (legends etc.) in the output xvg files for the xmgrace
program

-skip int 1 Only write every nr-th frame
-dt time 0 Only write frame when t MOD dt = first time (ps)

-dump time -1 Dump frame nearest specified time (ps)
-t0 time 0 Starting time (ps) (default: don’t change)

-timestep time 0 Change time step between input frames (ps)
-pbc enum none PBC treatment (see help text for full description): none, mol, res,

atom, nojump, cluster or whole
-ur enum rect Unit-cell representation: rect, tric or compact

-center bool no Center atoms in box
-boxcenter enum tric Center for -pbc and -center: tric, rect or zero

-box vector 0 0 0 Size for new cubic box (default: read from input)
-trans vector 0 0 0 All coordinates will be translated by trans. This can advantageously be

combined with -pbc mol -ur compact.
-shift vector 0 0 0 All coordinates will be shifted by framenr*shift

-fit enum none Fit molecule to ref structure in the structure file: none, rot+trans,
rotxy+transxy, translation, transxy or progressive

-ndec int 3 Precision for .xtc and .gro writing in number of decimal places
-vel bool yes Read and write velocities if possible

-force bool no Read and write forces if possible
-trunc time -1 Truncate input trj file after this time (ps)

290 Appendix D. Manual Pages

-exec string Execute command for every output frame with the frame number as ar-
gument

-app bool no Append output
-split time 0 Start writing new file when t MOD split = first time (ps)
-sep bool no Write each frame to a separate .gro, .g96 or .pdb file

-nzero int 0 Prepend file number in case you use the -sep flag with this number of
zeroes

-ter bool no Use ’TER’ in pdb file as end of frame in stead of default ’ENDMDL’
-dropunder real 0 Drop all frames below this value
-dropover real 0 Drop all frames above this value

D.83 trjorder

trjorder orders molecules according to the smallest distance to atoms in a reference group. It will ask for a
group of reference atoms and a group of molecules. For each frame of the trajectory the selected molecules
will be reordered according to the shortest distance between atom number -da in the molecule and all the
atoms in the reference group. All atoms in the trajectory are written to the output trajectory.

trjorder can be useful for e.g. analyzing the n waters closest to a protein. In that case the reference group
would be the protein and the group of molecules would consist of all the water atoms. When an index group
of the first n waters is made, the ordered trajectory can be used with any Gromacs program to analyze the n
closest waters.

If the output file is a pdb file, the distance to the reference target will be stored in the B-factor field in order
to color with e.g. rasmol.

With option -nshell the number of molecules within a shell of radius -r around the refernce group are
printed.

Files
-f traj.xtc Input Trajectory: xtc trr trj gro g96 pdb cpt
-s topol.tpr Input Structure+mass(db): tpr tpb tpa gro g96 pdb
-n index.ndx Input, Opt. Index file
-o ordered.xtc Output, Opt. Trajectory: xtc trr trj gro g96 pdb

-nshell nshell.xvg Output, Opt. xvgr/xmgr file

Other options
-h bool no Print help info and quit

-nice int 19 Set the nicelevel
-b time 0 First frame (ps) to read from trajectory
-e time 0 Last frame (ps) to read from trajectory
-dt time 0 Only use frame when t MOD dt = first time (ps)

-xvgr bool yes Add specific codes (legends etc.) in the output xvg files for the xmgrace
program

-na int 3 Number of atoms in a molecule
-da int 1 Atom used for the distance calculation

-com bool no Use the distance to the center of mass of the reference group
-r real 0 Cutoff used for the distance calculation when computing the number of

molecules in a shell around e.g. a protein

D.84. wheel 291

D.84 wheel

wheel plots a helical wheel representation of your sequence.The input sequence is in the .dat file where the
first line contains the number of residues and each consecutive line contains a residuename.

Files
-f nnnice.dat Input Generic data file
-o plot.eps Output Encapsulated PostScript (tm) file

Other options
-h bool no Print help info and quit

-nice int 19 Set the nicelevel
-r0 int 1 The first residue number in the sequence

-rot0 real 0 Rotate around an angle initially (90 degrees makes sense)
-T string Plot a title in the center of the wheel (must be shorter than 10 characters,

or it will overwrite the wheel)
-nn bool yes Toggle numbers

D.85 x2top

x2top generates a primitive topology from a coordinate file. The program assumes all hydrogens are present
when defining the hybridization from the atom name and the number of bonds. The program can also make
an rtp entry, which you can then add to the rtp database.

When -param is set, equilibrium distances and angles and force constants will be printed in the topology
for all interactions. The equilibrium distances and angles are taken from the input coordinates, the force
constant are set with command line options.The force fields supported currently are:

G43a1 GROMOS96 43a1 Forcefield (official distribution)

oplsaa OPLS-AA/L all-atom force field (2001 aminoacid dihedrals)

G43b1 GROMOS96 43b1 Vacuum Forcefield (official distribution)

gmx Gromacs Forcefield (a modified GROMOS87, see manual)

G43a2 GROMOS96 43a2 Forcefield (development) (improved alkane dihedrals)

The corresponding data files can be found in the library directory with names like ffXXXX.YYY. Check
chapter 5 of the manual for more information about file formats. By default the forcefield selection is
interactive, but you can use the -ff option to specify one of the short names above on the command line
instead. In that case pdb2gmx just looks for the corresponding file.

Files
-f conf.gro Input Structure file: gro g96 pdb tpr tpb tpa
-o out.top Output, Opt. Topology file
-r out.rtp Output, Opt. Residue Type file used by pdb2gmx

Other options
-h bool no Print help info and quit

-nice int 0 Set the nicelevel
-ff string oplsaa Force field for your simulation. Type ”select” for interactive selcection.
-v bool no Generate verbose output in the top file.

-nexcl int 3 Number of exclusions
-H14 bool yes Use 3rd neighbour interactions for hydrogen atoms

292 Appendix D. Manual Pages

-alldih bool no Generate all proper dihedrals
-remdih bool no Remove dihedrals on the same bond as an improper
-pairs bool yes Output 1-4 interactions (pairs) in topology file
-name string ICE Name of your molecule
-pbc bool yes Use periodic boundary conditions.
-pdbq bool no Use the B-factor supplied in a pdb file for the atomic charges

-param bool yes Print parameters in the output
-round bool yes Round off measured values

-kb real 400000 Bonded force constant (kJ/mol/nm2)
-kt real 400 Angle force constant (kJ/mol/rad2)
-kp real 5 Dihedral angle force constant (kJ/mol/rad2)

• The atom type selection is primitive. Virtually no chemical knowledge is used

• Periodic boundary conditions screw up the bonding

• No improper dihedrals are generated

• The atoms to atomtype translation table is incomplete (ffG43a1.n2t file in the $GMXLIB directory).
Please extend it and send the results back to the GROMACS crew.

