
GROMACS
USER

MANUAL
Groningen Machine for Chemical Simulations

Version 3.2

GROMACS
USER MANUAL

Version 3.2

David van der Spoel, Erik Lindahl, Berk Hess

Aldert R. van Buuren
Emile Apol

Pieter J. Meulenhoff
D. Peter Tieleman

Alfons L.T.M. Sijbers
K. Anton Feenstra
Rudi van Drunen

Herman J.C. Berendsen

c© 1991–2000: Department of Biophysical Chemistry, University of Groningen. Nijenborgh 4,
9747 AG Groningen, The Netherlands.

c© 2001–2004: The GROMACS development team.

Check outwww.gromacs.orgfor more information.

http://www.gromacs.org

iv

Preface & Disclaimer

This manual is not complete and has no pretention to be so due to lack of time of the contributors
– our first priority is to improve the software. It is worked on continuously, which in some cases
might mean the information is not entirely correct.

Comments are welcome, please send them by e-mail togromacs@gromacs.org, or to one of the
mailing lists (seewww.gromacs.org).

We try to release an updated version of the manual whenever we release a new version of the soft-
ware, so in general it is a good idea to use a manual with the same major and minor release number
as your GROMACS installation. Any revision numbers (like 3.1.1) are however independent, to
make it possible to implement bugfixes and manual improvements if necessary.

Online Resources

You can find more documentation and other material at our homepagewww.gromacs.org. Among
other things there is an online reference, several GROMACS mailing lists with archives and con-
tributed topologies/force fields.

Citation information

When citing this document in any scientific publication please refer to it as:

D. van der Spoel, E. Lindahl, B. Hess, A. R. van Buuren, E. Apol, P. J. Meulenhoff,
D. P. Tieleman, A. L. T. M. Sijbers, K. A. Feenstra, R. van Drunen and H. J. C.
Berendsen, Gromacs User Manual version 3.2, www.gromacs.org(2004)

We humbly ask that you cite the GROMACS papers [1, 2] when you publish your results. Any
future development depends on academic research grants, since the package is distributed as free
software!

Current development

Gromacs is a joint effort, with contributions from lots of developers around the world. The core
development is currently taking place at

• Department of Cellular and molecular biology, Uppsala University, Sweden.
(David van der Spoel and coworkers).

• Department of Structural Biology, Stanford University School of Medicine, USA
(Erik Lindahl and coworkers).

• Department of Physics, Groningen University, The Netherlands
(Berk Hess and coworkers)

mailto:gromacs@gromacs.org
http://www.gromacs.org
http://www.gromacs.org
http://www.gromacs.org

v

GROMACS is Free Software

The entire GROMACS package is available under the GNU General Public License. This means
it’s free as in free speech, not just that you can use it without paying us money. For details, check
the COPYING file in the source code or consultwww.gnu.org/copyleft/gpl.html.

The GROMACS source code and and selected set of binary packages are available on our home-
page,www.gromacs.org. Have fun.

http://www.gnu.org/copyleft/gpl.html
http://www.gromacs.org

vi

Contents

1 Introduction 1

1.1 Computational Chemistry and Molecular Modeling. 1

1.2 Molecular Dynamics Simulations. 2

1.3 Energy Minimization and Search Methods. 5

2 Definitions and Units 7

2.1 Notation. 7

2.2 MD units . 7

2.3 Reduced units. 9

3 Algorithms 11

3.1 Introduction. 11

3.2 Periodic boundary conditions. 11

3.2.1 Some useful box types. 13

3.2.2 Cutoff restrictions . 14

3.3 The group concept. 14

3.4 Molecular Dynamics. 15

3.4.1 Initial conditions . 15

3.4.2 Neighbor searching. 18

3.4.3 Compute forces. 20

3.4.4 Update configuration. 21

3.4.5 Temperature coupling. 22

3.4.6 Pressure coupling. 24

3.4.7 Output step. 28

3.5 Shell molecular dynamics. 28

3.5.1 Optimization of the shell positions. 28

viii Contents

3.6 Constraint algorithms. 29

3.6.1 SHAKE. 29

3.6.2 LINCS . 30

3.7 Simulated Annealing. 32

3.8 Stochastic Dynamics. 32

3.9 Brownian Dynamics . 33

3.10 Energy Minimization. 33

3.10.1 Steepest Descent. 34

3.10.2 Conjugate Gradient. 34

3.10.3 L-BFGS. 34

3.11 Normal Mode Analysis. 35

3.12 Free energy calculations. 36

3.13 Essential Dynamics Sampling. 38

3.14 Parallelization. 38

3.14.1 Methods of parallelization. 38

3.14.2 MD on a ring of processors. 40

3.15 Parallel Molecular Dynamics. 43

3.15.1 Domain decomposition. 44

3.15.2 Domain decomposition for non-bonded forces. 44

3.15.3 Parallel PPPM. 46

3.15.4 Parallel sorting. 47

4 Force fields 49

4.1 Non-bonded interactions. 50

4.1.1 The Lennard-Jones interaction. 50

4.1.2 Buckingham potential. 51

4.1.3 Coulomb interaction. 52

4.1.4 Coulomb interaction with reaction field. 52

4.1.5 Modified non-bonded interactions. 53

4.1.6 Modified short-range interactions with Ewald summation. 55

4.2 Bonded interactions. 56

4.2.1 Bond stretching. 56

4.2.2 Morse potential bond stretching. 57

4.2.3 Cubic bond stretching potential. 58

Contents ix

4.2.4 Harmonic angle potential. 58

4.2.5 Cosine based angle potential. 59

4.2.6 Urey-Bradley potential. 59

4.2.7 Bond-Bond cross term. 60

4.2.8 Bond-Angle cross term. 60

4.2.9 Improper dihedrals. 60

4.2.10 Proper dihedrals. 61

4.2.11 Special interactions. 63

4.2.12 Position restraints. 63

4.2.13 Angle restraints. 64

4.2.14 Distance restraints. 64

4.2.15 Orientation restraints. 68

4.3 Free energy interactions. 72

4.3.1 Soft-core interactions. 74

4.4 Methods. 75

4.4.1 Exclusions and 1-4 Interactions.. 75

4.4.2 Charge Groups.. 76

4.4.3 Treatment of cutoffs. 76

4.5 Dummy atoms. 77

4.6 Long Range Electrostatics. 80

4.6.1 Ewald summation. 80

4.6.2 PME . 81

4.6.3 PPPM. 81

4.6.4 Optimizing Fourier transforms. 82

4.7 All-hydrogen force-field . 83

4.8 GROMOS-96 notes. 83

4.8.1 The GROMOS-96 force field. 83

4.8.2 GROMOS-96 files. 84

5 Topologies 85

5.1 Introduction. 85

5.2 Particle type. 85

5.2.1 Atom types. 86

5.2.2 Dummy atoms. 87

x Contents

5.3 Parameter files . 88

5.3.1 Atoms. 88

5.3.2 Bonded parameters. 89

5.3.3 Non-bonded parameters. 90

5.3.4 Pair interactions . 91

5.3.5 Exclusions . 91

5.4 Constraints . 92

5.5 Databases. 92

5.5.1 Residue database. 92

5.5.2 Hydrogen database. 94

5.5.3 Termini database. 96

5.6 File formats . 97

5.6.1 Topology file . 97

5.6.2 Molecule.itp file . 103

5.6.3 Ifdef option. .104

5.6.4 Free energy calculations. 105

5.6.5 Constraint force. .107

5.6.6 Coordinate file. .108

5.7 Force-field organization . 108

5.7.1 Force-field files. .108

5.7.2 Changing force-field parameters. 109

5.7.3 Adding atom types. 110

6 Special Topics 111

6.1 Calculating potentials of mean force: the pull code. 111

6.1.1 Overview .111

6.1.2 Usage. .111

6.1.3 The parameter file. 114

6.1.4 Output .117

6.1.5 Limitations .118

6.1.6 Implementation. .119

6.1.7 Future development. 119

6.2 Removing fastest degrees of freedom. 119

6.2.1 Hydrogen bond-angle vibrations. 120

Contents xi

6.2.2 Out-of-plane vibrations in aromatic groups. 122

6.3 Viscosity calculation .122

6.4 Tabulated functions. .124

6.4.1 Cubic splines for potentials. 124

6.4.2 User specified potential functions. 125

7 Run parameters and Programs 127

7.1 Online and html manuals. 127

7.2 File types .127

7.3 Run Parameters. .129

7.3.1 General. .129

7.3.2 Preprocessing. .129

7.3.3 Run control. .129

7.3.4 Langevin dynamics. 131

7.3.5 Energy minimization. 131

7.3.6 Shell Molecular Dynamics. 131

7.3.7 Output control .132

7.3.8 Neighbor searching. 132

7.3.9 Electrostatics and VdW. 133

7.3.10 Temperature coupling. 136

7.3.11 Pressure coupling. 137

7.3.12 Simulated annealing. 138

7.3.13 Velocity generation. 139

7.3.14 Bonds. .139

7.3.15 Energy group exclusions. 141

7.3.16 NMR refinement. 141

7.3.17 Free Energy Perturbation. 142

7.3.18 Non-equilibrium MD. 143

7.3.19 Electric fields. .143

7.3.20 User defined thingies. 144

7.4 Programs by topic. .144

8 Analysis 149

8.1 Groups in Analysis.. .149

8.1.1 Default Groups. .150

xii Contents

8.2 Looking at your trajectory . 151

8.3 General properties. .151

8.4 Radial distribution functions. 152

8.5 Correlation functions. .153

8.5.1 Theory of correlation functions. 153

8.5.2 Using FFT for computation of the ACF. 155

8.5.3 Special forms of the ACF. 155

8.5.4 Some Applications. 155

8.5.5 Mean Square Displacement. 156

8.6 Bonds, angles and dihedrals. 156

8.7 Radius of gyration and distances. 159

8.8 Root mean square deviations in structure. 160

8.9 Covariance analysis. .161

8.10 Hydrogen bonds. .162

8.11 Protein related items. .164

8.12 Interface related items. .166

8.13 Chemical shifts. .167

A Technical Details 169

A.1 Installation .169

A.2 Single or Double precision. 169

A.3 Porting GROMACS. .170

A.3.1 Multi-processor Optimization. 171

A.4 Environment Variables. .171

A.5 Running GROMACS in parallel . 172

B Some implementation details 175

B.1 Single Sum Virial in GROMACS. 175

B.1.1 Virial. .175

B.1.2 Virial from non-bonded forces.. 176

B.1.3 The intramolecular shift (mol-shift).. 176

B.1.4 Virial from Covalent Bonds.. 177

B.1.5 Virial from Shake. 178

B.2 Optimizations. .178

B.2.1 Inner Loops for Water. 178

Contents xiii

B.2.2 Fortran Code. .179

B.3 Computation of the 1.0/sqrt function.. 179

B.3.1 Introduction. .179

B.3.2 General. .179

B.3.3 Applied to floating point numbers. 180

B.3.4 Specification of the lookup table. 181

B.3.5 Separate exponent and fraction computation. 182

B.3.6 Implementation. .183

C Long range corrections 185

C.1 Dispersion. .185

C.1.1 Energy .185

C.1.2 Virial and pressure. 186

D Averages and fluctuations 189

D.1 Formulae for averaging. .189

D.2 Implementation. .190

D.2.1 Part of a Simulation . 191

D.2.2 Combining two simulations. 191

D.2.3 Summing energy terms. 192

E Manual Pages 195

E.1 options. .195

E.2 anadock. .196

E.3 anadockd .196

E.4 cdist .197

E.5 cdistd .198

E.6 disco. .199

E.7 discod .200

E.8 dodssp .201

E.9 dodsspd .202

E.10 editconf .203

E.11 editconfd .205

E.12 eneconv. .206

E.13 eneconvd .207

xiv Contents

E.14 ffscan .207

E.15 ffscand .208

E.16 ganaeig. .209

E.17 ganaeigd .210

E.18 ganalyze .212

E.19 ganalyzed .213

E.20 gangle .215

E.21 gangled .216

E.22 gbond. .217

E.23 gbondd .217

E.24 gbundle. .218

E.25 gbundled .219

E.26 gchi .220

E.27 gchi d .222

E.28 gcluster .224

E.29 gclusterd .225

E.30 gclustsize. .227

E.31 gclustsized .227

E.32 gconfrms .228

E.33 gconfrmsd .229

E.34 gcovar .229

E.35 gcovard .230

E.36 gdensity .231

E.37 gdensityd .232

E.38 gdielectric .232

E.39 gdielectricd .233

E.40 gdih .234

E.41 gdih d .235

E.42 gdipoles .235

E.43 gdipolesd .237

E.44 gdisre .238

E.45 gdisred .238

E.46 gdist .239

E.47 gdist d .240

Contents xv

E.48 gdyndom .240

E.49 gdyndomd .241

E.50 genemat .241

E.51 genematd .242

E.52 genergy. .243

E.53 genergyd .245

E.54 gfilter .246

E.55 gfilter d .247

E.56 ggyrate .247

E.57 ggyrated .248

E.58 gh2order .249

E.59 gh2orderd .249

E.60 ghbond .250

E.61 ghbondd .251

E.62 ghelix .253

E.63 ghelix d .254

E.64 glie .255

E.65 glie d .255

E.66 gmdmat. .255

E.67 gmdmatd .256

E.68 gmindist .256

E.69 gmindist d .257

E.70 gmorph .258

E.71 gmorphd .258

E.72 gmsd .259

E.73 gmsdd .260

E.74 gnmeig .260

E.75 gnmeigd .261

E.76 gnmens. .261

E.77 gnmensd .262

E.78 gorder .262

E.79 gorderd .263

E.80 gpotential. .264

E.81 gpotentiald .264

xvi Contents

E.82 grama. .265

E.83 gramad .265

E.84 grdf .266

E.85 grdf d .266

E.86 grms .267

E.87 grms d .268

E.88 grmsdist .270

E.89 grmsdistd .270

E.90 grmsf .271

E.91 grmsf d .272

E.92 grotacf .273

E.93 grotacf d .274

E.94 gsaltbr .274

E.95 gsaltbrd .275

E.96 gsas. .275

E.97 gsasd .276

E.98 gsgangle .277

E.99 gsgangled .277

E.100gsorient. .278

E.101gsorientd .279

E.102gtcaf .280

E.103gtcaf d .281

E.104gtraj .281

E.105gtraj d .282

E.106gvelacc .283

E.107gvelaccd .284

E.108gwham .284

E.109gwhamd .285

E.110genbox. .286

E.111genboxd .287

E.112genconf .288

E.113genconfd .289

E.114genion. .289

E.115geniond .290

Contents xvii

E.116genpr .291

E.117genprd .291

E.118gmxcheck. .292

E.119gmxcheckd .292

E.120gmxdump. .293

E.121gmxdumpd .293

E.122grompp .294

E.123gromppd .295

E.124highway. .297

E.125highwayd .297

E.126makendx .298

E.127makendx d .298

E.128mdrun. .299

E.129mdrund .300

E.130mkangndx .302

E.131mkangndxd .302

E.132ngmx .303

E.133ngmxd .303

E.134pdb2gmx .304

E.135pdb2gmxd .305

E.136protonate .307

E.137protonated .307

E.138tpbconv .308

E.139tpbconvd .309

E.140trjcat. .309

E.141trjcatd .310

E.142trjconv. .310

E.143trjconvd .312

E.144trjorder .314

E.145trjorderd .315

E.146wheel .316

E.147wheeld .316

E.148x2top .316

E.149x2topd .317

xviii Contents

E.150xpm2ps .318

E.151xpm2psd .319

E.152xrama .320

E.153xramad .320

Bibliography 323

Index 329

Chapter 1

Introduction

1.1 Computational Chemistry and Molecular Modeling

GROMACS is an engine to perform molecular dynamics simulations and energy minimization.
These are two of the many techniques that belong to the realm of computational chemistry and
molecular modeling.Computational Chemistryis just a name to indicate the use of computational
techniques in chemistry, ranging from quantum mechanics of molecules to dynamics of large
complex molecular aggregates.Molecular modelingindicates the general process of describing
complex chemical systems in terms of a realistic atomic model, with the aim to understand and
predict macroscopic properties based on detailed knowledge on an atomic scale. Often molecular
modeling is used to design new materials, for which the accurate prediction of physical properties
of realistic systems is required.

Macroscopic physical properties can be distinguished in (a) static equilibrium properties, such as
the binding constant of an inhibitor to an enzyme, the average potential energy of a system, or
the radial distribution function in a liquid, and (b) dynamic or non-equilibrium properties, such
as the viscosity of a liquid, diffusion processes in membranes, the dynamics of phase changes,
reaction kinetics, or the dynamics of defects in crystals. The choice of technique depends on the
question asked and on the feasibility of the method to yield reliable results at the present state of
the art. Ideally, the (relativistic) time-dependent Schrödinger equation describes the properties of
molecular systems with high accuracy, but anything more complex than the equilibrium state of a
few atoms cannot be handled at thisab initio level. Thus approximations are necessary; the higher
the complexity of a system and the longer the time span of the processes of interest is, the more
severe the required approximations are. At a certain point (reached very much earlier than one
would wish) theab initio approach must be augmented or replaced byempiricalparameterization
of the model used. Where simulations based on physical principles of atomic interactions still fail
due to the complexity of the system (as is unfortunately still the case for the prediction of protein
folding; but: there is hope!) molecular modeling is based entirely on a similarity analysis of known
structural and chemical data. The QSAR methods (Quantitative Structure-Activity Relations) and
many homology-based protein structure predictions belong to the latter category.

Macroscopic properties are always ensemble averages over a representative statistical ensemble

2 Chapter 1. Introduction

(either equilibrium or non-equilibrium) of molecular systems. For molecular modeling this has
two important consequences:

• The knowledge of a single structure, even if it is the structure of the global energy min-
imum, is not sufficient. It is necessary to generate a representative ensemble at a given
temperature, in order to compute macroscopic properties. But this is not enough to compute
thermodynamic equilibrium properties that are based on free energies, such as phase equi-
libria, binding constants, solubilities, relative stability of molecular conformations, etc. The
computation of free energies and thermodynamic potentials requires special extensions of
molecular simulation techniques.