D.86 xpm2ps

xpm2ps makes a beautiful color plot of an XPixelMap file. Labels and axis can be displayed, when they are
supplied in the correct matrix format. Matrix data may be generated by programs such as do dssp, g rms
or g mdmat.

Parameters are set in the m2p file optionally supplied with -di. Reasonable defaults are provided. Settings
for the y-axis default to those for the x-axis. Font names have a defaulting hierarchy: titlefont -> legendfont;
titlefont -> (xfont -> yfont -> ytickfont) -> xtickfont, e.g. setting titlefont sets all fonts, setting xfont sets
yfont, ytickfont and xtickfont.

When no m2p file is supplied, many setting are set by command line options. The most important option
is -size which sets the size of the whole matrix in postscript units. This option can be overridden with
the -bx and -by options (and the corresponding parameters in the m2p file), which set the size of a single
matrix element.

With -f2 a 2nd matrix file can be supplied, both matrix files will be read simultaneously and the upper
left half of the first one (-f) is plotted together with the lower right half of the second one (-f2). The
diagonal will contain values from the matrix file selected with -diag. Plotting of the diagonal values
can be suppressed altogether by setting -diag to none. In this case, a new color map will be generated
with a red gradient for negative numbers and a blue for positive. If the color coding and legend labels
of both matrices are identical, only one legend will be displayed, else two separate legends are displayed.
With -combine an alternative operation can be selected to combine the matrices. The output range is
automatically set to the actual range of the combined matrix. This can be overridden with -cmin and
-cmax.

-title can be set to none to suppress the title, or to ylabel to show the title in the Y-label position
(alongside the Y-axis).

With the -rainbow option dull grey-scale matrices can be turned into attractive color pictures.

Merged or rainbowed matrices can be written to an XPixelMap file with the -xpm option.

Files
-f root.xpm Input X PixMap compatible matrix file

D.87. xrama 293

-f2 root2.xpm Input, Opt. X PixMap compatible matrix file
-di ps.m2p Input, Opt., Lib.Input file for mat2ps
-do out.m2p Output, Opt. Input file for mat2ps
-o plot.eps Output, Opt. Encapsulated PostScript (tm) file

-xpm root.xpm Output, Opt. X PixMap compatible matrix file

Other options
-h bool no Print help info and quit

-nice int 0 Set the nicelevel
-w bool no View output xvg, xpm, eps and pdb files

-frame bool yes Display frame, ticks, labels, title and legend
-title enum top Show title at: top, once, ylabel or none
-yonce bool no Show y-label only once
-legend enum both Show legend: both, first, second or none
-diag enum first Diagonal: first, second or none
-size real 400 Horizontal size of the matrix in ps units

-bx real 0 Element x-size, overrides -size (also y-size when -by is not set)
-by real 0 Element y-size

-rainbow enum no Rainbow colors, convert white to: no, blue or red
-gradient vector 0 0 0 Re-scale colormap to a smooth gradient from white 1,1,1 to r,g,b

-skip int 1 only write out every nr-th row and column
-zeroline bool no insert line in xpm matrix where axis label is zero

-legoffset int 0 Skip first N colors from xpm file for the legend
-combine enum halves Combine two matrices: halves, add, sub, mult or div

-cmin real 0 Minimum for combination output
-cmax real 0 Maximum for combination output

D.87 xrama

xrama shows a Ramachandran movie, that is, it shows the Phi/Psi angles as a function of time in an X-
Window.

Static Phi/Psi plots for printing can be made with g rama.

Some of the more common X command line options can be used:
-bg, -fg change colors, -font fontname, changes the font.

Files
-f traj.xtc Input Trajectory: xtc trr trj gro g96 pdb cpt
-s topol.tpr Input Run input file: tpr tpb tpa

Other options
-h bool no Print help info and quit

-nice int 0 Set the nicelevel
-b time 0 First frame (ps) to read from trajectory
-e time 0 Last frame (ps) to read from trajectory

-dt time 0 Only use frame when t MOD dt = first time (ps)

294 Appendix D. Manual Pages

Bibliography

[1] Bekker, H., Berendsen, H. J. C., Dijkstra, E. J., Achterop, S., van Drunen, R., van der
Spoel, D., Sijbers, A., Keegstra, H., Reitsma, B., Renardus, M. K. R. Gromacs: A parallel
computer for molecular dynamics simulations. In Physics Computing 92 (Singapore, 1993).
de Groot, R. A., Nadrchal, J., eds. . World Scientific.

[2] Berendsen, H. J. C., van der Spoel, D., van Drunen, R. GROMACS: A message-passing
parallel molecular dynamics implementation. Comp. Phys. Comm. 91:43–56, 1995.

[3] Lindahl, E., Hess, B., van der Spoel, D. Gromacs 3.0: A package for molecular simulation
and trajectory analysis. J. Mol. Mod. 7:306–317, 2001.

[4] van der Spoel, D., Lindahl, E., Hess, B., Groenhof, G., Mark, A. E., Berendsen, H. J. C.
GROMACS: Fast, Flexible and Free. J. Comp. Chem. 26:1701–1718, 2005.

[5] van Gunsteren, W. F., Berendsen, H. J. C. Computer simulation of molecular dynamics:
Methodology, applications, and perspectives in chemistry. Angew. Chem. Int. Ed. Engl.
29:992–1023, 1990.

[6] Fraaije, J. G. E. M. Dynamic density functional theory for microphase separation kinetics
of block copolymer melts. J. Chem. Phys. 99:9202–9212, 1993.

[7] McQuarrie, D. A. Statistical Mechanics. New York: Harper & Row. 1976.

[8] van Gunsteren, W. F., Berendsen, H. J. C. Algorithms for macromolecular dynamics and
constraint dynamics. Mol. Phys. 34:1311–1327, 1977.

[9] Darden, T., York, D., Pedersen, L. Particle mesh Ewald: An N-log(N) method for Ewald
sums in large systems. J. Chem. Phys. 98:10089–10092, 1993.

[10] Essmann, U., Perera, L., Berkowitz, M. L., Darden, T., Lee, H., Pedersen, L. G. A smooth
particle mesh ewald potential. J. Chem. Phys. 103:8577–8592, 1995.

[11] Geman, S., Geman, D. Stochastic relaxation, gibbs distributions and the bayesian restora-
tion of images. IEEE Trans. Patt. Anal. Mach. Int. 6:721, 1984.

[12] Nilges, M., Clore, G. M., Gronenborn, A. M. Determination of three-dimensional structures
of proteins from interproton distance data by dynamical simulated annealing from a random
array of atoms. FEBS Lett. 239:129–136, 1988.

296 Bibliography

[13] van Schaik, R. C., Berendsen, H. J. C., Torda, A. E., van Gunsteren, W. F. A structure
refinement method based on molecular dynamics in 4 spatial dimensions. J. Mol. Biol.
234:751–762, 1993.

[14] Zimmerman, K. All purpose molecular mechanics simulator and energy minimizer. J.
Comp. Chem. 12:310–319, 1991.

[15] Adams, D. J., Adams, E. M., Hills, G. J. The computer simulation of polar liquids. Mol.
Phys. 38:387–400, 1979.

[16] Bekker, H., Dijkstra, E. J., Renardus, M. K. R., Berendsen, H. J. C. An efficient, box shape
independent non-bonded force and virial algorithm for molecular dynamics. Mol. Sim.
14:137–152, 1995.

[17] Berendsen, H. J. C. Electrostatic interactions. In: Computer Simulation of Biomolecular
Systems. van Gunsteren, W. F., Weiner, P. K., Wilkinson, A. J. eds. . ESCOM Leiden 1993
161–181.

[18] Hockney, R. W., Goel, S. P., Eastwood, J. Quiet highresolution computer models of a
plasma. J. Comp. Phys. 14:148–158, 1974.

[19] Verlet., L. Computer experiments on classical fluids. i. thermodynamical properties of
lennard-jones molecules. Phys. Rev. 159:98–103, 1967.

[20] Berendsen, H. J. C., van Gunsteren, W. F. Practical algorithms for dynamics simulations.

[21] Berendsen, H. J. C., Postma, J. P. M., DiNola, A., Haak, J. R. Molecular dynamics with
coupling to an external bath. J. Chem. Phys. 81:3684–3690, 1984.

[22] Nosé, S. A molecular dynamics method for simulations in the canonical ensemble. Mol.
Phys. 52:255–268, 1984.

[23] Hoover, W. G. Canonical dynamics: equilibrium phase-space distributions. Phys. Rev. A
31:1695–1697, 1985.

[24] Berendsen, H. J. C. Transport properties computed by linear response through weak cou-
pling to a bath. In: Computer Simulations in Material Science. Meyer, M., Pontikis, V. eds.
. Kluwer 1991 139–155.

[25] Bussi, G., Donadio, D., Parrinello, M. Canonical sampling through velocity rescaling. J.
Chem. Phys. 126:014101, 2007.

[26] Parrinello, M., Rahman, A. Polymorphic transitions in single crystals: A new molecular
dynamics method. J. Appl. Phys. 52:7182–7190, 1981.

[27] Nosé, S., Klein, M. L. Constant pressure molecular dynamics for molecular systems. Mol.
Phys. 50:1055–1076, 1983.

[28] Dick, B. G., Overhauser, A. W. Theory of the dielectric constants of alkali halide crystals.
Phys. Rev. 112:90–103, 1958.

Bibliography 297

[29] Jordan, P. C., van Maaren, P. J., Mavri, J., van der Spoel, D., Berendsen, H. J. C. Towards
phase transferable potential functions: Methodology and application to nitrogen. J. Chem.
Phys. 103:2272–2285, 1995.

[30] van Maaren, P. J., van der Spoel, D. Molecular dynamics simulations of a water with a
novel shell-model potential. J. Phys. Chem. B. 105:2618–2626, 2001.

[31] Ryckaert, J. P., Ciccotti, G., Berendsen, H. J. C. Numerical integration of the cartesian
equations of motion of a system with constraints; molecular dynamics of n-alkanes. J.
Comp. Phys. 23:327–341, 1977.

[32] Miyamoto, S., Kollman, P. A. SETTLE: An analytical version of the SHAKE and RATTLE
algorithms for rigid water models. J. Comp. Chem. 13:952–962, 1992.

[33] Hess, B., Bekker, H., Berendsen, H. J. C., Fraaije, J. G. E. M. LINCS: A linear constraint
solver for molecular simulations. J. Comp. Chem. 18:1463–1472, 1997.

[34] Hess, B. P-lincs: A parallel linear constraint solver for molecular simulation. J. Chem.
Theory Comp. 4:116–122, 2007.

[35] van Gunsteren, W. F., Berendsen, H. J. C. A leap-frog algorithm for stochastic dynamics.
Mol. Sim. 1:173–185, 1988.

[36] Byrd, R. H., Lu, P., Nocedal, J. A limited memory algorithm for bound constrained opti-
mization. SIAM J. Scientif. Statistic. Comput. 16:1190–1208, 1995.

[37] Zhu, C., Byrd, R. H., Nocedal, J. L-BFGS-B: Algorithm 778: L-BFGS-B, FORTRAN
routines for large scale bound constrained optimization. ACM Trans. Math. Softw. 23:550–
560, 1997.

[38] Levitt, M., Sander, C., Stern, P. S. The normal modes of a protein: Native bovine pancreatic
trypsin inhibitor. Int. J. Quant. Chem: Quant. Biol. Symp. 10:181–199, 1983.

[39] Gō, N., Noguti, T., Nishikawa, T. Dynamics of a small globular protein in terms of low-
frequency vibrational modes. Proc. Natl. Acad. Sci. USA 80:3696–3700, 1983.

[40] Brooks, B., Karplus, M. Harmonic dynamics of proteins: Normal modes and fluctuations
in bovine pancreatic trypsin inhibitor. Proc. Natl. Acad. Sci. USA 80:6571–6575, 1983.

[41] Hayward, S., Gō, N. Collective variable description of native protein dynamics. Annu. Rev.
Phys. Chem. 46:223–250, 1995.

[42] Hukushima, K., Nemoto, K. Exchange monte carlo method and application to spin glass
simulations. J. Phys. Soc. Jpn. 65:1604–1608, 1996.

[43] Sugita, Y., Okamoto, Y. Replica-exchange molecular dynamics method for proteint folding.
Chem. Phys. Lett. 314:141–151, 1999.

[44] Seibert, M., Patriksson, A., Hess, B., van der Spoel, D. Reproducible polypeptide folding
and structure prediction using molecular dynamics simulations. J. Mol. Biol. 354:173–183,
2005.

298 Bibliography

[45] Okabe, T., Kawata, M., Okamoto, Y., Mikami, M. Replica-exchange Monte Carlo method
for the isobaric-isothermal ensemble. Chem. Phys. Lett. 335:435–439, 2001.