• While molecular simulations in principle provide atomic details of the structures and mo-
tions, such details are often not relevant for the macroscopic properties of interest. This
opens the way to simplify the description of interactions and average over irrelevant details.
The science of statistical mechanics provides the theoretical framework for such simpli-
fications. There is a hierarchy of methods ranging from considering groups of atoms as
one unit, describing motion in a reduced number of collective coordinates, averaging over
solvent molecules with potentials of mean force combined with stochastic dynamics [3],
to mesoscopic dynamicsdescribing densities rather than atoms and fluxes as response to
thermodynamic gradients rather than velocities or accelerations as response to forces [4].

For the generation of a representative equilibrium ensemble two methods are available: (a) Monte
Carlo simulationsand (b) Molecular Dynamics simulations. For the generation of non-equilibrium
ensembles and for the analysis of dynamic events, only the second method is appropriate. While
Monte Carlo simulations are more simple than MD (they do not require the computation of forces),
they do not yield significantly better statistics than MD in a given amount of computer time. There-
fore MD is the more universal technique. If a starting configuration is very far from equilibrium,
the forces may be excessively large and the MD simulation may fail. In those cases a robusten-
ergy minimizationis required. Another reason to perform an energy minimization is the removal
of all kinetic energy from the system: if several ’snapshots’ from dynamic simulations must be
compared, energy minimization reduces the thermal noise in the structures and potential energies,
so that they can be compared better.

1.2 Molecular Dynamics Simulations

MD simulations solve Newton’s equations of motion for a system ofN interacting atoms:

mi
∂2ri

∂t2
= F i, i = 1 . . . N. (1.1)

The forces are the negative derivatives of a potential functionV (r1, r2, . . . , rN):

F i = −∂V
∂ri

(1.2)

The equations are solved simultaneously in small time steps. The system is followed for some
time, taking care that the temperature and pressure remain at the required values, and the coor-
dinates are written to an output file at regular intervals. The coordinates as a function of time

1.2. Molecular Dynamics Simulations 3

type of wavenumber
type of bond vibration (cm−1)
C-H, O-H, N-H stretch 3000–3500
C=C, C=O, stretch 1700–2000
HOH bending 1600
C-C stretch 1400–1600
H2CX sciss, rock 1000–1500
CCC bending 800–1000
O-H· · ·O libration 400– 700
O-H· · ·O stretch 50– 200

Table 1.1: Typical vibrational frequencies (wavenumbers) in molecules and hydrogen-bonded liq-
uids. ComparekT/h = 200 cm−1 at 300 K.

represent atrajectoryof the system. After initial changes, the system will usually reach anequi-
librium state. By averaging over an equilibrium trajectory many macroscopic properties can be
extracted from the output file.

It is useful at this point to consider the limitations of MD simulations. The user should be aware
of those limitations and always perform checks on known experimental properties to assess the
accuracy of the simulation. We list the approximations below.

The simulations are classical
Using Newton’s equation of motion automatically implies the use ofclassical mechanicsto
describe the motion of atoms. This is all right for most atoms at normal temperatures, but
there are exceptions. Hydrogen atoms are quite light and the motion of protons is sometimes
of essential quantum mechanical character. For example, a proton maytunnel through a
potential barrier in the course of a transfer over a hydrogen bond. Such processes cannot be
properly treated by classical dynamics! Helium liquid at low temperature is another example
where classical mechanics breaks down. While helium may not deeply concern us, the high
frequency vibrations of covalent bonds should make us worry! The statistical mechanics of a
classical harmonic oscillator differs appreciably from that of a real quantum oscillator, when
the resonance frequencyν approximates or exceedskBT/h. Now at room temperature the
wavenumberσ = 1/λ = ν/c at whichhν = kBT is approximately 200 cm−1. Thus all
frequencies higher than, say, 100 cm−1 may misbehave in classical simulations. This means
that practically all bond and bond-angle vibrations are suspect, and even hydrogen-bonded
motions as translational or librational H-bond vibrations are beyond the classical limit (see
Table1.1). What can we do?

Well, apart from real quantum-dynamical simulations, we can do one of two things:
(a) If we perform MD simulations using harmonic oscillators for bonds, we should make
corrections to the total internal energyU = Ekin+Epot and specific heatCV (and to entropy
S and free energyA orG if those are calculated). The corrections to the energy and specific
heat of a one-dimensional oscillator with frequencyν are: [5]

UQM = U cl + kT

(
1
2
x− 1 +

x

ex − 1

)
(1.3)

4 Chapter 1. Introduction

CQM
V = Ccl

V + k

(
x2ex

(ex − 1)2
− 1

)
, (1.4)

wherex = hν/kT . The classical oscillator absorbs too much energy (kT), while the high-
frequency quantum oscillator is in its ground state at the zero-point energy level of1

2hν.
(b) We can treat the bonds (and bond angles) asconstraintsin the equation of motion. The
rational behind this is that a quantum oscillator in its ground state resembles a constrained
bond more closely than a classical oscillator. A good practical reason for this choice is
that the algorithm can use larger time steps when the highest frequencies are removed. In
practice the time step can be made four times as large when bonds are constrained than
when they are oscillators [6]. GROMACS has this option for the bonds and bond angles.
The flexibility of the latter is rather essential to allow for the realistic motion and coverage
of configurational space [6].

Electrons are in the ground state
In MD we use aconservativeforce field that is a function of the positions of atoms only.
This means that the electronic motions are not considered: the electrons are supposed to
adjust their dynamics instantly when the atomic positions change (theBorn-Oppenheimer
approximation), and remain in their ground state. This is really all right, almost always. But
of course, electron transfer processes and electronically excited states can not be treated.
Neither can chemical reactions be treated properly, but there are other reasons to shy away
from reactions for the time being.

Force fields are approximate
Force fields provide the forces. They are not really a part of the simulation method and their
parameters can be user-modified as the need arises or knowledge improves. But the form
of the forces that can be used in a particular program is subject to limitations. The force
field that is incorporated in GROMACS is described in Chapter 4. In the present version
the force field is pair-additive (apart from long-range coulomb forces), it cannot incorporate
polarizabilities, and it does not contain fine-tuning of bonded interactions. This urges the
inclusion of some limitations in this list below. For the rest it is quite useful and fairly
reliable for bio macro-molecules in aqueous solution!

The force field is pair-additive
This means that allnon-bondedforces result from the sum of non-bonded pair interactions.
Non pair-additive interactions, the most important example of which is interaction through
atomic polarizability, are represented byeffective pair potentials. Only average non pair-
additive contributions are incorporated. This also means that the pair interactions are not
pure,i.e., they are not valid for isolated pairs or for situations that differ appreciably from the
test systems on which the models were parameterized. In fact, the effective pair potentials
are not that bad in practice. But the omission of polarizability also means that electrons in
atoms do not provide a dielectric constant as they should. For example, real liquid alkanes
have a dielectric constant of slightly more than 2, which reduce the long-range electrostatic
interaction between (partial) charges. Thus the simulations will exaggerate the long-range
Coulomb terms. Luckily, the next item compensates this effect a bit.

Long-range interactions are cutoff
In this version GROMACS always uses a cutoff radius for the Lennard-Jones interactions

1.3. Energy Minimization and Search Methods 5

and sometimes for the Coulomb interactions as well. Due to the minimum-image convention
(only one image of each particle in the periodic boundary conditions is considered for a pair
interaction), the cutoff range can not exceed half the box size. That is still pretty big for
large systems, and trouble is only expected for systems containing charged particles. But
then truly bad things can happen, like accumulation of charges at the cutoff boundary or
very wrong energies! For such systems you should consider using one of the implemented
long-range electrostatic algorithms.

Boundary conditions are unnatural
Since system size is small (even 10,000 particles is small), a cluster of particles will have a
lot of unwanted boundary with its environment (vacuum). This we must avoid if we wish
to simulate a bulk system. So we use periodic boundary conditions, to avoid real phase
boundaries. But liquids are not crystals, so something unnatural remains. This item is
mentioned last because it is the least of the evils. For large systems the errors are small,
but for small systems with a lot of internal spatial correlation, the periodic boundaries may
enhance internal correlation. In that case, beware and test the influence of system size. This
is especially important when using lattice sums for long-range electrostatics, since these are
known to sometimes introduce extra ordering.

1.3 Energy Minimization and Search Methods

As mentioned in sec.1.1, in many cases energy minimization is required. GROMACS provides a
simple form of local energy minimization, thesteepest descentmethod.

The potential energy function of a (macro)molecular system is a very complex landscape (orhyper
surface) in a large number of dimensions. It has one deepest point, theglobal minimumand a
very large number oflocal minima, where all derivatives of the potential energy function with
respect to the coordinates are zero and all second derivatives are nonnegative. The matrix of
second derivatives, which is called theHessian matrix, has nonnegative eigenvalues; only the
collective coordinates that correspond to translation and rotation (for an isolated molecule) have
zero eigenvalues. In between the local minima there aresaddle points, where the Hessian matrix
has only one negative eigenvalue. These points are the mountain passes through which the system
can migrate from one local minimum to another.

Knowledge of all local minima, including the global one, and of all saddle points would enable
us to describe the relevant structures and conformations and their free energies, as well as the
dynamics of structural transitions. Unfortunately, the dimensionality of the configurational space
and the number of local minima is so high that it is impossible to sample the space at a sufficient
number of points to obtain a complete survey. In particular, no minimization method exists that
guarantees the determination of the global minimum in any practical amount of time [Impractical
methods exist, some much faster than others [7]]. However, given a starting configuration, it
is possible to find thenearest local minimum. Nearest in this context does not always imply
nearest in a geometrical sense (i.e., the least sum of square coordinate differences), but means the
minimum that can be reached by systematically moving down the steepest local gradient. Finding
this nearest local minimum is all that GROMACS can do for you, sorry! If you want to find other
minima and hope to discover the global minimum in the process, the best advice is to experiment

6 Chapter 1. Introduction

with temperature-coupled MD: run your system at a high temperature for a while and then quench
it slowly down to the required temperature; do this repeatedly! If something as a melting or glass
transition temperature exists, it is wise to stay for some time slightly below that temperature and
cool down slowly according to some clever scheme, a process calledsimulated annealing. Since
no physical truth is required, you can use your imagination to speed up this process. One trick
that often works is to make hydrogen atoms heavier (mass 10 or so): although that will slow
down the otherwise very rapid motions of hydrogen atoms, it will hardly influence the slower
motions in the system while enabling you to increase the time step by a factor of 3 or 4. You can
also modify the potential energy function during the search procedure,e.g.by removing barriers
(remove dihedral angle functions or replace repulsive potentials bysoft corepotentials [8]), but
always take care to restore the correct functions slowly. The best search method that allows rather
drastic structural changes is to allow excursions into four-dimensional space [9], but this requires
some extra programming beyond the standard capabilities of GROMACS.

Three possible energy minimization methods are:

• Those that require only function evaluations. Examples are the simplex method and its
variants. A step is made on the basis of the results of previous evaluations. If derivative
information is available, such methods are inferior to those that use this information.

• Those that use derivative information. Since the partial derivatives of the potential energy
with respect to all coordinates are known in MD programs (these are equal to minus the
forces) this class of methods is very suitable as modification of MD programs.

• Those that use second derivative information as well. These methods are superior in their
convergence properties near the minimum: a quadratic potential function is minimized in
one step! The problem is that forN particles a3N × 3N matrix must be computed, stored
and inverted. Apart from the extra programming to obtain second derivatives, for most
systems of interest this is beyond the available capacity. There are intermediate methods
building up the Hessian matrix on the fly, but they also suffer from excessive storage re-
quirements. So GROMACS will shy away from this class of methods.

The steepest descentmethod, available in GROMACS, is of the second class. It simply takes
a step in the direction of the negative gradient (hence in the direction of the force), without any
consideration of the history built up in previous steps. The step size is adjusted such that the search
is fast but the motion is always downhill. This is a simple and sturdy, but somewhat stupid, method:
its convergence can be quite slow, especially in the vicinity of the local minimum! The faster
convergingconjugate gradient method(seee.g. [10]) uses gradient information from previous
steps. In general, steepest descents will bring you close to the nearest local minimum very quickly,
while conjugate gradients brings youvery close to the local minimum, but performs worse far
away from the minimum. GROMACS also supports the L-BFGS minimizer, which is mostly
comparable toconjugate gradient method, but in some cases converges faster.

Chapter 2

Definitions and Units

2.1 Notation

The following conventions for mathematical typesetting are used throughout this document:
Item Notation Example
Vector Bold italic ri

Vector Length Italic ri

We define thelowercasesubscriptsi, j, k and l to denote particles:ri is theposition vectorof
particlei, and using this notation:

rij = rj − ri (2.1)

rij = |rij | (2.2)

The force on particlei is denoted byF i and

F ij = force oni exerted byj (2.3)

Please note that we changed notation as of ver. 2.0 torij = rj − ri since this is the notation
commonly used. If you encounter an error, let us know.

2.2 MD units

GROMACS uses a consistent set of units that produce values in the vicinity of unity for most
relevant molecular quantities. Let us call themMD units. The basic units in this system are nm,
ps, K, electron charge (e) and atomic mass unit (u), see Table2.1.

Consistent with these units are a set of derived units, given in Table2.2.

The electric conversion factorf = 1
4πεo

= 138.935 485(9) kJ mol−1 nm e−2. It relates the
mechanical quantities to the electrical quantities as in

V = f
q2

r
or F = f

q2

r2
(2.4)

8 Chapter 2. Definitions and Units

Quantity Symbol Unit
length r nm= 10−9 m
mass m u (atomic mass unit)= 1.6605402(10)×10−27 kg

(1/12 the mass of a12C atom)
1.6605402(10)× 10−27 kg

time t ps= 10−12 s
charge q e= electronic charge= 1.60217733(49)× 10−19 C
temperature T K

Table 2.1: Basic units used in GROMACS. Numbers in parentheses give accuracy.

Quantity Symbol Unit
energy E, V kJ mol−1

Force F kJ mol−1 nm−1

pressure p kJ mol−1 nm−3 = 1030/NAV Pa
1.660 54× 106 Pa= 16.6054 Bar

velocity v nm ps−1 = 1000 m/s
dipole moment µ e nm
electric potential Φ kJ mol−1 e−1 = 0.010 364 272(3) Volt
electric field E kJ mol−1 nm−1 e−1 = 1.036 427 2(3)× 107 V/m

Table 2.2: Derived units

Electric potentialsΦ and electric fieldsE are intermediate quantities in the calculation of energies
and forces. They do not occur inside GROMACS. If they are used in evaluations, there is a choice
of equations and related units. We recommend strongly to follow the usual practice to include the
factorf in expressions that evaluateΦ andE:

Φ(r) = f
∑
j

qj
|r − rj |

(2.5)

E(r) = f
∑
j

qj
(r − rj)
|r − rj |3

(2.6)

With these definitionsqΦ is an energy andqE is a force. The units are those given in Table2.2:
about 10 mV for potential. Thus the potential of an electronic charge at a distance of 1 nm equals
f ≈ 140 units≈ 1.4 V. (exact value: 1.439965 V)

Note that these units are mutually consistent; changing any of the units is likely to produce incon-
sistencies and is thereforestrongly discouraged! In particular: if Å are used instead of nm, the unit
of time changes to 0.1 ps. If the kcal/mol (= 4.184 kJ/mol) is used instead of kJ/mol for energy,
the unit of time becomes 0.488882 ps and the unit of temperature changes to 4.184 K. But in both
cases all electrical energies go wrong, because they will still be computed in kJ/mol, expecting nm
as the unit of length. Although careful rescaling of charges may still yield consistency, it is clear
that such confusions must be rigidly avoided.

In terms of the MD units the usual physical constants take on different values, see Table2.3. All
quantities are per mol rather than per molecule. There is no distinction between Boltzmann’s
constantk and the gas constantR: their value is0.008 314 51 kJ mol−1 K−1.

2.3. Reduced units 9

Symbol Name Value
NAV Avogadro’s number 6.022 136 7(36)× 1023 mol−1

R gas constant 8.314 510(70)× 10−3 kJ mol−1 K−1

kB Boltzmann’s constant idem
h Planck’s constant 0.399 031 32(24) kJ mol−1 ps
h̄ Dirac’s constant 0.063 507 807(38) kJ mol−1 ps
c velocity of light 299 792.458 nm/ps

Table 2.3: Some Physical Constants

Quantity Symbol Relation to SI
Length r∗ r σ−1

Mass m∗ m M−1

Time t∗ t σ−1
√
ε/M

Temperature T∗ kBT ε−1

Energy E∗ E ε−1

Force F∗ F σ ε−1

Pressure P∗ Pσ3ε−1

Velocity v∗ v
√
M/ε

Density ρ∗ N σ3 V −1

Table 2.4: Reduced Lennard-Jones quantities

2.3 Reduced units

When simulating Lennard-Jones (LJ) systems it might be advantageous to use reduced units (i.e.,
settingεii = σii = mi = kB = 1 for one type of atoms). This is possible. When specifying
the input in reduced units, the output will also be in reduced units. There is one exception: the
temperature, which is expressed in0.008 314 51 reduced units. This is a consequence of the use
of Boltzmann’s constant in the evaluation of temperature in the code. Thus notT , but kBT is
the reduced temperature. A GROMACS temperatureT = 1 means a reduced temperature of
0.008. . . units; if a reduced temperature of 1 is required, the GROMACS temperature should be
120.2717.

In Table2.4quantities are given for LJ potentials:

VLJ = 4ε

[(
σ

r

)12

−
(
σ

r

)6
]

(2.7)

10 Chapter 2. Definitions and Units

Chapter 3

Algorithms

3.1 Introduction

In this chapter we first give describe two general concepts used in GROMACS:periodic boundary
conditions(sec.3.2) and thegroup concept(sec.3.3). The MD algorithm is described in sec.3.4:
first a global form of the algorithm is given, which is refined in subsequent subsections. The
(simple) EM (Energy Minimization) algorithm is described in sec.3.10. Some other algorithms
for special purpose dynamics are described after this. In the final sec.3.14of this chapter a few
principles are given on which parallelization of GROMACS is based. The parallelization is hardly
visible for the user and is therefore not treated in detail.

A few issues are of general interest. In all cases thesystemmust be defined, consisting of
molecules. Molecules again consist of particles with defined interaction functions. The detailed
description of thetopologyof the molecules and of theforce fieldand the calculation of forces is
given in chapter4. In the present chapter we describe other aspects of the algorithm, such as pair
list generation, update of velocities and positions, coupling to external temperature and pressure,
conservation of constraints. Theanalysisof the data generated by an MD simulation is treated in
chapter8.

3.2 Periodic boundary conditions

The classical way to minimize edge effects in a finite system is to applyperiodic boundary condi-
tions. The atoms of the system to be simulated are put into a space-filling box, which is surrounded
by translated copies of itself (Fig.3.1). Thus there are no boundaries of the system; the artifact
caused by unwanted boundaries in an isolated cluster is now replaced by the artifact of periodic
conditions. If a crystal is simulated, such boundary conditions are desired (although motions are
naturally restricted to periodic motions with wavelengths fitting into the box). If one wishes to
simulate non-periodic systems, as liquids or solutions, the periodicity by itself causes errors. The
errors can be evaluated by comparing various system sizes; they are expected to be less severe
than the errors resulting from an unnatural boundary with vacuum.

12 Chapter 3. Algorithms

j’ j’

i’ i’i’

i’

j’

i’ i’

y

x

y

x

j’ j’

i’

i’

i’i

j’

j’ j’j’

i’ii’

j’j’

j’

j

i’ i’i’

j’

i’ i’

j’

j’j’

j

Figure 3.1: Periodic boundary conditions in two dimensions.

There are several possible shapes for space-filling unit cells. Some, as therhombic dodecahedron
and thetruncated octahedron[11] are closer to a sphere than a cube is and are therefore more
economical for studying an (approximately spherical) macromolecule in solution, since fewer
solvent molecules are required to fill the box given a minimum distance between macromolecular
images. However, a periodic system based on the rhombic dodecahedron or truncated octahedron
is equivalent to a periodic system based on atriclinic unit cell. The latter shape is the most general
space-filling unit cell; it comprises all possible space-filling shapes [12]. Therefore GROMACS is
based on the triclinic unit cell.

GROMACS uses periodic boundary conditions, combined with theminimum image convention:
only one - the nearest - image of each particle is considered for short-range non-bonded inter-
action terms. For long-range electrostatic interactions this is not always accurate enough, and
GROMACS therefore also incorporates lattice sum methods like Ewald Sum, PME and PPPM.

Gromacs supports triclinic boxes of any shape. The box is defined by the 3 box vectorsa,b andc.
The box vectors must satisfy the following conditions:

ay = az = bz = 0 (3.1)

ax > 0, by > 0, cz > 0 (3.2)

|bx| ≤
1
2
ax, |cx| ≤

1
2
ax, |cy| ≤

1
2
by (3.3)

Equations (3.1) can always be statisfied by rotating the box. Equations (3.2) and (3.3) can always
be statisfied by adding and subtracting box vectors.

Even when simulating using a triclinic box, GROMACS always puts the particles in a brick shaped
volume, for efficiency reasons. This is illustrated in Fig.3.1 for a 2-dimensional system. So from

3.2. Periodic boundary conditions 13

Figure 3.2: A rhombic dodecahedron and truncated octahedron (arbitrary orientations).

box type image box box vectors box vector angles
distance volume a b c 6 bc 6 ac 6 ab

d 0 0
cubic d d3 0 d 0 90◦ 90◦ 90◦

0 0 d

rhombic d 0 1
2d

dodecahedron d 1
2

√
2d3 0 d 1

2d 60◦ 60◦ 90◦

(xy-square) ≈ 0.71d3 0 0 1
2

√
2d

rhombic d 1
2d

1
2d

dodecahedron d 1
2

√
2d3 0 1

2

√
3d 1

6

√
3d 60◦ 60◦ 60◦

(xy-hexagon) ≈ 0.71d3 0 0 1
3

√
6d

truncated d 1
3d -1

3d

octahedron d 4
9

√
3d3 0 2

3

√
2d 1

3

√
2d ≈ 71◦ ≈ 71◦ ≈ 71◦

≈ 0.77d3 0 0 1
3

√
6d

Table 3.1: The cubic box, the rhombic dodecahedron and the truncated octahedron.

the output trajectory it might seem like the simulation was done in a rectangular box. The program
trjconv can be used to convert the trajectory to a different unit-cell representation.

It is also possible to simulate without periodic boundary conditions, but it is more efficient to
simulate an isolated cluster of molecules in a large periodic box, since fast grid searching can only
be used in a periodic system.

3.2.1 Some useful box types

The three most useful box types for simulations of solvated systems are described in Table3.1.
The rhombic dodecahedron (Fig.3.2) is the smallest and most regular space-filling unit cell. Each
of the 12 image cells is at the same distance. The volume is 71% of the volume of a cube having the
same image distance. This saves about 29% of CPU-time when simulating a spherical or flexible
molecule in solvent. There are two different orientations of a rhombic dodecahedron that satisfy
equations (3.1). The programeditconf produces the orientation which has a square intersection

14 Chapter 3. Algorithms

with the xy-plane. This orientation was chosen because the first two box vectors coincide with the
x and y-axis, which is easier to comprehend. The other orientation can be useful for simulations
of membrane proteins. In this case the cross-section with the xy-plane is a hexagon, which has
an area which is 14% smaller than the area of a square with the same image distance. The height
of the box (cz) should be changed to obtain an optimal spacing. This box shape not only saves
CPU-time, it also results in a more uniform arrangement of the proteins.

3.2.2 Cutoff restrictions

The minimum image convention implies that the cutoff radius used to truncate non-bonded inter-
actions must not exceed half the shortest box vector for grid search:

Rc <
1
2

min(‖a‖, ‖b‖, ‖c‖), (3.4)

otherwise more than one image would be within the cutoff distance of the force. When a macro-
molecule, such as a protein, is studied in solution, this restriction does not suffice. In principle a
single solvent molecule should not be able to ‘see’ both sides of the macromolecule. This means
that the length of each box vector must exceed the length of the macromolecule in the direction
of that edgeplus two times the cutoff radiusRc. It is common to compromise in this respect, and
make the solvent layer somewhat smaller in order to reduce the computational cost. For efficiency
reasons the cutoff with simple search in triclinic boxes (grid search always uses eq. (3.4)) is more
restricted:

Rc <
1
2

min(ax, by, cz) (3.5)

Each unit cell (cubic, rectangular or triclinic) is surrounded by 26 translated images. Thus a
particular image can always be identified by an index pointing to one of 27translation vectorsand
constructed by applying a translation with the indexed vector (see3.4.3).

3.3 The group concept

In the GROMACS MD and analysis programs one usesgroupsof atoms to perform certain actions
on. The maximum number of groups is 256, but each atom can only belong to six different groups,
one each of the following:

T-coupling group The temperature coupling parameters (reference temperature, time constant,
number of degrees of freedom, see3.4.4) can be defined for each T-coupling group sepa-
rately. For example, in a solvated macromolecule the solvent (that tends to generate more
heating by force and integration errors) can be coupled with a shorter time constant to a bath
than is a macromolecule, or a surface can be kept cooler than an adsorbing molecule. Many
different T-coupling groups may be defined. See also center of mass groups below.

Freeze group Atoms that belong to a freeze group are kept stationary in the dynamics. This is
useful during equilibration,e.g.to avoid badly placed solvent molecules giving unreasonable
kicks to protein atoms, although the same effect can also be obtained by putting a restraining
potential on the atoms that must be protected. The freeze option can be used, if desired, on

3.4. Molecular Dynamics 15

just one or two coordinates of an atom, thereby freezing the atoms in a plane or on a line.
When an atom is partially frozen, constraints will still be able to move it, even in a frozen
direction. A fully frozen atom can not be moved by constraints. Frozen coordinates are
unaffected by pressure scaling, in some cases this can produce unwanted results. Many
freeze groups can be defined.

Accelerate group On each atom in an ’accelerate group’ an accelerationag is imposed. This
is equivalent to an external force. This feature makes it possible to drive the system into
a non-equilibrium state and enables the performance of non-equilibrium MD and hence to
obtain transport properties.

Energy monitor group Mutual interactions between all energy monitor groups are compiled dur-
ing the simulation. This is done separately for Lennard-Jones and Coulomb terms. In prin-
ciple up to 256 groups could be defined, but that would lead to 256×256 items! Better use
this concept sparingly.

All non-bonded interactions between pairs of energy monitor groups can be excluded (see
sec.7.3.1). Pairs of particles from excluded pairs of energy monitor groups are not put
into the pair list. This can result in a significant speedup for simulations where interactions
within or between parts of the system are not required.

Center of mass group In GROMACS the center of mass (COM) motion can be removed, for
either the complete system or for groups of atoms. The latter is useful,e.g. for systems
where there is limited friction (e.g.gas systems) to prevent center of mass motion to occur.
It makes sense to use the same groups for Temperature coupling and center of mass motion
removal.

XTC output group In order to reduce the size of the XTC trajectory file, only a subset of all
particles can be stored. All XTC groups that are specified are saved, the rest is not. If no
XTC groups are specified, than all atoms are saved to the XTC file.

The use of groups in analysis programs is described in chapter8.

3.4 Molecular Dynamics

A global flow scheme for MD is given in Fig.3.3. Each MD or EM run requires as input a set of
initial coordinates and - optionally - initial velocities of all particles involved. This chapter does
not describe how these are obtained; for the setup of an actual MD run check the online manual at
www.gromacs.org.

3.4.1 Initial conditions

Topology and force field

The system topology, including a description of the force field, must be loaded. These items are
described in chapter4. All this information is static; it is never modified during the run.

http://www.gromacs.org

16 Chapter 3. Algorithms

THE GLOBAL MD ALGORITHM

1. Input initial conditions

Potential interactionV as a function of atom positions
Positionsr of all atoms in the system
Velocitiesv of all atoms in the system

⇓

repeat 2,3,4for the required number of steps:

2. Compute forces

The force on any atom

F i = − ∂V
∂ri

is computed by calculating the force between non-bonded atom
pairs:

F i =
∑

j F ij

plus the forces due to bonded interactions (which may depend on 1,
2, 3, or 4 atoms), plus restraining and/or external forces.

The potential and kinetic energies and the pressure tensor are
computed.

⇓
3. Update configuration

The movement of the atoms is simulated by numerically solving
Newton’s equations of motion

d2ri

dt2
=

F i

mior
dri

dt
= vi;

dvi

dt
=

F i

mi

⇓
4. if required:Output step

write positions, velocities, energies, temperature, pressure, etc.

Figure 3.3: The global MD algorithm

3.4. Molecular Dynamics 17

0
�

Velocity
�

0.0

P
ro

ba
bi

lit
y

�

Figure 3.4: A Maxwellian distribution, generated from random numbers.

Coordinates and velocities

Then, before a run starts, the box size and the coordinates and velocities of all particles are re-
quired. The box size is determined by three vectors (nine numbers)b1, b2, b3, which represent the
three basis vectors of the periodic box. While in the present version of GROMACS only rectan-
gular boxes are allowed, three numbers suffice, but the use of three vectors already prepares for
arbitrary triclinic boxes to be implemented in a later version.

If the run starts att = t0, the coordinates att = t0 must be known. Theleap-frog algorithm,used
to update the time step with∆t (see3.4.4), requires that the velocities att = t0 − ∆t

2 are known.
If velocities are not available, the program can generate initial atomic velocitiesvi, i = 1 . . . 3N
with a Maxwellian distribution (Fig.3.4) at a given absolute temperatureT :

p(vi) =
√

mi

2πkT
exp(−miv

2
i

2kT
) (3.6)

wherek is Boltzmann’s constant (see chapter2). To accomplish this, normally distributed random
numbers are generated by adding twelve random numbersRk in the range0 ≤ Rk < 1 and
subtracting 6.0 from their sum. The result is then multiplied by the standard deviation of the
velocity distribution

√
kT/mi. Since the resulting total energy will not correspond exactly to the

required temperatureT , a correction is made: first the center-of-mass motion is removed and then
all velocities are scaled so that the total energy corresponds exactly toT (see eqn.3.12).

Center-of-mass motion

The center-of-mass velocity is normally set to zero at every step. Normally there is no net external
force acting on the system and the center-of-mass velocity should remain constant. In practice,

18 Chapter 3. Algorithms

however, the update algorithm develops a very slow change in the center-of-mass velocity, and
thus in the total kinetic energy of the system, specially when temperature coupling is used. If such
changes are not quenched, an appreciable center-of-mass motion develops eventually in long runs,
and the temperature will be significantly misinterpreted. The same may happen due to overall
rotational motion, but only when an isolated cluster is simulated. In periodic systems with filled
boxes, the overall rotational motion is coupled to other degrees of freedom and does not give any
problems.

3.4.2 Neighbor searching

As mentioned in chapter4, internal forces are either generated from fixed (static) lists, or from
dynamics lists. The latter concern non-bonded interactions between any pair of particles. When
calculating the non-bonded forces, it is convenient to have all particles in a rectangular box. As
shown in Fig.3.1, it is possible to transform a triclinic box into a rectangular box. The output
coordinates are always in a rectangular box, even when a dodecahedron or triclinic box was used
for the simulation. Equations (3.1) ensure that we can reset particles in a rectangular box by first
shifting them with box vectorc, then withb and finally witha. Equations (3.3) ensure that we can
find the 14 nearest triclinic images within a linear combination which does not involve multiples
of box vectors.

Pair lists generation

The non-bonded pair forces need to be calculated only for those pairsi, j for which the distance
rij betweeni and the nearest image ofj is less than a given cutoff radiusRc. Some of the particle
pairs that fulfill this criterion are excluded, when their interaction is already fully accounted for by
bonded interactions. GROMACS employs apair list that contains those particle pairs for which
non-bonded forces must be calculated. The pair list contains atomsi, a displacement vector for
atomi, and all particlesj that are withinrshort of this particular image of atomi. The list is
updated everynstlist steps, wherenstlist is typically 10 for the GROMACS forcefield and
5 for the GROMOS-96 forcefield. There is an option to calculate the total non-bonded force on
each particle due to all particle in a shell around the list-cutoff,i.e.at a distance betweenrshort
and rlong . This force is calculated during the pair list update and retained duringnstlist
steps.

To make the neighbor list all particles that are close (i.e.within the cutoff) to a given particle must
be found. This searching, usually called neighbor searching (NS), involves periodic boundary
conditions and determining theimage (see sec.3.2). Without periodic boundary conditions a
simpleO(N2) algorithm must be used. With periodic boundary conditions a grid search can be
used, which isO(N).

Simple search

Due to equations (3.1) and (3.5), the vectorrij connecting images within the cutoffRc can be
found by constructing:

r′′′ = rj − ri (3.7)

3.4. Molecular Dynamics 19

� � � � �
� � � � �

� � � �
� � � �

� � � � � � � � �
� � � � � � � � �
� � � � � � � � �

� � � � � � � �
� � � � � � � �
� � � � � � � �

� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �

� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �� � � � � � �

� � � � � � �
� � � � � �
� � � � � �

� � �
� � �
	 	 	
	 	 	 j

i

i’

� � � � � � � � � � � � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �

Figure 3.5: Grid search in two dimensions. The arrows are the box vectors.

r′′ = r′′′ − a ∗ round (r′′′z /cz)) (3.8)

r′ = r′′ − b ∗ round (r′′y/by) (3.9)

rij = r′ − c ∗ round (r′x/ax) (3.10)

When distances between any two particles in a triclinic box are needed, many shifts of combina-
tions of box vectors need to be considered to find the nearest image.

Grid search

The grid search is schematically depicted in Fig.3.5. All particles are put on the NS grid, with the
smallest spacing≥ Rc/2 in each of the directions. In the direction of each box vector, a particle
i has three images. For each direction the image may be -1,0 or 1, corresponding to a translation
over -1, 0 or +1 box vector. We do not search the surrounding NS grid cells for neighbors of
i and then calculate the image, but rather construct the images first and then search neighbors
corresponding to that image ofi. As Fig.3.5 shows, some grid cells may be searched more than
once for different images ofi. This is not a problem, since, due to the minimum image convention,
at most one image will “see” thej-particle. For every particle, fewer than 125 (53) neighboring
cells are searched. Therefore, the algorithm scales linearly with the number of particles. Although
the prefactor is large, the scaling behavior makes the algorithm far superior over the standard
O(N2) algorithm when there are more than a few hundred particles. The grid search is equally
fast for rectangular and triclinic boxes. Thus for most protein and peptide simulations the rhombic
dodecahedron will be the preferable box shape.

Charge groups

Where applicable, neighbor searching is carried out on the basis ofcharge groups. A charge group
is a small set of nearby atoms with an integer net charge. Charge groups are defined in the molec-
ular topology. If the nearest image distance between thegeometrical centersof the atoms of two

20 Chapter 3. Algorithms

charge groups is less than the cutoff radius, all atom pairs between the charge groups are included
in the pair list. This procedure avoids the creation of charges due to the use of a cutoff (when one
charge of a dipole is within range and the other not), which can have disastrous consequences for
the behavior of the Coulomb interaction function at distances near the cutoff radius. If molecular
groups have full charges (ions), charge groups do not avoid adverse cutoff effects, and you should
consider using one of the lattice sum methods supplied by GROMACS [13].

If appropriately constructed shift functions are used for the electrostatic forces, no charge groups
are needed. Such shift functions are implemented in GROMACS (see chapter4) but must be used
with care: in principle, they should be combined with a lattice sum for long-range electrostatics.

3.4.3 Compute forces

Potential energy

When forces are computed, the potential energy of each interaction term is computed as well.
The total potential energy is summed for various contributions, such as Lennard-Jones, Coulomb,
and bonded terms. It is also possible to compute these contributions forgroupsof atoms that are
separately defined (see sec.3.3).