[46] de Groot, B. L., Amadei, A., van Aalten, D. M. F., Berendsen, H. J. C. Towards an ex-
haustive sampling of the configurational spaces of the two forms of the peptide hormone
guanylin. J. Biomol. Str. Dyn. 13(5):741–751, 1996.

[47] de Groot, B. L., Amadei, A., Scheek, R. M., van Nuland, N. A. J., Berendsen, H. J. C. An
extended sampling of the configurational space of hpr from e. coli. PROTEINS: Struct.
Funct. Gen. 26:314–322, 1996.

[48] Lange, O. E., Schafer, L. V., Grubmuller, H. Flooding in gromacs: Accelerated barrier
crossings in molecular dynamics. J. Comp. Chem. 27:1693–1702, 2006.

[49] Liem, S. Y., Brown, D., Clarke, J. H. R. Molecular dynamics simulations on distributed
memory machines. Comput. Phys. Commun. 67(2):261–267, 1991.

[50] Bowers, K. J., Dror, R. O., Shaw, D. E. The midpoint method for parallelization of particle
simulations. J. Chem. Phys. 124(18):184109–184109, 2006.

[51] Hess, B., Kutzner, C., van der Spoel, D., Lindahl, E. Gromacs 4: Algorithms for highly
efficient, load-balanced, and scalable molecular simulation. J. Chem. Theory Comp. 435,
2008.

[52] Tironi, I. G., Sperb, R., Smith, P. E., van Gunsteren, W. F. A generalized reaction field
method for molecular dynamics simulations. J. Chem. Phys. 102:5451–5459, 1995.

[53] van der Spoel, D., van Maaren, P. J. The origin of layer structure artifacts in simulations of
liquid water. J. Chem. Theory Comp. 2:1–11, 2006.

[54] van Gunsteren, W. F., Billeter, S. R., Eising, A. A., Hünenberger, P. H., Krüger, P., Mark,
A. E., Scott, W. R. P., Tironi, I. G. Biomolecular Simulation: The GROMOS96 manual and
user guide. Zürich, Switzerland: Hochschulverlag AG an der ETH Zürich. 1996.

[55] van Gunsteren, W. F., Berendsen, H. J. C. Gromos-87 manual. Biomos BV Nijenborgh 4,
9747 AG Groningen, The Netherlands 1987.

[56] Morse, P. M. Diatomic molecules according to the wave mechanics. II. vibrational levels.
Phys. Rev. 34:57–64, 1929.

[57] Berendsen, H. J. C., Postma, J. P. M., van Gunsteren, W. F., Hermans, J. Interaction models
for water in relation to protein hydration. In: Intermolecular Forces. Pullman, B. ed. . D.
Reidel Publishing Company Dordrecht 1981 331–342.

[58] Ferguson, D. M. Parametrization and evaluation of a flexible water model. J. Comp. Chem.
16:501–511, 1995.

[59] Warner Jr., H. R. Kinetic theory and rheology of dilute suspensions of finitely extendible
dumbbells. Ind. Eng. Chem. Fundam. 11(3):379–387, 1972.

Bibliography 299

[60] Brooks, B. R., Bruccoleri, R. E., Olafson, B. D., States, D. J., Swaminathan, S., Karplus,
M. CHARMM: a program for macromolecular energy, minimization, and dynamics calcu-
lation. J. Comp. Chem. 4:187–217, 1983.

[61] Lawrence, C. P., Skinner, J. L. Flexible tip4p model for molecular dynamics simulation of
liquid water. Chem. Phys. Lett. 372:842–847, 2003.

[62] Jorgensen, W. L., Tirado-Rives, J. Potential energy functions for atomic-level simulations of
water and organic and biomolecular systems. Proc. Natl. Acad. Sci. USA 102:6665–6670,
2005.

[63] Torda, A. E., Scheek, R. M., van Gunsteren, W. F. Time-dependent distance restraints in
molecular dynamics simulations. Chem. Phys. Lett. 157:289–294, 1989.

[64] Hess, B., Scheek, R. M. Orientation restraints in molecular dynamics simulations using
time and ensemble averaging. J. Magn. Reson. 164:19–27, 2003.

[65] Thole, B. T. Molecular polarizabilities with a modified dipole interaction. Chem. Phys.
59:341–345, 1981.

[66] Lamoureux, G., Roux, B. Modeling induced polarization with classical drude oscillators:
Theory and molecular dynamics simulation algorithm. J. Phys. Chem. A. 119:3025–3039,
2004.

[67] Lamoureux, G., MacKerell, A. D., Roux, B. A simple polarizable model of water based on
classical drude oscillators. J. Phys. Chem. A. 119:5185–5197, 2004.

[68] Noskov, S. Y., Lamoureux, G., Roux, B. Molecular dynamics study of hydration in ethanol-
water mixtures using a polarizable force field. J. Phys. Chem. B. 109:6705–6713, 2005.

[69] van Gunsteren, W. F., Mark, A. E. Validation of molecular dynamics simulations. J. Chem.
Phys. 108:6109–6116, 1998.

[70] Beutler, T. C., Mark, A. E., van Schaik, R. C., Greber, P. R., van Gunsteren, W. F. Avoid-
ing singularities and numerical instabilities in free energy calculations based on molecular
simulations. Chem. Phys. Lett. 222:529–539, 1994.

[71] Jorgensen, W. L., Tirado-Rives, J. The OPLS potential functions for proteins. energy mini-
mizations for crystals of cyclic peptides and crambin. J. Am. Chem. Soc. 110:1657–1666,
1988.

[72] Berendsen, H. J. C., van Gunsteren, W. F. Molecular dynamics simulations: Techniques and
approaches. In: Molecular Liquids-Dynamics and Interactions. et al., A. J. B. ed. NATO
ASI C 135. Reidel Dordrecht, The Netherlands 1984 475–500.

[73] Allen, M. P., Tildesley, D. J. Computer Simulations of Liquids. Oxford: Oxford Science
Publications. 1987.

[74] Ewald, P. P. Die Berechnung optischer und elektrostatischer Gitterpotentiale. Ann. Phys.
64:253–287, 1921.

300 Bibliography

[75] Hockney, R. W., Eastwood, J. W. Computer simulation using particles. New York:
McGraw-Hill. 1981.

[76] Luty, B. A., Tironi, I. G., van Gunsteren, W. F. Lattice-sum methods for calculating elec-
trostatic interactions in molecular simulations. J. Chem. Phys. 103:3014–3021, 1995.

[77] van Buuren, A. R., Marrink, S. J., Berendsen, H. J. C. A molecular dynamics study of the
decane/water interface. J. Phys. Chem. 97:9206–9212, 1993.

[78] Mark, A. E., van Helden, S. P., Smith, P. E., Janssen, L. H. M., van Gunsteren, W. F.
Convergence properties of free energy calculations: α-cyclodextrin complexes as a case
study. J. Am. Chem. Soc. 116:6293–6302, 1994.

[79] Jorgensen, W. L., Chandrasekhar, J., Madura, J. D., Impey, R. W., Klein, M. L. Comparison
of simple potential functions for simulating liquid water. J. Chem. Phys. 79:926–935, 1983.

[80] van Buuren, A. R., Berendsen, H. J. C. Molecular dynamics simulation of the stability of
a 22 residue alpha-helix in water and 30 % trifluoroethanol. Biopolymers 33:1159–1166,
1993.

[81] Liu, H., Müller-Plathe, F., van Gunsteren, W. F. A force field for liquid dimethyl sulfoxide
and liquid proporties of liquid dimethyl sulfoxide calculated using molecular dynamics
simulation. J. Am. Chem. Soc. 117:4363–4366, 1995.

[82] van der Spoel, D., van Buuren, A. R., Tieleman, D. P., Berendsen, H. J. C. Molecular
dynamics simulations of peptides from BPTI: A closer look at amide-aromatic interactions.
J. Biomol. NMR 8:229–238, 1996.

[83] Ryckaert, J. P., Bellemans, A. Molecular dynamics of liquid alkanes. Far. Disc. Chem. Soc.
66:95–106, 1978.

[84] on Biochemical Nomenclature, I.-I. C. Abrreviations and symbols for the description of
the conformation of polypeptide chains. tentative rules (1969). Biochemistry 9:3471–3478,
1970.

[85] Mahoney, M. W., Jorgensen, W. L. A five-site model for liquid water and the reproduction of
the density anomaly by rigid, nonpolarizable potential functions. J. Chem. Phys. 112:8910–
8922, 2000.

[86] de Loof, H., Nilsson, L., Rigler, R. Molecular dynamics simulations of galanin in aqueous
and nonaqueous solution. J. Am. Chem. Soc. 114:4028–4035, 1992.

[87] Jarzynski, C. Nonequilibrium equality for free energy differences. Phys. Rev. Lett.
78(14):2690 – 2693, 1997.

[88] Feenstra, K. A., Hess, B., Berendsen, H. J. C. Improving efficiency of large time-scale
molecular dynamics simulations of hydrogen-rich systems. J. Comp. Chem. 20:786–798,
1999.

[89] Hess, B. Determining the shear viscosity of model liquids from molecular dynamics. J.
Chem. Phys. 116:209–217, 2002.

Bibliography 301

[90] Dewar, M. J. S. Development and status of mindo/3 and mndo. J. Mol. Struct. 100:41,
1983.

[91] Guest, M. F., Harrison, R. J., van Lenthe, J. H., van Corler, L. C. H. Computational chem-
istry on the fps-x64 scientific computers - experience on single-processor and multiproces-
sor systems. Theor. Chim. Act. 71:117, 1987.

[92] Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman,
J. R., Montgomery, J. A. Jr., Vreven, T., Kudin, K. N., Burant, J. C., Millam, J. M., Iyengar,
S. S., Tomasi, J., Barone, V., Mennucci, B., Cossi, M., Scalmani, G., Rega, N., Petersson,
G. A., Nakatsuji, H., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M.,
Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Klene, M., Li, X., Knox, J. E., Hratchian,
H. P., Cross, J. B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R. E.,
Yazyev, O., Austin, A. J., Cammi, R., Pomelli, C., Ochterski, J. W., Ayala, P. Y., Morokuma,
K., Voth, G. A., Salvador, P., Dannenberg, J. J., Zakrzewski, V. G., Dapprich, S., Daniels,
A. D., Strain, M. C., Farkas, O., Malick, D. K., Rabuck, A. D., Raghavachari, K., Foresman,
J. B., Ortiz, J. V., Cui, Q., Baboul, A. G., Clifford, S., Cioslowski, J., Stefanov, B. B., Liu,
G., Liashenko, A., Piskorz, P., Komaromi, I., Martin, R. L., Fox, D. J., Keith, T., Al-Laham,
M. A., Peng, C. Y., Nanayakkara, A., Challacombe, M., Gill, P. M. W., Johnson, B., Chen,
W., Wong, M. W., Gonzalez, C., Pople, J. A. Gaussian 03, Revision C.02. Gaussian, Inc.,
Wallingford, CT, 2004.

[93] Car, R., Parrinello, M. Unified approach for molecular dynamics and density-functional
theory. Phys. Rev. Lett. 55:2471–2474, 1985.

[94] Field, M., Bash, P. A., Karplus, M. A combined quantum mechanical and molecular me-
chanical potential for molecular dynamics simulation. J. Comp. Chem. 11:700, 1990.

[95] Maseras, F., Morokuma, K. Imomm: A new ab initio + molecular mechanics geome-
try optimization scheme of equilibrium structures and transition states. J. Comp. Chem.
16:1170–1179, 1995.

[96] Svensson, M., Humbel, S., Froes, R. D. J., Matsubara, T., Sieber, S., Morokuma, K.
ONIOM a multilayered integrated MO + MM method for geometry optimizations and
single point energy predictions. a test for Diels-Alder reactions and Pt(P(t-Bu)3)2 + H2
oxidative addition. J. Phys. Chem. 100:19357, 1996.

[97] van der Spoel, D., Berendsen, H. J. C. Molecular dynamics simulations of Leu-enkephalin
in water and DMSO. Biophys. J. 72:2032–2041, 1997.

[98] van der Spoel, D., van Maaren, P. J., Berendsen, H. J. C. A systematic study of water
models for molecular simulation. J. Chem. Phys. 108:10220–10230, 1998.

[99] Smith, P. E., van Gunsteren, W. F. The viscosity of spc and spc/e water. Comp. Phys.
Comm. 215:315–318, 1993.

[100] Balasubramanian, S., Mundy, C. J., Klein, M. L. Shear viscosity of polar fluids: Miolecular
dynamics calculations of water. J. Chem. Phys. 105:11190–11195, 1996.

302 Bibliography

[101] van der Spoel, D., Vogel, H. J., Berendsen, H. J. C. Molecular dynamics simulations of
N-terminal peptides from a nucleotide binding protein. PROTEINS: Struct. Funct. Gen.
24:450–466, 1996.

[102] Amadei, A., Linssen, A. B. M., Berendsen, H. J. C. Essential dynamics of proteins. PRO-
TEINS: Struct. Funct. Gen. 17:412–425, 1993.

[103] Hess, B. Convergence of sampling in protein simulations. Phys. Rev. E 65:031910, 2002.