Kinetic energy and temperature

The temperature is given by the total kinetic energy of theN -particle system:

Ekin =
1
2

N∑
i=1

miv
2
i (3.11)

From this the absolute temperatureT can be computed using:

1
2
NdfkT = Ekin (3.12)

wherek is Boltzmann’s constant andNdf is the number of degrees of freedom which can be
computed from:

Ndf = 3N −Nc −Ncom (3.13)

HereNc is the number ofconstraintsimposed on the system. When performing molecular dynam-
icsNcom = 3 additional degrees of freedom must be removed, because the three center-of-mass
velocities are constants of the motion, which are usually set to zero. When simulating in vacuo,
the rotation around the center of mass can also be removed, in this caseNcom = 6. When more
than one temperature coupling group is used, the number of degrees of freedom for groupi is:

N i
df = (3N i −N i

c)
3N −Nc −Ncom

3N −Nc
(3.14)

The kinetic energy can also be written as a tensor, which is necessary for pressure calculation in a
triclinic system, or systems where shear forces are imposed:

Ekin =
1
2

N∑
i

mivi ⊗ vi (3.15)

3.4. Molecular Dynamics 21

1 20 t

x v x

Figure 3.6: The Leap-Frog integration method. The algorithm is called Leap-Frog because r and
v are leaping like frogs over each others back.

Pressure and virial

The pressure tensorP is calculated from the difference between kinetic energyEkin and the virial
Ξ

P =
2
V

(Ekin −Ξ) (3.16)

whereV is the volume of the computational box. The scalar pressureP , which can be used for
pressure coupling in the case of isotropic systems, is computed as:

P = trace(P)/3 (3.17)

The virialΞ tensor is defined as

Ξ = −1
2

∑
i<j

rij ⊗ F ij (3.18)

The GROMACS implementation of the virial computation is described in sec.B.1.

3.4.4 Update configuration

The GROMACS MD program utilizes the so-calledleap-frogalgorithm [14] for the integration
of the equations of motion. The leap-frog algorithm uses positionsr at timet and velocitiesv at
time t− ∆t

2 ; it updates positions and velocities using the forcesF (t) determined by the positions
at timet:

v(t+
∆t
2

) = v(t− ∆t
2

) +
F (t)
m

∆t (3.19)

r(t+ ∆t) = r(t) + v(t+
∆t
2

)∆t (3.20)

The algorithm is visualized in Fig.3.6. It is equivalent to the Verlet [15] algorithm:

r(t+ ∆t) = 2r(t)− r(t−∆t) +
F (t)
m

∆t2 +O(∆t4) (3.21)

The algorithm is of third order inr and is time-reversible. See ref. [16] for the merits of this
algorithm and comparison with other time integration algorithms.

The equations of motion are modified for temperature coupling and pressure coupling, and ex-
tended to include the conservation of constraints, all of which are described below.

22 Chapter 3. Algorithms

3.4.5 Temperature coupling

For several reasons (drift during equilibration, drift as a result of force truncation and integration
errors, heating due to external or frictional forces), it is necessary to control the temperature of the
system. GROMACS can use either theweak couplingscheme of Berendsen [17] or the extended
ensemble Nośe-Hoover scheme [18, 19].

Berendsen temperature coupling

The Berendsen algorithm mimics weak coupling with first-order kinetics to an external heat bath
with given temperatureT0. See ref. [20] for a comparison with the Nosé-Hoover scheme. The
effect of this algorithm is that a deviation of the system temperature fromT0 is slowly corrected
according to

dT
dt

=
T0 − T

τ
(3.22)

which means that a temperature deviation decays exponentially with a time constantτ . This
method of coupling has the advantage that the strength of the coupling can be varied and adapted
to the user requirement: for equilibration purposes the coupling time can be taken quite short (e.g.
0.01 ps), but for reliable equilibrium runs it can be taken much longer (e.g.0.5 ps) in which case
it hardly influences the conservative dynamics.

The heat flow into or out of the system is effected by scaling the velocities of each particle every
step with a time-dependent factorλ, given by

λ =

[
1 +

∆t
τT

{
T0

T (t− ∆t
2)

− 1

}]1/2

(3.23)

The parameterτT is close to, but not exactly equal to the time constantτ of the temperature
coupling (eqn.3.22):

τ = 2CV τT /Ndfk (3.24)

whereCV is the total heat capacity of the system,k is Boltzmann’s constant, andNdf is the
total number of degrees of freedom. The reason thatτ 6= τT is that the kinetic energy change
caused by scaling the velocities is partly redistributed between kinetic and potential energy and
hence the change in temperature is less than the scaling energy. In practice, the ratioτ/τT ranges
from 1 (gas) to 2 (harmonic solid) to 3 (water). When we use the term ’temperature coupling
time constant’, we mean the parameterτT . Note that in practice the scaling factorλ is limited
to the range of 0.8<= λ <= 1.25, to avoid scaling by very large numbers which may crash the
simulation. In normal use,λ will always be much closer to 1.0.

Strictly, for computing the scaling factor the temperatureT is needed at timet, but this is not
available in the algorithm. In practice, the temperature at the previous time step is used (as indi-
cated in eqn.3.23), which is perfectly all right since the coupling time constant is much longer
than one time step. The Berendsen algorithm is stable up toτT ≈ ∆t. [A simple steepest-descent
minimizer can be implemented by settingT = 0 andτT � δt.]

3.4. Molecular Dynamics 23

Nosé-Hoover temperature coupling

The Berendsen weak coupling algorithm is extremely efficient for relaxing a system to the target
temperature, but once your system has reached equilibrium it might be more important to probe
a correct canonical ensemble. This is unfortunately not the case for the weak coupling scheme,
although the difference is usually negligible.

To enable canonical ensemble simulations, GROMACS also supports the extended-ensemble ap-
proach first proposed by Nosé[18] and later modified by Hoover[19]. The system Hamiltonian is
extended by introducing a thermal reservoir and a friction term in the equations of motion. The
friction force is proportional to the product of each particle’s velocity and a friction parameterξ.
This friction parameter (or ’heat bath’ variable) is a fully dynamic quantity with its own equation
of motion; the time derivative is calculated from the difference between the current kinetic energy
and the reference temperature.

In Hoover’s formulation, the particles’ equations of motion in Fig.3.3are replaced by

d2ri

dt2
=

F i

mi
− ξ

dri

dt
, (3.25)

where the equation of motion for the heat bath parameterξ is

dξ
dt

=
1
Q

(T − T0) . (3.26)

The reference temperature is denotedT0, while T is the current instantaneous temperature of the
system. The strength of the coupling is determined by the constantQ (usually called the ’mass
parameter’ of the reservoir) in combination with the reference temperature.

In our opinion, the mass parameter is a somewhat awkward way of describing coupling strength,
especially due to its dependence on reference temperature (and some implementations even in-
clude the number of degrees of freedom in your system when definingQ). To maintain the cou-
pling strength, one would have to changeQ in proportion to the change in reference temperature.
For this reason, we prefer to let the GROMACS user work instead with the periodτT of the oscil-
lations of kinetic energy between the system and the reservoir instead. It is directly related toQ
andT0 via

Q =
τ2
TT0

4π2
. (3.27)

This provides a much more intuitive way of selecting the Nosé-Hoover coupling strength (similar
to the weak coupling relaxation), and in additionτT is independent of system size and reference
temperature.

It is however important to keep the difference between the weak coupling scheme and the Nosé-
Hoover algorithm in mind: Using weak coupling you get a strongly dampedexponential relax-
ation, while the Nośe-Hoover approach produces anoscillatory relaxation. The actual time it
takes to relax with Nośe-Hoover coupling is several times larger than the period of the oscillations
that you select. These oscillations (in contrast to exponential relaxation) also means that the time

24 Chapter 3. Algorithms

constant normally should be 4–5 times larger than the relaxation time used with weak coupling,
but your mileage may vary.

Group temperature coupling

In GROMACS temperature coupling can be performed on groups of atoms, typically a protein and
solvent. The reason such algorithmes were introduced is that energy exchange between different
components is not perfect, due to different effects including cutoffs etc. If now the whole system
is coupled to one heat bath, water (which experiences the largest cutoff noise) will tend to heat
up and the protein will cool down. Typically 100 K differences can be obtained. With the use of
proper electrostatic methods (PME) these difference are much smaller but still not negligable. The
parameters for temperature coupling in groups are given in themdpfile. One special case should
be mentioned: it is possible to T-couple only part of the system (or nothing at all obviously). This
is done by specifying zero for the time constantτT for the group of interest.

3.4.6 Pressure coupling

In the same spirit as the temperature coupling, the system can also be coupled to a ’pressure
bath’. GROMACS supports both the Berendsen algorithm [17] that scales coordinates and box
vectors every step, and the extended ensemble Parrinello-Rahman approach. Both of these can be
combined with any of the temperature coupling methods above.

Berendsen pressure coupling

The Berendsen algorithm rescales the coordinates and box vectors every step with a matrixµ,
which has the effect of a first-order kinetic relaxation of the pressure towards a given reference
pressureP0:

dP
dt

=
P0 −P
τp

(3.28)

The scaling matrixµ is given by

µij = δij −
∆t
3 τp

βij{P0ij − Pij(t)} (3.29)

Hereβ is the isothermal compressibility of the system. In most cases this will be a diagonal
matrix, with equal elements on the diagonal, the value of which is generally not known. It suffices
to take a rough estimate because the value ofβ only influences the non-critical time constant of
the pressure relaxation without affecting the average pressure itself. For water at 1 atm and 300 K
β = 4.6× 10−10 Pa−1 = 4.6× 10−5 Bar−1, which is7.6× 10−4 MD units (see chapter2). Most
other liquids have similar values. When scaling completely anisotropically, the system has to be
rotated in order to obey the box restriction (3.1). This rotation is approximated in first order in the
scaling, which is usually less than10−4. The actual scaling matrixµ′ is:

µ′ =

 µxx µxy + µyx µxz + µzx

0 µyy µyz + µzy

0 0 µzz

 (3.30)

3.4. Molecular Dynamics 25

The velocities are neither scaled nor rotated.

In GROMACS, the Berendsen scaling can also be done isotropically, which means that instead
of P a diagonal matrix with elements of size trace(P)/3 is used. For systems with interfaces,
semi-isotropic scaling can be useful. In this case thex/y-directions are scaled isotropically and
thez direction is scaled independently. The compressibility in thex/y or z-direction can be set to
zero, to scale only in the other direction(s).

If you allow full anisotropic deformations and use constraints you might have to scale more slowly
or decrease your timestep to avoid errors from the constraint algorithms.

Parrinello-Rahman pressure coupling

In cases where the fluctuations in pressure or volume are importantper se(e.g.to calculate ther-
modynamic properties) it might at least theoretically be a problem that the exact ensemble is not
well-defined for the weak coupling scheme.

For this reason, GROMACS also supports constant-pressure simulations using the Parrinello-
Rahman approach[21, 22], which is similar to the Nośe-Hoover temperature coupling. With the
Parrinello-Rahman barostat, the box vectors as represented by the matrixb obey the matrix equa-
tion of motion1

db2

dt2
= VW−1b′−1 (P − P ref) . (3.31)

The volume of the box is denotedV , andW is a matrix parameter that determines the strength of
the coupling. The matricesP andP ref are the current and reference pressures, respectively.

The equations of motion for the particles are also changed, just as for the Nosé-Hoover coupling.
In most cases you would combine the Parrinello-Rahman barostat with the Nosé-Hoover thermo-
stat, but to keep it simple we only show the Parrinello-Rahman modification here:

d2ri

dt2
=

F i

mi
−M

dri

dt
, (3.32)

M = b−1

[
b

db′

dt
+

db

dt
b′
]

b′−1. (3.33)

The (inverse) mass parameter matrixW−1 determines the strength of the coupling, and how the
box can be deformed. The box restriction (3.1) will be fulfilled automatically if the corresponding
elements ofW−1 are zero. Since the coupling strength also depends on the size of your box,
we prefer to calculate it automatically in GROMACS. You only have to provide the approximate
isothermal compressibilitiesβ and the pressure time constantτp in the input file (L is the largest
box matrix element):

(
W−1

)
ij

=
4π2βij

3τ2
pL

. (3.34)

1The box matrix representationb in GROMACS corresponds to the transpose of the box matrix representationh in
the paper by Nośe and Klein. Because of this, some of our equations will look slightly different.

26 Chapter 3. Algorithms

Just as for the Nosé-Hoover thermostat, you should realize that the Parrinello-Rahman time con-
stant isnot equivalent to the relaxation time used in the Berendsen pressure coupling algorithm.
In most cases you will need to use a 4–5 times larger time constant with Parrinello-Rahman cou-
pling. If your pressure is very far from equilibrium, the Parrinello-Rahman coupling may result in
very large box oscillations that could even crash your run. In that case you would have to increase
the time constant, or (better) use the weak coupling scheme to reach the target pressure, and then
switch to Parrinello-Rahman coupling once the system is in equilibrium.

Surface tension coupling

When a periodic system consists of more than one phase, separated by surfaces which are par-
allel to the xy-plane, the surface tension and the z-component of the pressure can be coupled to
a pressure bath. Presently, this only works with the Berendsen pressure coupling algorithm in
GROMACS. The average surface tensionγ(t) can be calculated from the difference between the
normal and the lateral pressure:

γ(t) =
1
n

∫ Lz

0

{
Pzz(z, t)−

Pxx(z, t) + Pyy(z, t)
2

}
dz (3.35)

=
Lz

n

{
Pzz(t)−

Pxx(t) + Pyy(t)
2

}
(3.36)

whereLz is the height of the box andn is the number of surfaces. The pressure in the z-direction
is corrected by scaling the height of the box withµz:

∆Pzz =
∆t
τp
{P0zz − Pzz(t)} (3.37)

µzz = 1 + βzz∆Pzz (3.38)

This is similar to normal pressure coupling, except that the power of one third is missing. The
pressure correction in the z-direction is then used to get the correct convergence for the surface
tension to the reference valueγ0. The correction factor for the box-length in the x/y-direction is:

µx/y = 1 +
∆t
2 τp

βx/y

(
nγ0

µzzLz
−
{
Pzz(t) + ∆Pzz −

Pxx(t) + Pyy(t)
2

})
(3.39)

The value ofβzz is more critical than with normal pressure coupling. Normally an incorrect
compressibility will just scaleτp, but with surface tension coupling it affects the convergence of
the surface tension. Whenβzz is set to zero (constant box height),∆Pz is also set to zero, which
is necessary for obtaining the correct surface tension.

The complete update algorithm

The complete algorithm for the update of velocities and coordinates is given in Fig.3.7. The
SHAKE algorithm of step 4 is explained below.

GROMACS has a provision to ”freeze” (prevent motion of) selected particles, which must be
defined as a ’freeze group’. This is implemented using afreeze factorfg, which is a vector, and

3.4. Molecular Dynamics 27

THE UPDATE ALGORITHM

Given:
Positionsr of all atoms at timet

Velocitiesv of all atoms at timet− ∆t
2

AccelerationsF /m on all atoms at timet.
(Forces are computed disregarding any constraints)

Total kinetic energy and virial
⇓

1. Compute the scaling factorsλ andµ
according to eqns.3.23and3.29

⇓
2. Update and scale velocities:v′ = λ(v + a∆t)

⇓
3. Compute new unconstrained coordinates:r′ = r + v′∆t

⇓
4. Apply constraint algorithm to coordinates: constrain(r

′ → r′′; r)
⇓

5. Correct velocities for constraints:v = (r′′ − r)/∆t
⇓

6. Scale coordinates and box:r = µr′′; b = µb

Figure 3.7: The MD update algorithm

28 Chapter 3. Algorithms

differs for eachfreezegroup(see sec.3.3). This vector contains only zero (freeze) or one (don’t
freeze). When we take this freeze factor and the external accelerationah into account the update
algorithm for the velocities becomes:

v(t+
∆t
2

) = fg ∗ λ ∗
[
v(t− ∆t

2
) +

F (t)
m

∆t+ ah∆t
]

(3.40)

whereg andh are group indices which differ per atom.

3.4.7 Output step

The important output of the MD run is thetrajectory file name.trj which contains particle
coordinates and -optionally- velocities at regular intervals. Since the trajectory files are lengthy,
one should not save every step! To retain all information it suffices to write a frame every 15 steps,
since at least 30 steps are made per period of the highest frequency in the system, and Shannon’s
sampling theorem states that two samples per period of the highest frequency in a band-limited
signal contain all available information. But that still gives very long files! So, if the highest
frequencies are not of interest, 10 or 20 samples per ps may suffice. Be aware of the distortion of
high-frequency motions by thestroboscopic effect, calledaliasing: higher frequencies are mirrored
with respect to the sampling frequency and appear as lower frequencies.

3.5 Shell molecular dynamics

GROMACS can simulate polarizability using the shell model of Dick and Overhauser [23]. In
such models a shell particle representing the electronic degrees of freedom is attached to a nucleus
by a spring. The potential energy is minimized with respect to the shell position at every step
of the simulation (see below). Succesfull applications of shell models in GROMACS have been
published forN2 [24] and water [25].

3.5.1 Optimization of the shell positions

The forceF S on a shell particleS can be decomposed into two components:

F S = F bond + F nb (3.41)

whereF bond denotes the component representing the polarization energy, usually represented by a
harmonic potential andF nb is the sum of Coulomb and Van der Waals interactions. If we assume
thatF nb is almost constant we can analytically derive the optimal position of the shell, i.e. where
F S = 0. If we have the shell S connected to atom A we have

F bond = kb (xS − xA) (3.42)

In an iterative solver, we have positionsxS(n) wheren is the iteration count. We now have it
iterationn:

F nb = F S − kb (xS(n)− xA) (3.43)

3.6. Constraint algorithms 29

and the optimal position for the shellsxS(n+ 1) thus follows from

F S − kb (xS(n)− xA) + kb (xS(n+ 1)− xA) = 0 (3.44)

if we write
∆xS = xS(n+ 1)− xS(n) (3.45)

we finally obtain
∆xS = F S/kb (3.46)

which then yields the algorithm to compute the next trial in the optimization of shell positions:

xS(n+ 1) = xS(n) + F S/kb (3.47)

3.6 Constraint algorithms

Constraints can be imposed in GROMACS using LINCS (default) or the traditional SHAKE
method.