[104] Hess, B. Similarities between principal components of protein dynamics and random dif-
fusion. Phys. Rev. E 62:8438–8448, 2000.

[105] Mu, Y., Nguyen, P. H., Stock, G. Energy landscape of a small peptide revelaed by dihedral
angle principal component analysis. 58:45–52, 2005.

[106] van der Spoel, D., van Maaren, P. J., Larsson, P., Timneanu, N. Thermodynamics of hy-
drogen bonding in hydrophilic and hydrophobic media. J. Phys. Chem. B. 110:4393–4398,
2006.

[107] Luzar, A., Chandler, D. Hydrogen-bond kinetics in liquid water. Nature 379:55–57, 1996.

[108] Luzar, A. Resolving the hydrogen bond dynamics conundrum. J. Chem. Phys. 113:10663–
10675, 2000.

[109] Kabsch, W., Sander, C. Dictionary of protein secondary structure: Pattern recognition of
hydrogen-bonded and geometrical features. Biopolymers 22:2577–2637, 1983.

[110] Williamson, M. P., Asakura, T. Empirical comparisons of models for chemical-shift calcu-
lation in proteins. J. Magn. Reson. Ser. B 101:63–71, 1993.

[111] Bekker, H., Berendsen, H. J. C., Dijkstra, E. J., Achterop, S., v. Drunen, R., v. d. Spoel,
D., Sijbers, A., Keegstra, H., Reitsma, B., Renardus, M. K. R. Gromacs method of virial
calculation using a single sum. In Physics Computing 92 (Singapore, 1993). de Groot,
R. A., Nadrchal, J., eds. . World Scientific.

[112] Berendsen, H. J. C., Grigera, J. R., Straatsma, T. P. The missing term in effective pair
potentials. J. Phys. Chem. 91:6269–6271, 1987.

[113] Bekker, H. Ontwerp van een special-purpose computer voor moleculaire dynamica simu-
laties. Master’s thesis. RuG. 1987.

[114] van Gunsteren, W. F., Berendsen, H. J. C. Molecular dynamics of simple systems.
Practicum Handleiding voor MD Practicum Nijenborgh 4, 9747 AG, Groningen, The
Netherlands 1994.

Index

τT 23
εr 51
1-4 interaction 61, 99

A
accelerate group 15
Adding atom types 121
All-hydrogen force-field 90
Amber force field 91
aminoacids.dat 101, 173
anadock 212
Angle restraint 65
angle vibration 58
annealing, simulated

see simulated annealing
atom see particle

type 94
types, Adding see Adding atom types
united ∼ see united atom

autocorrelation function 176
average, ensemble see ensemble average

B
Berendsen temperature coupling 22
bond stretching 56
bonded parameter 96
Born-Oppenheimer 4
Boundary Conditions, Periodic

see Periodic Boundary Conditions
boundary conditions, Periodic

see Periodic boundary conditions
Brownian Dynamics 34
Buckingham 51
building block 96, 101

C
center-of-mass

pulling 124
velocity 18

Charge Group 79
charge group 20, 147
Charmm force field 91
chemistry, computational

see computational chemistry
citing iv
coefficient, diffusion

see diffusion coefficient
combination rule 50, 51, 98, 112
compressibility 25
computational chemistry 1
Conjugate Gradient 35
conjugate gradient 142
connection 99
constant, dielectric see dielectric constant
Constraint 30, 100
constraint 4
Constraint

force 118
pulling 125

constraints 155
convention, polymer

see polymer convention
correlation 176
Coulomb 51, 76
coupling

Pressure ∼ see Pressure coupling
Surface tension ∼

see Surface tension coupling
Temperature ∼

see Temperature coupling
temperature ∼

see temperature coupling
Covariance analysis 182
cut-off 149, 150
cutoff 53, 79

D

304 Index

Database 100
database

hydrogen ∼ see hydrogen database
termini ∼ see termini database

decomposition
Domain ∼ see Domain decomposition
force ∼ see force decomposition
Particle ∼ see Particle decomposition

deform 163
degrees of freedom 127
dielectric constant 51, 149
diffusion coefficient 178
dihedral 61
Dihedral restraint 66
dihedral

Improper ∼ see Improper dihedral
improper ∼ see improper dihedral
Proper ∼ see Proper dihedral
proper ∼ see proper dihedral

dipolar couplings 70
dispersion 49

correction 84, 150
Distance restraint 66
distance restraints 160
distribution, Maxwellian

see Maxwellian distribution
do dssp 186, 194, 212
do shift 188, 194
dodecahedron 13
Domain decomposition 41
double precision see precision, double
drude 74
dummy atoms see virtual interaction-sites
Dynamics, Brownian

see Brownian Dynamics
dynamics

Langevin ∼ see Langevin dynamics
mesoscopic ∼

see mesoscopic dynamics
Dynamics, Stochastic

see Stochastic Dynamics
dynamics, stochastic

see stochastic dynamics

E
editconf 213

Einstein relation 178
Electric field 164
electrostatic force 20
Electrostatics 147
eneconv 215
energy file 206
Energy

minimization 144
monitor group 15

energy
kinetic ∼ see kinetic energy
potential ∼ see potential energy

ensemble average 1
environment variables 193
equation, Schrödinger

see Schrödinger equation
equations of motion 2, 22
equilibration 207
essential dynamics see covariance analysis
Essential Dynamics Sampling 40
Ewald

sum 55, 86, 147
particle-mesh ∼ 55

exclusions 79, 99, 157
energy monitor group ∼ 15

extended ensemble 23

F
FENE potential 58
File type 139
file

energy ∼ see energy file
index ∼ see index file
log ∼ see log file
Topology ∼ see Topology file
trajectory ∼ see trajectory file

files, gromos see gromos-96 files
flooding 40
force

decomposition 41
Constraint ∼ see Constraint force
electrostatic ∼ see electrostatic force
parabolic ∼ see parabolic force

force-field 4, 49, 89
organization 120

Index 305

All-hydrogen ∼
see All-hydrogen force-field

changing parameters ∼ 120
Fortran 199
Free energy calculations 162
free energy

calculations 37, 126
interactions 75
topologies 116

freedom, degrees of see degrees of freedom
Freeze group 15
function

autocorrelation ∼
see autocorrelation function

potential ∼ see potential function
shift ∼ see shift function

G
g anaeig 184, 215
g analyze 184, 217
g angle 179, 219
g bond 178, 220
g bundle 221
g chi 222
g cluster 224
g clustsize 225
g com 174
g confrms 226
g covar 184, 227
g current 228
g density 188, 229
g densmap 230
g dielectric 231
g dih 231
g dipoles 177, 178, 232
g disre 234
g dist 235
g dyndom 235
g enemat 238
g energy 174, 178, 208, 239
g filter 242
g gyrate 180, 243
g h2order 243
g hbond 184, 244
g helix 246
g helixorient 247