3.6.1 SHAKE

The SHAKE [26] algorithm changes a set of unconstrained coordinatesr
′

to a set of coordinates
r′′ that fulfill a list of distance constraints, using a setr as reference:

SHAKE(r
′ → r′′; r)

This action is consistent with solving a set of Lagrange multipliers in the constrained equations of
motion. SHAKE needs atoleranceTOL; it will continue until all constraints are satisfied within a
relativetoleranceTOL. An error message is given if SHAKE cannot reset the coordinates because
the deviation is too large, or if a given number of iterations is surpassed.

Assume the equations of motion must fulfillK holonomic constraints, expressed as

σk(r1 . . . rN) = 0; k = 1 . . .K (3.48)

(e.g.(r1 − r2)2 − b2 = 0). Then the forces are defined as

− ∂

∂ri

(
V +

K∑
k=1

λkσk

)
(3.49)

whereλk are Lagrange multipliers which must be solved to fulfill the constraint equations. The
second part of this sum determines theconstraint forcesGi, defined by

Gi = −
K∑

k=1

λk
∂σk

∂ri
(3.50)

The displacement due to the constraint forces in the leap frog or Verlet algorithm is equal to
(Gi/mi)(∆t)2. Solving the Lagrange multipliers (and hence the displacements) requires the so-
lution of a set of coupled equations of the second degree. These are solved iteratively by SHAKE.
For the special case of rigid water molecules, that often make up more than 80% of the simulation
system we have implemented the SETTLE algorithm [27] (sec.5.4).

30 Chapter 3. Algorithms

���
�

���
�

������������

���
�

	�		�	
�

�

������������

�
�
�
���������������������

��

��

unconstrained
update

correction for
rotational

lengthening

projecting out
forces working

along the bonds

θ

d

l d

pd

Figure 3.8: The three position updates needed for one time step. The dashed line is the old bond
of lengthd, the solid lines are the new bonds.l = d cos θ andp = (2d2 − l2)

1
2 .

3.6.2 LINCS

The LINCS algorithm

LINCS is an algorithm that resets bonds to their correct lengths after an unconstrained update [28].
The method is non-iterative, as it always uses two steps. Although LINCS is based on matrices,
no matrix-matrix multiplications are needed. The method is more stable and faster than SHAKE,
but it can only be used with bond constraints and isolated angle constraints, such as the proton
angle in OH. Because of its stability LINCS is especially useful for Brownian dynamics. LINCS
has two parameters, which are explained in the subsection parameters.

The LINCS formulas

We consider a system ofN particles, with positions given by a3N vectorr(t). For molecular
dynamics the equations of motion are given by Newton’s law

d2r

dt2
= M−1F (3.51)

whereF is the3N force vector andM is a3N × 3N diagonal matrix, containing the masses of
the particles. The system is constrained byK time-independent constraint equations

gi(r) = |ri1 − ri2 | − di = 0 i = 1, . . . ,K (3.52)

In a numerical integration scheme LINCS is applied after an unconstrained update, just like
SHAKE. The algorithm works in two steps (see figure Fig.3.8). In the first step the projections of
the new bonds on the old bonds are set to zero. In the second step a correction is applied for the
lengthening of the bonds due to rotation. The numerics for the first step and the second step are
very similar. A complete derivation of the algorithm can be found in [28]. Only a short description
of the first step is given here.

3.6. Constraint algorithms 31

A new notation is introduced for the gradient matrix of the constraint equations which appears on
the right hand side of the equation

Bhi =
∂gh

∂ri
(3.53)

Notice thatB is aK×3N matrix, it contains the directions of the constraints. The following equa-
tion shows how the new constrained coordinatesrn+1 are related to the unconstrained coordinates
runc

n+1

rn+1 = (I − T nBn)runc
n+1 + T nd =

runc
n+1 −M−1Bn(BnM−1BT

n)−1(Bnrunc
n+1 − d)

(3.54)

whereT = M−1BT (BM−1BT)−1. The derivation of this equation from eqns.3.51and3.52
can be found in [28].

This first step does not set the real bond lengths to the prescribed lengths, but the projection of the
new bonds onto the old directions of the bonds. To correct for the rotation of bondi, the projection
of the bond on the old direction is set to

pi =
√

2d2
i − l2i (3.55)

whereli is the bond length after the first projection. The corrected positions are

r∗n+1 = (I − T nBn)rn+1 + T np (3.56)

This correction for rotational effects is actually an iterative process, but during MD only one
iteration is applied. The relative constraint deviation after this procedure will be less than 0.0001
for every constraint. In energy minimization this might not be accurate enough, so the number of
iterations is equal to the order of the expansion (see below).

Half of the CPU time goes to inverting the constraint coupling matrixBnM−1BT
n , which has to

be done every time step. ThisK×K matrix has1/mi1 +1/mi2 on the diagonal. The off-diagonal
elements are only non-zero when two bonds are connected, then the element iscosφ/mc, where
mc is the mass of the atom connecting the two bonds andφ is the angle between the bonds.

The matrixT is inverted through a power expansion. AK ×K matrix S is introduced which is
the inverse square root of the diagonal ofBnM−1BT

n . This matrix is used to convert the diagonal
elements of the coupling matrix to one

(BnM−1BT
n)−1 = SS−1(BnM−1BT

n)−1S−1S

= S(SBnM−1BT
nS)−1S = S(I −An)−1S

(3.57)

The matrixAn is symmetric and sparse and has zeros on the diagonal. Thus a simple trick can be
used to calculate the inverse

(I −An)−1 = I + An + A2
n + A3

n + . . . (3.58)

This inversion method is only valid if the absolute values of all the eigenvalues ofAn are smaller
than one. In molecules with only bond constraints the connectivity is so low that this will always
be true, even if ring structures are present. Problems can arise in angle-constrained molecules. By
constraining angles with additional distance constraints multiple small ring structures are intro-
duced. This gives a high connectivity, leading to large eigenvalues. Therefore LINCS should NOT
be used with coupled angle-constraints.

32 Chapter 3. Algorithms

The LINCS Parameters

The accuracy of LINCS depends on the number of matrices used in the expansion eqn.3.58. For
MD calculations a fourth order expansion is enough. For Brownian dynamics with large time steps
an eighth order expansion may be necessary. The order is a parameter in the input file formdrun .
The implementation of LINCS is done in such a way that the algorithm will never crash. Even
when it is impossible to to reset the constraints LINCS will generate a conformation which fulfills
the constraints as well as possible. However, LINCS will generate a warning when in one step a
bond rotates over more than a predefined angle. This angle is set by the user in the input file for
mdrun .

3.7 Simulated Annealing

The well known simulated annealing (SA) protocol is supported in GROMACS, and you can even
couple multiple groups of atoms separately with an arbitrary number of reference temperatures
that change during the simulation. The annealing is implemented by simply changing the current
reference temperature for each group in the temperature coupling, so the actual relaxation and
coupling properties depends on the type of thermostat you use and how hard you are coupling it.
Since we are changing the reference temperature it is important to remember that the system will
NOT instantaneously reach this value - you need to allow for the inherent relaxation time in the
coupling algorithm too. If you are changing the annealing reference temperature faster than the
temperature relaxation you will probably end up with a crash when the difference becomes too
large.

The annealing protocol is specified as a series of corresponding times and reference temperatures
for each group, and you can also choose whether you only want a single sequence (after which the
temperature will be coupled to the last reference value), or if the annealing should be periodic and
restart at the first reference point once the sequence is completed. You can mix and match both
types of annealing and non-annealed groups in your simulation.

3.8 Stochastic Dynamics

Stochastic or velocity Langevin dynamics adds a friction and a noise term to Newton’s equations
of motion:

mi
d2ri

dt2
= −miξi

dri

dt
+ F i(r)+

◦
ri (3.59)

whereξi is the friction constant[1/ps] and
◦
ri (t) is a noise process with〈◦ri (t)

◦
rj (t + s)〉 =

2miξikBTδ(s)δij . When1/ξi is large compared to the time scales present in the system, one
could see stochastic dynamics as molecular dynamics with stochastic temperature-coupling. The
advantage compared to MD with Berendsen temperature-coupling is that in case of SD the gen-
erated ensemble is known. For simulating a system in vacuum there is the additional advantage
that there is no accumulation of errors for the overall translational and rotational degrees of free-
dom. When1/ξi is small compared to the time scales present in the system, the dynamics will be
completely different from MD, but the sampling is still correct.

3.9. Brownian Dynamics 33

GROMACS uses a complicated third-order leap-frog algorithm [29] to integrate equation (3.59).
When constraints are present in the system, two constraint steps are performed per time step. The
kinetic energy is computed at the whole time step, this is done by averaging the velocities at minus
and plus a half time step, with a correction for the friction:

Ekin(t) =
1
2

n∑
i=1

(
mivi(t)⊗ vi(t) +

1
2
kBT

(
1− e−ξ∆t

)
I
)

vi(t) =
1
2

(
vi(t−

∆t
2

) + vi(t+
∆t
2

)
) (3.60)

When the friction is low the correction is negligible. In the limit of high friction the velocities at
subsequent steps become uncorrelated and the correction is equal to half the kinetic energy. Exact
continuation of a stochastic dynamics simulation is not possible, since apart from the coordinates
and the velocities one random term of the previous step in required, however, the error will be very
small.

3.9 Brownian Dynamics

In the limit of high friction stochastic dynamics reduces to Brownian dynamics, also called posi-
tion Langevin dynamics. This applies to over-damped systems,i.e. systems in which the inertia
effects are negligible. The equation is:

dri

dt
=

1
γi

F i(r)+
◦
ri (3.61)

whereγi is the friction coefficient[amu/ps] and
◦
ri(t) is a noise process with〈◦ri(t)

◦
rj(t + s)〉 =

2δ(s)δijkBT/γi. In GROMACS the equations are integrated with a simple, explicit scheme:

ri(t+ ∆t) = ri(t) +
∆t
γi

F i(r(t)) +

√
2kBT

∆t
γi

rG
i (3.62)

whererG
i is Gaussian distributed noise withµ = 0, σ = 1. The friction coefficientsγi can be

chosen the same for all particles or asγi = mi/ξi, where the friction constantsξi can be different
for different groups of atoms. Because the system is assumed to be over damped, large time-steps
can be used. LINCS should be used for the constraints since SHAKE will not converge for large
atomic displacements. BD is an option of themdrun program.

3.10 Energy Minimization

Energy minimization in GROMACS can be done using steepest descent, conjugate gradients, or l-
bfgs (limited-memory Broyden-Fletcher-Goldfarb-Shanno quasi-Newtonian minimizer... we pre-
fer the abbreviation). EM is just an option of themdrun program.

34 Chapter 3. Algorithms

3.10.1 Steepest Descent

Although steepest descent is certainly not the most efficient algorithm for searching, it is robust
and easy to implement.

We define the vectorr as the vector of all3N coordinates. Initially a maximum displacementh0

(e.g.0.01 nm) must be given.

First the forcesF and potential energy are calculated. New positions are calculated by

rn+1 = rn +
F n

max(|F n|)
hn (3.63)

wherehn is the maximum displacement andF n is the force, or the negative gradient of the poten-
tial V . The notationmax(|F n|) means the largest of the absolute values of the force components.
The forces and energy are again computed for the new positions
If (Vn+1 < Vn) the new positions are accepted andhn+1 = 1.2hn.
If (Vn+1 ≥ Vn) the new positions are rejected andhn = 0.2hn.

The algorithm stops when either a user specified number of force evaluations has been performed
(e.g.100), or when the maximum of the absolute values of the force (gradient) components is
smaller than a specified valueε. Since force truncation produces some noise in the energy evalua-
tion, the stopping criterion should not be made too tight to avoid endless iterations. A reasonable
value forε can be estimated from the root mean square forcef a harmonic oscillator would exhibit
at a temperatureT This value is

f = 2πν
√

2mkT (3.64)

whereν is the oscillator frequency,m the (reduced) mass, andk Boltzmann’s constant. For a
weak oscillator with a wave number of 100 cm−1 and a mass of 10 atomic units, at a temperature
of 1 K, f = 7.7 kJ mol−1 nm−1. A value forε between 1 and 10 is acceptable.

3.10.2 Conjugate Gradient

Conjugate gradient is slower than steepest descent in the early stages of the minimization, but
becomes more efficient closer to the energy minimum. The parameters and stop criterion are the
same as for steepest descent. In GROMACS conjugate gradient can not be used with constraints,
as this has not been implemented. This is not really a restriction, since the accuracy of conjugate
gradient is only required for minimization prior to a normal mode analysis, which can not be
performed with constraints. For most other purposes steepest descent is efficient enough.

3.10.3 L-BFGS

The original BFGS algorithm works by successively creating better approximations of the inverse
Hessian matrix, and moving the system to the currently estimated minimum. The memory re-
quirements for this are proportional to the square of the number of particles, so it is not practical
for large systems like biomolecules. Instead, we use the L-BFGS algorithm of Nocedal, which
approximates the inverse Hessian by a fixed number of corrections from previous steps. This
sliding-window technique is almost as efficient as the original method, but the memory require-
ments are much lower - proportional to the number of particles multiplied with the correction

3.11. Normal Mode Analysis 35

steps. In practice we have found it to converge faster than conjugate gradients, but due to the
correction steps it is not yet parallelized. It is also noteworthy that switched or shifted interac-
tions usually improve the convergence, since sharp cut-offs means the potential function at the
current coordinates is slightly different from the previous steps used to build the inverse Hessian
approximation.

3.11 Normal Mode Analysis

Normal mode analysis [30, 31, 32] can be performed using GROMACS, by diagonalization of the
mass-weighted HessianH:

RTM−1/2HM−1/2R = diag(λ1, . . . , λ3N) (3.65)

λi = (2πωi)2 (3.66)

whereM contains the atomic masses,R is a matrix that contains the eigenvectors as columns,λi

are the eigenvalues andωi are the corresponding frequencies.

First the Hessian matrix, which is a3N × 3N matrix whereN is the number of atoms, needs to
be calculated:

Hij =
∂2V

∂xi∂xj
(3.67)

wherexi andxj denote the atomic x, y or z coordinates. In practice, this equation is not used, but
the Hessian is calculated numerically from the force as:

Hij = −fi(x + hej)− fi(x− hej)
2h

(3.68)

fi = −∂V
∂xi

(3.69)

whereej is the unit vector in directionj. It should be noted that for a usual Normal Mode calcula-
tion, it is necessary to completely minimize the energy prior to computation of the Hessian. What
tolerance is required depends on the type of system, but a rough indication is 0.001 kJ mol−1. This
should be done with conjugate gradients or l-bfgs in double precision.

A number of GROMACS programs are involved in these calculations. First the energy should be
minimized usingmdrun . Thenmdrun computes the Hessian, note that for generating the run
input file one should use the minimized conformation from the full precision trajectory file, as
the structure file is not accurate enough.g nmeig does the diagonalization and the sorting of
the normal modes according to their frequencies. Bothmdrun andg nmeig should be run in
double precision. The normal modes can be analyzed with the programg anaeig . Ensembles of
structures at any temperature and for any subset of normal modes can be generated withg nmens.
An overview of normal mode analysis and the related principal component analysis (see sec.8.9)
can be found in [33].

36 Chapter 3. Algorithms

I

E’E

I

E E’

G1∆ ∆G2

∆G4

∆G3

A

G1∆ ∆G2

∆G3

I I’

E

I

E

I’

∆G4

B

Figure 3.9: Free energy cycles.A: to calculate∆G12, the free energy difference between the bind-
ing of inhibitor I to enzymesE respectivelyE′. B: to calculate∆G12, the free energy difference
for binding of inhibitorsI respectivelyI ′ to enzymeE.

3.12 Free energy calculations

Free energy calculations can be performed in GROMACS using slow-growth methods. An exam-
ple problem might be: calculate the difference in free energy of binding of an inhibitorI to an
enzymeE and to a mutated enzymeE′. It is not feasible with computer simulations to perform a
docking calculation for such a large complex, or even releasing the inhibitor from the enzyme in a
reasonable amount of computer time with reasonable accuracy. However, if we consider the free
energy cycle in (Fig.3.9A) we can write

∆G1 −∆G2 = ∆G3 −∆G4 (3.70)

If we are interested in the left-hand term we can equally well compute the right-hand term.

If we want to compute the difference in free energy of binding of two inhibitorsI and I ′ to an
enzymeE (Fig. 3.9B) we can again use eqn.3.70to compute the desired property.

Free energy differences between two molecular species can be calculated in GROMACS using the
“slow-growth” method. In fact, such free energy differences between different molecular species
are physically meaningless, but they can be used to obtain meaningful quantities employing a
thermodynamic cycle. The method requires a simulation during which the Hamiltonian of the
system changes slowly from that describing one system (A) to that describing the other system
(B). The change must be so slow that the system remains in equilibrium during the process; if that
requirement is fulfilled, the change is reversible and a slow-growth simulation from B to A will
yield the same results (but with a different sign) as a slow-growth simulation from A to B. This is
a useful check, but the user should be aware of the danger that equality of forward and backward
growth results does not guarantee correctness of the results.

The required modification of the HamiltonianH is realized by makingH a function of acoupling
parameterλ : H = H(p, q;λ) in such a way thatλ = 0 describes system A andλ = 1 describes
system B:

H(p, q; 0) = HA(p, q); H(p, q; 1) = HB(p, q). (3.71)

3.12. Free energy calculations 37

In GROMACS, the functional form of theλ-dependence is different for the various force-field
contributions and is described in section sec.4.3.

The Helmholtz free energyA is related to the partition functionQ of anN,V, T ensemble, which
is assumed to be the equilibrium ensemble generated by a MD simulation at constant volume and
temperature. The generally more useful Gibbs free energyG is related to the partition function
∆ of anN, p, T ensemble, which is assumed to be the equilibrium ensemble generated by a MD
simulation at constant pressure and temperature:

A(λ) = −kBT lnQ (3.72)

Q = c

∫ ∫
exp[−βH(p, q;λ)] dp dq (3.73)

G(λ) = −kBT ln∆ (3.74)

∆ = c

∫ ∫ ∫
exp[−βH(p, q;λ)− βpV] dp dq dV (3.75)

G = A+ pV, (3.76)

whereβ = 1/(kBT) andc = (N !h3N)−1. These integrals over phase space cannot be evaluated
from a simulation, but it is possible to evaluate the derivative with repect toλ as an ensemble
average:

dA

dλ
=
∫∫

(∂H/∂λ) exp[−βH(p, q;λ)] dp dq∫∫
exp[−βH(p, q;λ)] dp dq

=
〈
∂H

∂λ

〉
NV T ;λ

, (3.77)

with a similar relation fordG/dλ in theN, p, T ensemble. The difference in free energy between
A and B can be found by integrating the derivative overλ:

AB(V, T)−AA(V, T) =
∫ 1

0

〈
∂H

∂λ

〉
NV T ;λ

dλ (3.78)

GB(p, T)−GA(p, T) =
∫ 1

0

〈
∂H

∂λ

〉
NpT ;λ

dλ. (3.79)

If one wishes to evaluateGB(p, T) − GA(p, T), the natural choice is a constant-pressure simu-
lation. However, this quantity can also be obtained from a slow-growth simulation at constant
volume, starting with system A at pressurep and volumeV and ending with system B at pressure
pB, by applying the following small correction:

GB(p)−GA(p) = AB(V)−AA(V)−
∫ pB

p
[V B(p′)− V] dp′ (3.80)

Here we omitted the constantT from the notation. This correction is roughly equal to−1
2(pB −

p)∆V = (∆V)2/(2κV), where∆V is the volume change atp andκ is the isothermal compress-
ibility. This is usually negligible. For example, the growth of a water molecule from nothing in a
bath of 1000 water molecules at constant volume would produce an additional pressure of 22 bar
and a correction to the Helmholtz free energy of -20 J/mol.

In cartesian coordinates, the kinetic energy term in the Hamiltonian depends only on the momenta,
and can be separately integrated and in fact removed from the equations. When masses do not
change, there is no contribution from the kinetic energy at all; otherwise the integrated contribution
to the free energy is−3

2kBT ln(mB/mA). This is no longer true in the presence of constraints.

38 Chapter 3. Algorithms

GROMACS offers the possibility to integrate eq.3.78or eq. 3.79in one simulation over the full
range from A to B. However, if the change is large and sampling insufficiency can be expected,
the user may prefer to determine the value of〈dG/dλ〉 accurately at a number of well-chosen
intermediate values ofλ. This can be easily done by setting the stepsizedelta lambda to zero.
Each simulation can be equilibrated first, and a proper error estimate can be made for each value of
dG/dλ from the fluctuation of∂H/∂λ. The total free energy change is then determined afterwards
by an appropriate numerical integration procedure.

Theλ-dependence for the force-field contributions is described in section sec.4.3.

3.13 Essential Dynamics Sampling

The results from Essential Dynamics (see sec.8.9) of a protein can be used to guide MD simula-
tions. The idea is that from an initial MD simulation (or from other sources) a definition of the
collective fluctuations with largest amplitude is obtained. The position along one or more of these
collective modes can be constrained in a (second) MD simulation in a number of ways for several
purposes. For example, the position along a certain mode may be kept fixed to monitor the average
force (free-energy gradient) on that coordinate in that position. Another application is to enhance
sampling efficiency with respect to usual MD [34, 35]. In this case, the system is encouraged
to sample its available configuration space more systematically than in a diffusion-like path that
proteins usually take.

All available constraint types are described in the appropriate chapter of the WHAT IF [36] man-
ual.

3.14 Parallelization

The purpose of this section is to discuss the parallelization of the principle MD algorithm and not to
describe the algorithms that are in practical use for molecular systems with their complex variety of
atoms and terms in the force field descriptions. We shall therefore consider as an example a simple
system consisting only of a single type of atoms with a simple form of the interaction potential.
The emphasis will be on the special problems that arise when the algorithm is implemented on a
parallel computer.

The simple model problem already contains the bottleneck of all MD simulations: the compu-
tationally intensive evaluation of thenon-bondedforces between pairs of atoms, based on the
distance between particles. Complex molecular systems will in addition involve many different
kinds ofbondedforces between designated atoms. Such interactions add to the complexity of the
algorithm but do not modify the basic considerations concerning parallelization.

3.14.1 Methods of parallelization

There are a number of methods to parallelize the MD algorithm, each of them with their own
advantages and disadvantages. The method to choose depends on the hardware and compilers
available. We list them here:

3.14. Parallelization 39

1 Message Passing.
In this method, which is more or less the traditional way of parallel programming, all the
parallelism is explicitly programmed by the user. The disadvantage is that it takes extra code
and effort, the advantage is that the programmer keeps full control over the data flow and
can do optimizations a compiler could not come up with.

The implementation is typically done by calling a set of library routines to send and re-
ceive data to and from other processors. Almost all hardware vendors support this way of
parallelism in their C and Fortran compilers.

2 Data Parallel.
This method lets the user define arrays on which to operate in parallel. Programming this
way is much like vectorizing: recurrence is not parallelized (e.g.for(i=1; (i<MAX);
i++) a[i] = a[i-1] + 1; does not vectorize and not parallelize, because for every
i the result from the previous step is needed).

The advantage of data parallelism is that it is easier for the user; the compiler takes care of
the parallelism. The disadvantage is that it is supported by a small (though growing) number
of hardware vendors, and that it is much harder to maintain a program that has to run on
both parallel and sequential machines, because the only standard language that supports it
is Fortran-90 which is not available on many platforms.

Both methods allow for the MD algorithm to be implemented without much trouble. Message
passing MD algorithms have been published since the mid 80’s ([37], [38]) and development is
still continuing. Data parallel programming is newer, but starting from a well vectorized program
it is not hard to do.

Our implementation of MD is a message passing one, the reason for which is partly historical:
the project to develop a parallel MD program started when Fortran-90 was still in the making,
and no compilers were expected to be available. At current, we still believe that message passing
is the way to go, after having done some experiments with data parallel programming on a Con-
nection Machine (CM-5), because of portability to other hardware, the poor performance of the
code produced by the compilers and because this way of programming has the same drawback as
vectorization: the part of the program that is not vectorized or parallelized determines the runtime
of the program (Amdahl’s law).

The approach we took to parallelism was a minimalist one: use as few non-standard elements in
the software as possible, and use the simplest processor topology that does the job. We therefore
decided to use a standard language (ANSI-C) with as few non-standard routines as possible. We
only use 5 communication routines that are non-standard. It is therefore very easy to port our code
to other machines.

For anO(N2) problem like MD, one of the best schemes for the interprocessor connections is a
ring, so our software demands that a ring is present in the interprocessor connections. A ring can
essentially always be mapped onto another network like a hypercube, a bus interface (Ethernet
e.g.using Message Passing Interface MPI) or a tree (CM-5). Some hardware vendors have very
luxurious connection schemes that connect every processor to every other processor, but we do not
really need it and so do not use it even though it might come in handy at times. The advantage with
this simple scheme is that GROMACS performs extremely well even on inexpensive workstation
clusters.

40 Chapter 3. Algorithms

When using a message passing scheme one has to divide the particles over processors, which can
be done in two ways:

• Space Decomposition.
An element of space is allocated to each processor, when dividing a cubic box with edge
b overP processors this can be done by giving each processor a slab of lengthb/P . This
method has the advantage that each processor has about the same number of interactions to
calculate (at least when the simulated system has a homogeneous density, like a liquid or a
gas). The disadvantage is that a lot of bookkeeping is necessary for particles that move over
processor boundaries. When using more complex systems, such as macromolecules there
are also 3- and 4-atom interactions that make the bookkeeping too complicated for our taste.

• Particle Decomposition.
Every processor is allocated a number of particles. When dividingN particles overP
processors each processor will getN/P particles. The implementation of this method is
described in the next section.

3.14.2 MD on a ring of processors

When a neighbor list is not used the MD problem is in principle anO(N2) problem as each particle
can interact with every other. This can be simplified using Newton’s third law

Fij = − Fji (3.81)

This implies that there is half a matrix of interactions (without diagonal, a particle does not interact
with itself) to consider (Fig.3.10). When we reflect the upper right triangle of interactions to the
lower left triangle of the matrix, we still cover all possible interactions, but now every row in
the matrix has almost the same number of points or possible interactions. We can now assign a
(preferably equal) number of rows to each processor to compute the forces and at the same time
a number of particles to do the update on, thehomeparticles. The number of interactions per
particle is dependent on thetotal numberN of particles (see Fig.3.11) and on theparticle number
i. The exact formulae are given in Table3.2.

A flow chart of the algorithm is given in Fig.3.12.

It is the same as the sequential algorithm, except for two communication steps. After the particles
have been reset in the box, each processor sends its coordinates onward (left) and then starts
computation of the forces. After this step each processor holds thepartial forcesfor the available
particles,e.g. processor 0 holds forces acting on home particles from processor 0, 1, 2 and 3.
These forces must be accumulated and sent back (right) to the home processor. Finally the update
of the velocity and coordinates is done on the home processor.

Thecommunicate r routine is given below in the full C-code:

3.14. Parallelization 41

0
1
2
3
4
5
6
7
8

0
1
2
3
4
5
6
7
8

0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8
j j

i i

Figure 3.10: The interaction matrix (left) and the same using action= −reaction (right).

i mod 2 = 0 i mod 2 = 0 i mod 2 = 1 i mod 2 = 1
i < N/2 i ≥ N/2 i < N/2 i ≥ N/2

N mod 2 = 1 N/2 N/2 N/2 N/2
N mod 4 = 2 N/2 N/2 N/2−1 N/2−1
N mod 4 = 0 N/2 N/2−1 N/2−1 N/2

Table 3.2: The number of interactions between particles. The number ofj particles peri particle
is a function of the total number of particlesN and particle numberi. Note that here the/ operator
is used for integer division,i.e. truncating the reminder.

j

i

j

i

j

i0
1
2
3
4
5

0 1 2 3 4 5
0
1
2
3
4
5
6
7

0 1 2 3 4 5 6 7

0
1
2
3
4
5
6

0 1 2 3 4 5 6

N mod 4 = 2 N mod 2 = 1 N mod 4 = 0

Figure 3.11: Interaction matrices for differentN . The number ofj-particles ani-particle interacts
with depends on thetotal number of particles and on theparticle number.

42 Chapter 3. Algorithms

read_data

Done

NO

output_step

update_r_and_v

more steps ?
YES

compute_forces

*

*

reset_r_in_box

communicate_r

communicate_and_sum_f

Figure 3.12: The Parallel MD algorithm. If the steps marked * are left out we have the sequential
algorithm again.

3.15. Parallel Molecular Dynamics 43

0
1

2

3
4

5

6

7
Forces

Coordinates

Figure 3.13: Data flow in a ring of processors.

void communicate_r(int nprocs,int pid,rvec vecs[],int start[],int homenr[])
/*

* nprocs = number of processors
* pid = processor id (0..nprocs-1)
* vecs = vectors
* start = starting index in vecs for each processor
* homenr = number of home particles for each processor
*/

{
int i; /* processor counter */
int shift; /* the amount of processors to communicate with */
int cur; /* current processor to send data from */
int next; /* next processor on a ring (using modulo) */

cur = pid;
shift = nprocs/2;

for (i=0; (i<shift); i++) {
next=(cur+1) % nprocs;
send (left, vecs[start[cur]], homenr[cur]);
receive(right, vecs[start[next]], homenr[next]);
cur=next;

}
}

The data flow around the ring is visualized in Fig.3.13. Note that because of the ring topology
each processor automatically gets the proper particles to interact with.

3.15 Parallel Molecular Dynamics

In this chapter we describe some details of the parallel MD algorithm used in GROMACS. This
also includes some other information on neighbor searching and a side excursion to parallel sort-
ing. Please note the following which we use throughout this chapter:
definition: N : Number of particles,M number of processors.
GROMACS employs two different grids: the neighbor searching grid (NS grid) and the combined

44 Chapter 3. Algorithms

charge/potential grid (FFT grid), as will be described below. To maximize the confusion, these
two grids are mapped onto a grid of processors when GROMACS runs on a parallel computer.

3.15.1 Domain decomposition

Modern parallel computers, such as an IBM SP/2 or a Cray T3E consist of relatively small numbers
of relatively fast scalar processors (typically 8 to 256). The communication channels that are
available in hardware on these machine are not directly visible to the programmer; a software layer
(usually MPI) hides this, and makes communication from all processors to all others possible. In
contrast, in the GROMACS hardware [1] only communication in a ring was available,i.e. each
processor could communicate with its direct neighbors only.

It seems logical to map the computational box of an MD simulation system to a 3D grid of pro-
cessors (e.g.4x4x4 for a 64 processor system). This ensures that most interactions that are local in
space can be computed with information from neighboring processors only. However, this means
that there have to be communication channels in 3 dimensions too, which is not necessarily the
case. Although this may be overcome in software, such a mapping complicates the MD software
as well, without clear performance benefits on most parallel computers.

Therefore we opt for a simple one-dimensional division scheme for the computational box. Each
processor gets a slab of this box in the X-dimension. For the communication between processors
this has two main advantages:

1. Simplicity of coding. Communication can only be to two neighbors (calledleft andright in
GROMACS).

2. Communication can usually be done in large chunks, which makes it more efficient on most
hardware platforms.

Most interactions in molecular dynamics have in principle a short-range character. Bonds, angles
and dihedrals are guaranteed to have the corresponding particles close in space.

3.15.2 Domain decomposition for non-bonded forces

For large parallel computers, domain decomposition is preferable over particle decomposition,
since it is easier to do load balancing. Without load balancing the scaling of the code is rather
poor. For this purpose, the computational box is divided inM slabs, whereM is equal to the
number of processors. There are multiple ways of dividing the box over processors, but since the
GROMACS code assumes a ring topology for the processors, it is logical to cut the system in slabs
in just one dimension, the X dimension. The algorithm for neighbor searching then becomes:

1. Make a list of charge group indices sorted on (increasing) X coordinate (Fig.3.14). Note
that care must be taken to parallelize the sorting algorithm as well. See sec.3.15.4.

2. Divide this list into slabs, with each slab having the same number of charge groups

3. Put the particles corresponding to the local slab on a 3D NS grid as described in sec.3.4.2.

3.15. Parallel Molecular Dynamics 45

X
Y
Z

0 1 2 N-1

0 1 2 3 4 5
CPU number

atom number

index

coord.

Figure 3.14: Index in the coordinate array. The division in slabs is indicated by dashed lines.

4. Communicate the NS grid to neighboring processors (not necessarily to all processors). The
amount of neighboring NS grid cells (Ngx) to communicate is determined by the cutoff
lengthrc according to

Ngx =
rcM

lx
(3.82)

wherelx is the box length in the slabbing direction.

5. On each processor compute the neighbor list for all charge groups in its slab using the
normal grid neighbor-searching.

For homogeneous system, this is close to an optimal load balancing, without actually doing load
balancing. For inhomogeneous system, such as membranes or interfaces, the slabs should be
perpendicular to the interface; this way, each processor has “a little bit of everything”. The GRO-
MACS utility programeditconf has an option to rotate a whole computational box.

The following observations are important here:

• Particles may diffuse from one slab to the other, therefore each processor must hold coordi-
nates for all particles all the time, and distribute forces back to all processors as well.

• Velocities are kept on the “home processor” for each particle, where the integration of New-
ton’s equations is done.

• Fixed interaction lists (bonds, angles etc.) are kept each on a single processor. Since all
processors have all coordinates, it does not matter where interactions are calculated. The
division is actually done by the GROMACS preprocessorgrompp and care is taken that, as
far as possible, every processor gets the same number of bonded interactions.

In all, this makes for a mixed particle decomposition/domain decomposition scheme for paral-
lelization of the MD code. The communication costs are four times higher than for the simple
particle decomposition method described in sec.3.14 (the whole coordinate and force array are
communicated across the whole ring, rather than half the array over half the ring). However, for
large numbers of processors the improved load balancing compensates this easily.

46 Chapter 3. Algorithms

3.15.3 Parallel PPPM

A further reason for domain decomposition is the PPPM algorithm. This algorithm works with
a 3D Fast Fourier Transform. It employs a discrete grid of dimensions (nx,ny,nz), the FFT grid.
The algorithm consist of five steps, each of which have to be parallelized:

1. Spreading charges on the FFT grid to obtain the charge distributionρ(r). This bit involves
the following sub-steps:

a. put particle in the box

b. find the FFT grid cell in which the particle resides

c. add the charge of the particle times the appropriate weight factor (see sec.4.6.3) to
each of the 27 grid points (3 x 3 x 3).

In the parallel case, the FFT grid must be filled on each processor with its share of the par-
ticles, and subsequently the FFT grids of all processors must be summed to find the total
charge distribution. It may be clear that this induces a large amount of unnecessary work,
unless we use domain decomposition. If each processor only has particles in a certain re-
gion of space, it only has to calculate the charge distribution for that region of space. Since
GROMACS works with slabs, this means that each processor fills the FFT grid cells corre-
sponding to it’s slab in space and addition of FFT grids need only be done for neighboring
slabs.
To be more precise, the slabx for processori is defined as:

i
lx
M

≤ x < (i+ 1)
lx
M

(3.83)

Particle with thisx coordinate range will add to the charge distribution on the following
range of of FFT grid slabs in thex direction:

trunc
(
i
lxnx

M

)
− 1 ≤ ix ≤ trunc

(
(i+ 1)

lxnx

M

)
+ 2 (3.84)

where trunc indicates the truncation of a real number to the largest integer smaller than or
equal to that real number.