g lie 248
g mdmat 181, 248
g mindist 181, 249
g morph 250
g msd 178, 250
g nmeig 37, 253
g nmens 37, 253
g nmtraj 254
g order 188, 254
g polystat 255
g potential 188, 256
g principal 256
g pvd 188
g rama 186, 257
g rdf 174, 257
g rms 181, 258
g rmsdist 182, 260
g rmsf 260
g rotacf 177, 263
g saltbr 264
g sas 264
g sdf 265
g sgangle 179, 180, 266
g sham 267
g sorient 268
g spatial 269
g spol 271
g tcaf 271
g traj 188, 272
g vanhove 274
g velacc 177, 275
g wham 275
genbox 236
genconf 237
genion 240
genrestr 241
gmxcheck 251
gmxdump 252
GMXRC 193
Grid search 20
gromos-87 89

force field 89
gromos-96

files 90
force field 90

grompp 113, 128, 261

306 Index

Group temperature coupling 25
group

accelerate ∼ see accelerate group
charge ∼ see charge group
Energy monitor ∼

see Energy monitor group
Freeze ∼ see Freeze group
planar ∼ see planar group

H
harmonic interaction 99
Hessian 36
highway 276
html manual 139
hydrogen database 102
hydrogen-bond 94

I
image, nearest see nearest image
Improper dihedral 61

97
index file 171
install 191
integration timestep 58
interaction list 79
isothermal compressibility 25

K
kinetic energy 21

L
L-BFGS 36
Langevin dynamics 34, 143
leap-frog 22, 141
Lennard-Jones 50, 76
limitations 3
LINCS 31, 43, 77, 156
list, interaction see interaction list
log file 145, 207

M
make edi 276
make ndx 172, 278
Martini force field 91
mass, modified see modified mass
Maxwellian distribution 17
MD, non-equilibrium

see non-equilibrium MD

mdrun 279
mechanics, statistical

see statistical mechanics
mesoscopic dynamics 2
mirror image 61
Mixed quantum/classical molecular dynam-

ics 164
mk angndx 172, 282
modeling, molecular

see molecular modeling
modified mass 127
molecular modeling 1
motion, equations of

see equations of motion

N
nearest image 18
neighbor list 18, 145
Neighbor searching 18, 145
neighbor, third see third neighbor
ngmx 174, 283
NMR refinement 160

66
non-bonded parameter 98
Non-equilibrium MD 163

15
Normal mode analysis 36, 142
Nosé-Hoover temperature coupling 23

O
octahedron 13
online manual 139
OPLS/AA force field 91
options 211
Orientation restraint 70
orientation restraints 161

P
P-LINCS 43
Pair interaction 98
parabolic force 54
Parallelization 41
parameter 93

bonded ∼ see bonded parameter
non-bonded ∼

see non-bonded parameter
Parameter, Run see Run Parameter

Index 307

Parrinello-Rahman pressure coupling 26
particle 93
Particle decomposition 41
particle-mesh Ewald see PME
Particle-Particle Particle-Mesh see PPPM
pdb2gmx 62, 65, 96, 128, 283
performance 199
Periodic

Boundary Conditions 195
Periodic boundary conditions 11

86
planar group 61
PME 87, 147
Poisson solver 54
polarizability 29
polymer convention 97
Position restraint 64
position restraints 141
potential

energy 20
function 89, 133

potentials of mean force 126
PPPM 87, 147
precision

double ∼ 191
single ∼ 191

pressure 21
Pressure coupling 25, 152

Parrinello-Rahman ∼
see Parrinello-Rahman pressure coupling

principal component analysis
see covariance analysis

Programs by topic 166
Proper dihedral 62

97
protonate 285
pulling 158

Constraint ∼ see Constraint pulling
Umbrella ∼ see Umbrella pulling

Q
QSAR 1
quadrupole 95
quasi-Newtonian 142

R

reaction field 52, 76, 84
Reaction-Field 147
refinement,nmr 66
REMD 39
Replica exchange 39
repulsion 49
restraint

Angle ∼ see Angle restraint
Dihedral ∼ see Dihedral restraint
Distance ∼ see Distance restraint
Orientation ∼ see Orientation restraint
Position ∼ see Position restraint

Run Parameter 141
Ryckaert-Bellemans 97

S
sampling 29
Schrödinger equation 1
search

Grid ∼ see Grid search
Simple ∼ see Simple search

searching, Neighbor
see Neighbor searching

SETTLE 30, 100
SHAKE 30, 77, 156
shear 164
shell 74

model 29
Shell Molecular Dynamics 144
shift function 20
sigeps 285
Simple search 19
Simulated annealing 154

33
single precision see precision, single
Soft-core interactions 77
solver, Poisson see Poisson solver
statistical mechanics 2
Steepest Descent 35
steepest descent 142
Stochastic Dynamics 34
stochastic dynamics 2
strain 164
stretching, bond see bond stretching
Surface tension coupling 27

T

308 Index

Tabulated interaction function 64, 132
targeted MD 127
temperature 21
Temperature coupling 22, 152
temperature coupling 14, 22

Berendsen ∼
see Berendsen temperature coupling

Group ∼
see Group temperature coupling

temperature coupling, Nosé-Hoover
see Nosé-Hoover temperature coupling

termini database 104
third neighbor 79
Thole 74
time lag 176
timestep, integration

see integration timestep
topic, Programs by see Programs by topic
topology 93
Topology file 106
tpbconv 286
trajectory file 29, 145
trjcat 287
trjconv 287
trjorder 290
type

atom ∼ see atom type
File ∼ see File type

U
Umbrella pulling 125
united atom 94
Urey-Bradley angle vibration 60

V
Velocity rescaling thermostat 23
velocity, center-of-mass

see center-of-mass velocity
vibration

angle ∼ see angle vibration
Urey-Bradley angle ∼

see Urey-Bradley angle vibration
virial 21, 80, 81, 195
virtual interaction-sites 80, 94, 95, 127
Viscosity 130
viscosity 163, 178

W
Walls 157
water 57
weak coupling 22, 25
wheel 186, 291

X
x2top 291
xdr 139
xmgr 176, 209
xpm2ps 292
xrama 186, 293
XTC 15

	Introduction
	Computational Chemistry and Molecular Modeling
	Molecular Dynamics Simulations
	Energy Minimization and Search Methods