2. Doing the Fourier transform of the charge distributionρ(r) in parallel to obtain̂ρ(k). This
is done using the FFTW library (seewww.fftw.org) which employs the MPI library for
message passing programs (note that there are also shared memory versions of the FFTW
code).
This FFT algorithm actually use slabs as well (good thinking!). Each processor does 2D
FFTs on its slab, and then the whole FFT grid is transposedin place(i.e.without using extra
memory). This means that after the FFT the X and Y components are swapped. To complete
the FFT, this swapping should be undone in principle (by transposing back). Happily the
FFTW code has an option to omit this, which we use in the next step.

3. Convoluteρ̂(k) with the Fourier transform of the charge spread functionĝ(k) (which we
have tabulated before) to obtain the potentialφ̂(k). As an optimization, we store thêg(k)
in transposed form as well, matching the transposed form ofρ̂(k) which we get from the
FFTW routine. After this step we have the potentialφ̂(k) in Fourier space, but still on the
transposed FFT grid.

http://www.fftw.org

3.15. Parallel Molecular Dynamics 47

4. Do an inverse transform of̂φ(k) to obtainφ(r). Since the algorithm must do a transpose of
the data this step actually yields the wanted result: the un-transposed potential in real space.

5. Interpolate the potentialφ(r) in real space at the particle positions to obtain forces and
energy. For this bit the same considerations about parallelism hold as for the charge spread-
ing. However in this case more neighboring grid cells are needed, implying that we need
the following set of FFT grid slabs in thex direction:

trunc
(
i
lxnx

M

)
− 3 ≤ ix ≤ trunc

(
(i+ 1)

lxnx

M

)
+ 4 (3.85)

The algorithm as sketched above requires communication for spreading the charges, for the for-
ward and backward FFTs, and for interpolating the forces. The GROMACS bits of the program
use only left and right communication,i.e. using two communication channels. The FFTW rou-
tines actually use other forms of communication as well, and these routines are coded with MPI
routines for message passing. This implies that GROMACS can only perform the PPPM algo-
rithm on parallel computers that support MPI. However, most shared memory computers, such as
the SGI Origin, also support MPI using the shared memory for communication.

3.15.4 Parallel sorting

For the domain decomposition bit of GROMACS it is necessary to sort the coordinates (or rather
the index to coordinates) every time a neighbor list is made. If we use brute force, and sort all co-
ordinates on each processor (which is technically possible since we have all the coordinates), then
this sorting procedure will take a constant wallclock time, proportional toN2 logN , regardless of
the number of processors. We can however do a little better, if we assume that particles diffuse
only slowly. A parallel sorting algorithm can be conceived as follows:
At the first step of the simulation

1. Do a full sort of all indices usinge.g.the Quicksort algorithm that is built-in in the standard
C-library

2. Divide the sorted array into slabs (as described above see Fig.3.14).

At subsequent steps of the simulation:

1. Send the indices for each processor to the preceding processor (if not processor 0) and
to the next processor (if notM -1). The communication associated with this operation is
proportional to 2N /M .

2. Sort the combined indices of the three (or two) processors. Note that the CPU time associ-
ated with sorting is now (3N /M)2 log (3N /M).

3. On each processor, the indices belonging to it’s slab can be determined from the order of
the array (Fig.3.14).

48 Chapter 3. Algorithms

Chapter 4

Force fields

A force field is built up from two distinct components:

• The set of equations (called thepotential functions) used to generate the potential energies
and their derivatives, the forces.

• The parameters used in this set of equations

Within one set of equations various sets of parameters can be used. Care must be taken that the
combination of equations and parameters form a consistent set. It is in general dangerous to make
ad hocchanges in a subset of parameters, because the various contributions to the total force are
usually interdependent.

GROMACS 3.2 includes several force fields, and additional ones are available on the website.
If you don’t know which one to select we recommend Gromos96 for united-atom setups and
OPLS-AA/L for all-atom parameters. The GROMACS forcefields is mainly included for historical
reasons; it is based on GROMOS-87 [39], with a small modification concerning the interaction
between water-oxygens and carbon atoms [40, 41], as well as 10 extra atom types [42, 43, 40, 41,
44]. However, the user is free to make her own modifications (beware!). This will be explained
in details in chapter5, which deals with theTopology. The organization of the force field files is
described in sec.5.7.

To accommodate the potential functions used in some popular force fields, GROMACS offers
a choice of functions, both for non-bonded interaction and for dihedral interactions. They are
described in the appropriate subsections.

The potential functions can be subdivided into three parts

1. Non-bonded: Lennard-Jones or Buckingham, and Coulomb or modified Coulomb. The non-
bonded interactions are computed on the basis of a neighbor list (a list of non-bonded atoms
within a certain radius), in which exclusions are already removed.

2. Bonded: covalent bond-stretching, angle-bending, improper dihedrals, and proper dihedrals.
These are computed on the basis of fixed lists.

3. Special: position restraints and distance restraints, based on fixed lists.

50 Chapter 4. Force fields

0.4 0.5 0.6 0.7 0.8
r (nm)

–0.2

0.0

0.2

0.4

V
 (

kJ
 m

ol
e–1

)

Figure 4.1: The Lennard-Jones interaction.

4.1 Non-bonded interactions

Non-bonded interactions in GROMACS are pair-additive and centro-symmetric:

V (r1, . . . rN) =
∑
i<j

Vij(rij); (4.1)

F i = −
∑
j

dVij(rij)
drij

rij

rij
= −F j (4.2)

The non-bonded interactions contain a repulsion term, a dispersion term, and a Coulomb term.
The repulsion and dispersion term are combined in either the Lennard-Jones (or 6-12 interaction),
or the Buckingham (or exp-6 potential). In addition, (partially) charged atoms act through the
Coulomb term.

4.1.1 The Lennard-Jones interaction

The Lennard-Jones potentialVLJ between two atoms equals

VLJ(rij) =
C

(12)
ij

r12ij

−
C

(6)
ij

r6ij
(4.3)

see also Fig.4.1The parametersC(12)
ij andC(6)

ij depend on pairs ofatom types; consequently they
are taken from a matrix of LJ-parameters.

The force derived from this potential is:

F i(rij) =

12
C

(12)
ij

r12ij

− 6
C

(6)
ij

r6ij

 rij

rij
(4.4)

4.1. Non-bonded interactions 51

0.2 0.3 0.4 0.5 0.6 0.7 0.8
r (nm)

–0.5

0.0

0.5

1.0

1.5

V
 (

kJ
 m

ol
e–1

)

Figure 4.2: The Buckingham interaction.

The LJ potential may also be written in the following form :

VLJ(rij) = 4εij

(σij

rij

)12

−
(
σij

rij

)6
 (4.5)

In constructing the parameter matrix for the non-bonded LJ-parameters, two types of combination
rules can be used within GROMACS:

C
(6)
ij =

(
C

(6)
ii ∗ C(6)

jj

)1/2

C
(12)
ij =

(
C

(12)
ii ∗ C(12)

jj

)1/2 (4.6)

or, alternatively,
σij = 1

2(σii + σjj)
εij = (εiiεjj)

1/2 (4.7)

4.1.2 Buckingham potential

The Buckingham potential has a more flexible and realistic repulsion term than the Lennard-Jones
interaction, but is also more expensive to compute. The potential form is:

Vbh(rij) = Aij exp(−Bijrij)−
Cij

r6ij
(4.8)

see also Fig.4.2, the force derived from this is:

F i(rij) =

[
−AijBijrij exp(−Bijrij)− 6

Cij

r6ij

]
rij

rij
(4.9)

52 Chapter 4. Force fields

0.0 0.2 0.4 0.6 0.8 1.0
r (nm)

0

500

1000

1500

V
 (

kJ
 m

ol�

−
1)

Coulomb
With RF

�

RF − C

Figure 4.3: The Coulomb interaction (for particles with equal signed charge) with and without
reaction field. In the latter caseεrf was 78, andrc was 0.9 nm. The dot-dashed line is the same as
the dashed line, except for a constant.

4.1.3 Coulomb interaction

The Coulomb interaction between two charge particles is given by:

Vc(rij) = f
qiqj
εrrij

(4.10)

see also Fig.4.3, wheref = 1
4πε0

= 138.935 485 (see chapter2)

The force derived from this potential is:

F i(rij) = f
qiqj
εrr2ij

rij

rij
(4.11)

In GROMACS the relative dielectric constantεr may be set in the in the input forgrompp .

4.1.4 Coulomb interaction with reaction field

The coulomb interaction can be modified for homogeneous systems, by assuming a constant di-
electric environment beyond the cutoffrc with a dielectric constant ofεrf . The interaction then
reads:

Vcrf = f
qiqj
rij

[
1 +

εrf − 1
2εrf + 1

r3ij
r3c

]
− f

qiqj
rc

3εrf

2εrf + 1
(4.12)

in which the constant expression on the right makes the potential zero at the cutoffrc. We can
rewrite this for simplicity as

Vcrf = fqiqj

[
1
rij

+ krf r
2
ij − crf

]
(4.13)

4.1. Non-bonded interactions 53

with

krf =
1
r3c

εrf − 1
(2εrf + 1)

(4.14)

crf =
1
rc

+ krf r
2
c =

1
rc

3εrf

(2εrf + 1)
(4.15)

For largeεrf the krf goes to 0.5r−3
c , while for εrf = 1 the correction vanishes. This makes it

possible to use the same expression with and without reaction field, albeit at some computational
cost. In Fig.4.3 the modified interaction is plotted, and it is clear that the derivative with respect
to rij (= -force) goes to zero at the cutoff distance. The force derived from this potential reads:

F i(rij) = fqiqj

[
1
r2ij

− 2krfrij

]
rij

rij
(4.16)

Tironi et al. have introduced a generalized reaction field in which the dielectric continuum beyond
the cutoffrc also has an ionic strengthI [45]. In this case we can rewrite the constantskrf and
crf using the inverse Debye screening lengthκ:

κ =
2I F 2

ε0εrfRT
=

F 2

ε0εrfRT

K∑
i=1

cizi (4.17)

krf =
1
r3c

(εrf − 1)(1 + κrc) + εrf (κrc)2

(2εrf + 1)(1 + κrc) + 2εrf (κrc)2
(4.18)

crf =
1
rc

3εrf (1 + κrc + (κrc)2)
(2εrf + 1)(1 + κrc) + 2εrf (κrc)2

(4.19)

whereF is Faraday’s constant,R is the ideal gas constant,T the absolute temperature,ci the
molar concentration for speciesi andzi the charge number of speciesi where we haveK different
species. In the limit of zero ionic strength (κ = 0) eqns.4.18and4.19reduce to the simple forms
of eqns.4.14and4.15respectively.

4.1.5 Modified non-bonded interactions

In the GROMACS force field the non-bonded potentials can be modified by a shift function. The
purpose of this is to replace the truncated forces by forces that are continuous and have continuous
derivatives at the cutoff radius. With such forces the time-step integration produces much smaller
errors and there are no such complications as creating charges from dipoles by the truncation
procedure. In fact, by using shifted forces there is no need for charge groups in the construction of
neighbor lists. However, the shift function produces a considerable modification of the Coulomb
potential. Unless the ’missing’ long-range potential is properly calculated and added (through the
use of PPPM, Ewald, or PME), the effect of such modifications must be carefully evaluated. The
modification of the Lennard-Jones dispersion and repulsion is only minor, but it does remove the
noise caused by cutoff effects.

There isno fundamental difference between a switch function (which multiplies the potential with
a function) and a shift function (which adds a function to the force or potential). The switch

54 Chapter 4. Force fields

function is a special case of the shift function, which we apply to theforce functionF (r), related
to the electrostatic or Van der Waals force acting on particlei by particlej as

F i = cF (rij)
rij

rij
(4.20)

For pure Coulomb or Lennard-Jones interactionsF (r) = Fα(r) = r−(α+1). The shifted force
Fs(r) can generally be written as:

Fs(r) = Fα(r) r < r1

Fs(r) = Fα(r) + S(r) r1 ≤ r < rc

Fs(r) = 0 rc ≤ r

(4.21)

When r1 = 0 this is a traditional shift function, otherwise it acts as a switch function. The
corresponding shifted coulomb potential then reads:

Vs(rij) = fΦs(rij)qiqj (4.22)

whereΦ(r) is the potential function

Φs(r) =
∫ ∞

r
Fs(x) dx (4.23)

The GROMACS shift function should be smooth at the boundaries, therefore the following bound-
ary conditions are imposed on the shift function:

S(r1) = 0
S′(r1) = 0
S(rc) = −Fα(rc)
S′(rc) = −F ′α(rc)

(4.24)

A 3rd degree polynomial of the form

S(r) = A(r − r1)2 +B(r − r1)3 (4.25)

fulfills these requirements. The constants A and B are given by the boundary condition atrc:

A = −(α+ 4)rc − (α+ 1)r1
rα+2
c (rc − r1)2

B =
(α+ 3)rc − (α+ 1)r1

rα+2
c (rc − r1)3

(4.26)

Thus the total force function is

Fs(r) =
1

rα+1
+A(r − r1)2 +B(r − r1)3 (4.27)

and the potential function reads

Φ(r) =
1
rα

− A

3
(r − r1)3 −

B

4
(r − r1)4 − C (4.28)

4.1. Non-bonded interactions 55

0.0 1.0 2.0 3.0 4.0 5.0
r�

−0.5

0.0

0.5

1.0

1.5

f(
r)

Normal Force
Shifted Force
Shift Function

Figure 4.4: The Coulomb Force, Shifted Force and Shift FunctionS(r), using r1 = 2 and rc = 4.

where

C =
1
rα
c

− A

3
(rc − r1)3 −

B

4
(rc − r1)4 (4.29)

Whenr1 = 0, the modified Coulomb force function is

Fs(r) =
1
r2
− 5r2

r4c
+

4r3

r5c
(4.30)

identical to theparabolic forcefunction recommended to be used as a short-range function in
conjunction with a Poisson solver for the long-range part [13]. The modified Coulomb potential
function is

Φ(r) =
1
r
− 5

3rc
+

5r3

3r4c
− r4

r5c
(4.31)

see also Fig.4.4.

4.1.6 Modified short-range interactions with Ewald summation

When Ewald summation or particle-mesh Ewald is used to calculate the long-range interactions,
the short-range coulomb potential must also be modified, similar to the switch function above. In
this case the short range potential is given by

V (r) = f
erfc(βrij)

rij
qiqj , (4.32)

whereβ is a parameter that determines the relative weight between the direct space sum and the
reciprocal space sum and erfc(x) is the complementary error function. For further details on long-
range electrostatics, see sec.4.6.

56 Chapter 4. Force fields

b0

0.08 0.09 0.10 0.11
r (nm)

0

50

100

150

200

V
 (

kJ
 m

ol
e–1

)
Figure 4.5: Principle of bond stretching (left), and the bond stretching potential (right).

4.2 Bonded interactions

Bonded interactions are based on a fixed list of atoms. They are not exclusively pair interac-
tions, but include 3- and 4-body interactions as well. There arebond stretching(2-body),bond
angle(3-body), anddihedral angle(4-body) interactions. A special type of dihedral interaction
(calledimproper dihedral) is used to force atoms to remain in a plane or to prevent transition to a
configuration of opposite chirality (a mirror image).

4.2.1 Bond stretching

Harmonic potential

The bond stretching between two covalently bonded atomsi andj is represented by a harmonic
potential

Vb (rij) =
1
2
kb

ij(rij − bij)2 (4.33)

see also Fig.4.5, with the force

F i(rij) = kb
ij(rij − bij)

rij

rij
(4.34)

Fourth power potential

In the GROMOS-96 force field [46] the covalent bond potential is written for reasons of compu-
tational efficiency as:

Vb (rij) =
1
4
kb

ij

(
r2ij − b2ij

)2
(4.35)

the corresponding force is:

F i(rij) = kb
ij(r

2
ij − b2ij) rij (4.36)

4.2. Bonded interactions 57

The force constants for this form of the potential is related to the usual harmonic force constant
kb,harm (sec.4.2.1) as

2kbb2ij = kb,harm (4.37)

The force constants are mostly derived from the harmonic ones used in GROMOS-87 [39]. Al-
though this form is computationally more efficient (because no square root has to be evaluated), it
is conceptually more complex. One particular disadvantage is that since the form is not harmonic,
the average energy of a single bond is not equal to1

2kT as it is for the normal harmonic potential.

4.2.2 Morse potential bond stretching

For some systems that require an anharmonic bond stretching potential, the Morse potential [47]
between two atomsi andj is available in GROMACS. This potential differs from the harmonic po-
tential in having an asymmetric potential well and a zero force at infinite distance. The functional
form is:

Vmorse(rij) = Dij [1− exp(−βij(rij − bij))]2, (4.38)

see also Fig.4.6, and the corresponding force is:

Fmorse(rij) = 2Dijβijrij exp(−βij(rij − bij))∗
[1− exp(−βij(rij − bij))]

rij
rij ,

(4.39)

whereDij is the depth of the well in kJ/mol,βij defines the steepness of the well (in nm−1), and
bij is the equilibrium distance in nm. The steepness parameterβij can be expressed in terms of
the reduced mass of the atomsi andj, the fundamental vibration frequencyωij and the well depth
Dij :

βij = ωij

√
µij

2Dij
(4.40)

and becauseω =
√
k/µ, one can rewriteβij in terms of the harmonic force constantkij

βij =

√
kij

2Dij
(4.41)

For small deviations(rij − bij), one can approximate theexp-term to first-order using a Taylor
expansion:

exp(−x) ≈ 1− x (4.42)

and substituting eqn.4.41and eqn.4.42in the functional from,

Vmorse(rij) = Dij [1− exp(−βij(rij − bij))]2

= Dij [1− (1−
√

kij

2Dij
(rij − bij))]2

= 1
2kij(rij − bij))2,

(4.43)

we recover the harmonic bond stretching potential.

58 Chapter 4. Force fields

0.1 0.2 0.3 0.4 0.5 0.6
rij (nm)

0

100

200

300

400

V
ij (

kJ
 /

m
ol

)

Figure 4.6: The Morse potential well, with bond length 0.15 nm.