	Definitions and Units
	Notation
	MD units
	Reduced units

	Algorithms
	Introduction
	Periodic boundary conditions
	Some useful box types
	Cutoff restrictions

	The group concept
	Molecular Dynamics
	Initial conditions
	Neighbor searching
	Compute forces
	Update configuration
	Temperature coupling
	Pressure coupling
	Output step

	Shell molecular dynamics
	Optimization of the shell positions

	Constraint algorithms
	SHAKE
	LINCS

	Simulated Annealing
	Stochastic Dynamics
	Brownian Dynamics
	Energy Minimization
	Steepest Descent
	Conjugate Gradient
	L-BFGS

	Normal Mode Analysis
	Free energy calculations
	Replica exchange
	Essential Dynamics Sampling
	Parallelization
	Particle decomposition
	Domain decomposition
	Coordinate and force communication
	Dynamic load balancing
	Constraints in parallel
	Interaction ranges
	Multiple-Program, Multiple-Data PME parallelization
	Domain decomposition flow chart

	Interaction function and force field
	Non-bonded interactions
	The Lennard-Jones interaction
	Buckingham potential
	Coulomb interaction
	Coulomb interaction with reaction field
	Modified non-bonded interactions
	Modified short-range interactions with Ewald summation

	Bonded interactions
	Bond stretching
	Morse potential bond stretching
	Cubic bond stretching potential
	FENE bond stretching potential
	Harmonic angle potential
	Cosine based angle potential
	Urey-Bradley potential
	Bond-Bond cross term
	Bond-Angle cross term
	Quartic angle potential
	Improper dihedrals
	Proper dihedrals
	Tabulated interaction functions

	Restraints
	Position restraints
	Angle restraints
	Dihedral restraints
	Distance restraints
	Orientation restraints

	Polarization
	Simple polarization
	Water polarization
	Thole polarization

	Free energy interactions
	Soft-core interactions

	Methods
	Exclusions and 1-4 Interactions.
	Charge Groups.
	Treatment of Cutoffs

	Virtual interaction-sites
	Dispersion correction
	Energy
	Virial and pressure

	Long Range Electrostatics
	Ewald summation
	PME
	PPPM
	Optimizing Fourier transforms

	Force field
	GROMOS87
	GROMOS-96
	OPLS/AA
	Amber
	CHARMM
	Martini

	Topologies
	Introduction
	Particle type
	Atom types
	Virtual sites

	Parameter files
	Atoms
	Bonded parameters
	Non-bonded parameters
	Pair interactions

	Exclusions
	Constraints
	Databases
	Residue database
	Hydrogen database
	Termini database

	File formats
	Topology file
	Molecule.itp file
	Ifdef option
	Topologies for free energy calculations
	Constraint force
	Coordinate file

	Force-field organization
	Force-field files
	Changing force-field parameters
	Adding atom types

	Special Topics
	Potential of mean force
	Non-equilibrium pulling
	The pull code
	Calculating a PMF using the free-energy code
	Removing fastest degrees of freedom
	Hydrogen bond-angle vibrations
	Out-of-plane vibrations in aromatic groups

	Viscosity calculation
	Tabulated interaction functions
	Cubic splines for potentials
	User specified potential functions

	Mixed Quantum-Classical simulation techniques
	Overview
	Usage
	Output
	Future developments

	Run parameters and Programs
	Online and html manuals
	File types
	Run Parameters
	General
	Preprocessing
	Run control
	Langevin dynamics
	Energy minimization
	Shell Molecular Dynamics
	Test particle insertion
	Output control
	Neighbor searching
	Electrostatics
	VdW
	Tables
	Ewald
	Temperature coupling
	Pressure coupling
	Simulated annealing
	Velocity generation
	Bonds
	Energy group exclusions
	Walls
	COM pulling
	NMR refinement
	Free energy calculations
	Non-equilibrium MD
	Electric fields
	Mixed quantum/classical molecular dynamics
	User defined thingies

	Programs by topic

	Analysis
	Groups in Analysis.
	Default Groups

	Looking at your trajectory
	General properties
	Radial distribution functions
	Correlation functions
	Theory of correlation functions
	Using FFT for computation of the ACF
	Special forms of the ACF
	Some Applications

	Mean Square Displacement
	Bonds, angles and dihedrals
	Radius of gyration and distances
	Root mean square deviations in structure
	Covariance analysis
	Dihedral principal component analysis
	Hydrogen bonds
	Protein related items
	Interface related items
	Chemical shifts

	Technical Details
	Installation
	Single or Double precision
	Porting GROMACS
	Multi-processor Optimization

	Environment Variables
	Running GROMACS in parallel

	Some implementation details
	Single Sum Virial in GROMACS.
	Virial.
	Virial from non-bonded forces.
	The intramolecular shift (mol-shift).
	Virial from Covalent Bonds.
	Virial from Shake.

	Optimizations
	Inner Loops for Water
	Fortran Code

	Computation of the 1.0/sqrt function.
	Introduction.
	General
	Applied to floating point numbers
	Specification of the lookup table
	Separate exponent and fraction computation
	Implementation

	Modifying GROMACS

	Averages and fluctuations
	Formulae for averaging
	Implementation
	Part of a Simulation
	Combining two simulations
	Summing energy terms

	Manual Pages
	options
	anadock
	do_dssp
	editconf
	eneconv
	g_anaeig
	g_analyze
	g_angle
	g_bond
	g_bundle
	g_chi
	g_cluster
	g_clustsize
	g_confrms
	g_covar
	g_current
	g_density
	g_densmap
	g_dielectric
	g_dih
	g_dipoles
	g_disre
	g_dist
	g_dyndom
	genbox
	genconf
	g_enemat
	g_energy
	genion
	genrestr
	g_filter
	g_gyrate
	g_h2order
	g_hbond
	g_helix
	g_helixorient
	g_lie
	g_mdmat
	g_mindist
	g_morph
	g_msd
	gmxcheck
	gmxdump
	g_nmeig
	g_nmens
	g_nmtraj
	g_order
	g_polystat
	g_potential
	g_principal
	g_rama
	g_rdf
	g_rms
	g_rmsdist
	g_rmsf
	grompp
	g_rotacf
	g_saltbr
	g_sas
	g_sdf
	g_sgangle
	g_sham
	g_sorient
	g_spatial
	g_spol
	g_tcaf
	g_traj
	g_vanhove
	g_velacc
	g_wham
	highway
	make_edi
	make_ndx
	mdrun
	mk_angndx
	ngmx
	pdb2gmx
	protonate
	sigeps
	tpbconv
	trjcat
	trjconv
	trjorder
	wheel
	x2top
	xpm2ps
	xrama

	Bibliography
	Index