4.2.3 Cubic bond stretching potential

Another anharmonic bond stretching potential that is slightly simpler than the Morse potential
adds a cubic term in the distance to the simple harmonic form:

Vb (rij) = kb
ij(rij − bij)2 + kb

ijk
cub
ij (rij − bij)3 (4.44)

A flexible water model (based on the SPC water model [48]) including a cubic bond stretching
potential for the O-H bond was developed by Ferguson [49]. This model was found to yield a
reasonable infrared spectrum. The Ferguson water model is available in the GROMACS library.
It should be noted that the potential is asymmetric: overstretching leads to infinitely low energies.
The integration timestep is therefore limited to 1 fs.

The force corresponding to this potential is:

F i(rij) = 2kb
ij(rij − bij)

rij

rij
+ 3kb

ijk
cub
ij (rij − bij)2

rij

rij
(4.45)

4.2.4 Harmonic angle potential

The bond angle vibration between a triplet of atomsi - j - k is also represented by a harmonic
potential on the angleθijk

Va(θijk) =
1
2
kθ

ijk(θijk − θ0
ijk)

2 (4.46)

As the bond-angle vibration is represented by a harmonic potential, the form is the same as the
bond stretching (Fig.4.5).

The force equations are given by the chain rule:

F i = − dVa(θijk)
dri

F k = − dVa(θijk)
drk

F j = − F i − F k

where θijk = arccos
(rij · rkj)
rijrkj

(4.47)

4.2. Bonded interactions 59

θ0

100.0
�

110.0
�

120.0
�

130.0
�

140.0
�

θ

0.0

10.0

20.0

30.0

40.0

50.0

V
a

(k
J

m
ol

e

�

–1
)

Figure 4.7: Principle of angle vibration (left) and the bond angle potential (right).

The numberingi, j, k is in sequence of covalently bonded atoms. Atomj is in the middle; atoms
i andk are at the ends (see Fig.4.7).

4.2.5 Cosine based angle potential

In the GROMOS-96 force field a simplified function is used to represent angle vibrations:

Va(θijk) =
1
2
kθ

ijk

(
cos(θijk)− cos(θ0

ijk)
)2

(4.48)

where

cos(θijk) =
rij · rkj

rijrkj
(4.49)

The corresponding force can be derived by partial differentiation with respect to the atomic posi-
tions. The force constants in this function are related to the force constants in the harmonic form
kθ,harm (sec.4.2.4) by:

kθ sin2(θ0
ijk) = kθ,harm (4.50)

4.2.6 Urey-Bradley potential

The bond Urey-Bradley angle vibration between a triplet of atomsi - j - k is represented by a
harmonic potential on the angleθijk and a harmonic correction term on the distance between the
atomsi andk. Although this can be easily written as a simple sum of two terms, it is convenient
to have it as a single entry in the topology file and in the output as a separate energy term. It is
used mainly in the CHARMm force field [50]. The energy is given by:

Va(θijk) =
1
2
kθ

ijk(θijk − θ0
ijk)

2 +
1
2
kUB

ijk (rik − r0ik)
2 (4.51)

The force equations can be deduced from sections4.2.1and4.2.4.

60 Chapter 4. Force fields

k

li

j

i

kj

l

k

i

j

l

Figure 4.8: Principle of improper dihedral angles. Out of plane bending for rings (left), sub-
stituents of rings (middle), out of tetrahedral (right). The improper dihedral angleξ is defined as
the angle between planes (i,j,k) and (j,k,l) in all cases.

4.2.7 Bond-Bond cross term

The bond-bond cross term for three particlesi, j, k forming bondsi− j andk− j is given by [?]:

Vrr′ = krr′ (|ri − rj | − r1e) (|rk − rj | − r2e) (4.52)

wherekrr′ is the force constant, andr1e andr2e are the equilibrium bond lengths of thei− j and
k − j bonds respectively. The force associated with this potential on particlei is:

F i = −krr′ (|rk − rj | − r2e)
ri − rj

|ri − rj |
(4.53)

the force on atomk can be obtained by swappingi andk in the above equation. Finally the force
on atomj follows from the fact that the sum of internal forces should be zero:F j = −F i − F k.

4.2.8 Bond-Angle cross term

The bond-angle cross term for three particlesi, j, k forming bondsi− j andk− j is given by [?]:

Vrθ = krθ (|ri − rk| − r3e) (|ri − rj | − r1e + |rk − rj | − r2e) (4.54)

wherekrθ is the force constant,r3e is thei − k distance, and the other constants are the same as
in Eqn.4.52. The force associated with the potential on atomi is:

F i = − krθ

[
(|ri − rk| − r3e)

ri − rj

|ri − rj |
+ (|ri − rj | − r1e + |rk − rj | − r2e)

ri − rk

|ri − rk|

]
(4.55)

4.2.9 Improper dihedrals

Improper dihedrals are meant to keep planar groups planar (e.g. aromatic rings) or to prevent
molecules from flipping over to their mirror images, see Fig.4.8.

Vid(ξijkl) = kξ(ξijkl − ξ0)2 (4.56)

This is also a harmonic potential; it is plotted in Fig.4.9. Note that, since it is harmonic, periodicity
is not taken into account, so it is best to define improper dihedrals to have aξ0 as far away from
±180◦ as you can manage.

4.2. Bonded interactions 61

–20.0 –10.0 0.0 10.0
�

20.0
�

ξ

0.0

10.0

20.0

30.0

V
i (

kJ
 m

ol
e

�

–1
)

Figure 4.9: Improper dihedral potential.

j

k

l

i

0.0 90.0
�

180.0
�

270.0
�

360.0
�

φ

0.0

20.0

40.0

60.0

80.0

V
d

(k
J

m
ol

e

�

–1
)

Figure 4.10: Principle of proper dihedral angle (left, intransform) and the dihedral angle potential
(right).

4.2.10 Proper dihedrals

For the normal dihedral interaction there is a choice of either the GROMOS periodic function or a
function based on expansion in powers ofcosφ (the so-called Ryckaert-Bellemans potential). This
choice has consequences for the inclusion of special interactions between the first and the fourth
atom of the dihedral quadruple. With the periodic GROMOS potential a special 1-4 LJ-interaction
must be included; with the Ryckaert-Bellemans potential the 1-4 interactions must be excluded
from the non-bonded list.

Proper dihedrals: periodic type

Proper dihedral angles are defined according to the IUPAC/IUB convention, whereφ is the angle
between theijk and thejkl planes, withzero corresponding to thecis configuration (i andl on
the same side).

62 Chapter 4. Force fields

C0 9.28 C2 -13.12 C4 26.24
C1 12.16 C3 -3.06 C5 -31.5

Table 4.1: Constants for Ryckaert-Bellemans potential (kJ mol−1).

0.0 90.0
�

180.0
�

270.0
�

360.0
�

φ

0.0

10.0

20.0

30.0

40.0

50.0

V
d

(k
J

m
ol

e

�

–1
)

Figure 4.11: Ryckaert-Bellemans dihedral potential.

Vd(φijkl) = kφ(1 + cos(nφ− φ0)) (4.57)

Proper dihedrals: Ryckaert-Bellemans function

For alkanes, the following proper dihedral potential is often used (see Fig.4.11)

Vrb(φijkl) =
5∑

n=0

Cn(cos(ψ))n, (4.58)

whereψ = φ− 180◦.
Note: A conversion from one convention to another can be achieved by multiplying every coeffi-
cientCn by (−1)n.

An example of constants forC is given in Table4.1.

(Note: The use of this potential implies exclusion of LJ interactions between the first and the last
atom of the dihedral, andψ is defined according to the ’polymer convention’ (ψtrans = 0).)

The RB dihedral function can also be used to include the OPLS dihedral potential [51]. The OPLS
potential function is given as the first four terms of a Fourier series:

Vrb(φijkl) = V0 +
1
2
(V1(1 + cos(ψ)) + V2(1− cos(2ψ)) + V3(1 + cos(3ψ))), (4.59)

with ψ = φ (protein convention). Because of the equalitiescos(2φ) = 2(cos(φ))2 − 1 and
cos(3φ) = 4(cos(φ))3 − 3 cos(φ), one can translate the OPLS parameters to Ryckaert-Bellemans

4.2. Bonded interactions 63

parameters as follows:
C0 = V0 + V2 + 1

2(V1 + V3)
C1 = 1

2(3V3 − V1)
C2 = −V2

C3 = −2V3

C4 = 0
C5 = 0

(4.60)

with OPLS parameters in protein convention and RB parameters in polymer convention.
Note: Mind the conversion fromkcal mol−1 for literature OPLS and RB parameters tokJ mol−1

in GROMACS.

4.2.11 Special interactions

Special potentials are used for imposing restraints on the motion of the system, either to avoid
disastrous deviations, or to include knowledge from experimental data. In either case they are not
really part of the force field and the reliability of the parameters is not important. The potential
forms, as implemented in GROMACS, are mentioned just for the sake of completeness.

4.2.12 Position restraints

These are used to restrain particles to fixed reference positionsRi. They can be used during
equilibration in order to avoid too drastic rearrangements of critical parts (e.g.to restrain motion in
a protein that is subjected to large solvent forces when the solvent is not yet equilibrated). Another
application is the restraining of particles in a shell around a region that is simulated in detail, while
the shell is only approximated because it lacks proper interaction from missing particles outside
the shell. Restraining will then maintain the integrity of the inner part. For spherical shells it is a
wise procedure to make the force constant depend on the radius, increasing from zero at the inner
boundary to a large value at the outer boundary. This feature has not, however, been implemented
in GROMACS.

The following form is used:

Vpr(ri) =
1
2
kpr|ri −Ri|2 (4.61)

The potential is plotted in Fig.4.12.

The potential form can be rewritten without loss of generality as:

Vpr(ri) =
1
2

[
kx

pr(xi −Xi)2 x̂ + ky
pr(yi − Yi)2 ŷ + kz

pr(zi − Zi)2 ẑ
]

(4.62)

Now the forces are:
F x

i = −kx
pr (xi −Xi)

F y
i = −ky

pr (yi − Yi)
F z

i = −kz
pr (zi − Zi)

(4.63)

Using three different force constants the position restraints can be turned on or off in each spatial
dimension; this means that atoms can be harmonically restrained to a plane or a line. Position
restraints are applied to a special fixed list of atoms. Such a list is usually generated by the
pdb2gmx program.

64 Chapter 4. Force fields

0.00
�

0.02
�

0.04
�

0.06
�

0.08
�

0.10
�

r-R (nm)
�

0.0

2.0

4.0

6.0

8.0

10.0

V
po

sr
e

(k
J

m
ol

e–1
)

Figure 4.12: Position restraint potential.

4.2.13 Angle restraints

These are used to restrain the angle between two pairs of particles or between one pair of particles
and the Z-axis. The functional form is similar to that of a proper dihedral. For two pairs of atoms:

Var(ri, rj , rk, rl) = kar(1− cos(n(θ − θ0))), where θ = arccos

(
rj − ri

‖rj − ri‖
· rl − rk

‖rl − rk‖

)
(4.64)

For one pair of atoms and the Z-axis:

Var(ri, rj) = kar(1− cos(n(θ − θ0))), where θ = arccos

 rj − ri

‖rj − ri‖
·

 0
0
1


 (4.65)

A multiplicity (n) of 2 is useful when you do not want to distinguish between parallel and anti-
parallel vectors.

4.2.14 Distance restraints

Distance restraints add a penalty to the potential when the distance between specified pairs of
atoms exceeds a threshold value. They are normally used to impose experimental restraints, as
from experiments in nuclear magnetic resonance (NMR), on the motion of the system. Thus MD
can be used for structure refinement using NMR data. If one just wants to the restrain the distance
between two particles using a harmonic potential one should use[bonds] type 6 (see5.3.5).
The potential form for distance restraints is quadratic below a specified lower bound and between
two specified upper bounds and linear beyond the largest bound (see Fig.4.13).

Vdr(rij) =



1
2kdr(rij − r0)2 for rij < r0

0 for r0 ≤ rij < r1

1
2kdr(rij − r1)2 for r1 ≤ rij < r2

1
2kdr(r2 − r1)(2rij − r2 − r1) for r2 ≤ rij

(4.66)

4.2. Bonded interactions 65

0
�

0.1 0.2 0.3 0.4 0.5
r (nm)

0

5

10

15

V
di

sr
e

(k
J

m
ol

−
1)

r0 r1 r2

Figure 4.13: Distance Restraint potential.

The forces are

F i =



−kdr(rij − r0)
rij

rij
for rij < r0

0 for r0 ≤ rij < r1

−kdr(rij − r1)
rij

rij
for r1 ≤ rij < r2

−kdr(r2 − r1)
rij

rij
for r2 ≤ rij

(4.67)

Time averaging

Distance restraints based on instantaneous distances can potentially reduce the fluctuations in a
molecule significantly. This problem can be overcome by restraining to atime averageddis-
tance [52]. The forces with time averaging are:

F i =



−kdr(r̄ij − r0)
rij

rij
for r̄ij < r0

0 for r0 ≤ r̄ij < r1

−kdr(r̄ij − r1)
rij

rij
for r1 ≤ r̄ij < r2

−kdr(r2 − r1)
rij

rij
for r2 ≤ r̄ij

(4.68)

wherer̄ij is given by:

r̄ij = < r−3
ij >−1/3 (4.69)

Because of the time averaging we can no longer speak of a distance restraint potential.

This way an atom can satisfy two incompatible distance restraintson averageby moving between
two positions. An example would be an amino-acid side-chain which is rotating around itsχ
dihedral angle, thereby coming close to various other groups. Such a mobile side chain can give
rise to multiple NOEs that can not be fulfilled by a single structure.

66 Chapter 4. Force fields

The computation of the time averaged distance in themdrun program is done in the following
fashion:

r−3
ij(0) = rij(0)−3

r−3
ij(t) = r−3

ij(t−∆t) exp
(
−∆t

τ

)
+ rij(t)−3

[
1− exp

(
−∆t

τ

)] (4.70)

When a pair is within the bounds it can still feel a force, because the time averaged distance can
still be beyond a bound. To prevent the protons from being pulled too close together a mixed
approach can be used. In this approach the penalty is zero when the instantaneous distance is
within the bounds, otherwise the violation is the square root of the product of the instantaneous
violation and the time averaged violation.

Averaging over multiple pairs

Sometimes it is unclear from experimental data which atom pair gives rise to a single NOE, in
other occasions it can be obvious that more than one pair contributes due to the symmetry of the
system,e.g.a methyl group with three protons. For such a group it is not possible to distinguish
between the protons, therefore they should all be taken into account when calculating the distance
between this methyl group and another proton (or group of protons). Due to the physical nature of
magnetic resonance, the intensity of the NOE signal is inversely proportional to the sixth power
of the interatomic distance. Thus, when combining atom pairs, a fixed list ofN restraints may be
taken together, where the apparent “distance” is given by:

rN (t) =

[
N∑

n=1

r̄n(t)−6

]−1/6

(4.71)

where we userij or eqn.4.69for ther̄n. TherN of the instantaneous and time-averaged distances
can be combined to do a mixed restraining as indicated above. As more pairs of protons contribute
to the same NOE signal, the intensity will increase, and the summed “distance” will be shorter
than any of its components due to the reciprocal summation.

There are two options for distributing the forces over the atom pairs. In the conservative option
the force is defined as the derivative of the restraint potential with respect to the coordinates. This
results in a conservative potential when time averaging is not used. The force distribution over the
pairs is proportional tor−6. This means that a close pair feels a much larger force than a distant
pair, which might lead to a ’too rigid’ molecule. The other option is an equal force distribution.
In this case each pair feels1/N of the derivative of the restraint potential with respect torN . The
advantage of this method is that more conformations might be sampled, but the non-conservative
nature of the forces can lead to local heating of the protons.

It is also possible to useensemble averagingusing multiple (protein) molecules. In this case the
bounds should be lowered as in:

r1 = r1 ∗M−1/6

r2 = r2 ∗M−1/6 (4.72)

whereM is the number of molecules. The GROMACS preprocessorgrompp can do this auto-
matically when the appropriate option is given. The resulting “distance” is then used to calculate

4.2. Bonded interactions 67

the scalar force according to:

F i = 0 rN < r1
= − kdr(rN − r1)

rij

rij
r1 ≤ rN < r2

= − kdr(r2 − r1)
rij

rij
rN ≥ r2

(4.73)

wherei andj denote the atoms of all the pairs that contribute to the NOE signal.

Using distance restraints

A list of distance restrains based on NOE data can be added to a molecule definition in your
topology file, like in the following example:

[distance_restraints]
; ai aj type index type’ low up1 up2 fac
10 16 1 0 1 0.0 0.3 0.4 1.0
10 28 1 1 1 0.0 0.3 0.4 1.0
10 46 1 1 1 0.0 0.3 0.4 1.0
16 22 1 2 1 0.0 0.3 0.4 2.5
16 34 1 3 1 0.0 0.5 0.6 1.0

In this example a number of features can be found. In columnsai andaj you find the atom
numbers of the particles to be restrained. Thetype column should always be 1. As explained
in sec.4.2.14, multiple distances can contribute to a single NOE signal. In the topology this can
be set using theindex column. In our example, the restraints 10-28 and 10-46 both have index
1, therefore they are treated simultaneously. An extra requirement for treating restraints together,
is that the restraints should be on successive lines, without any other intervening restraint. The
type’ column will usually be 1, but can be set to 2 to obtain a distance restraint which will never
be time and ensemble averaged; this can be useful for restraining hydrogen bonds. The columns
low , up1 andup2 hold the values ofr0, r1 andr2 from eqn.4.66. In some cases it can be useful
to have different force constants for some restraints; this is controlled by the columnfac . The
force constant in the parameter file is multiplied by the value in the columnfac for each restraint.

Some parameters for NMR refinement can be specified in thegrompp.mdp file:

disre : type of distance restraining. The disre variable sets the type of distance restraint.
no/simple turns the distance restraints off/on. When multiple proteins or peptides are
present in one simulation box, ensemble averaging can be turned on by settingdisre =
ensemble . Normally one would perform ensemble averaging over multiple subsystems,
each in a separate box, usingmdrun -multi ; supplytopol0.tpr , topol1.tpr , ...
with different coordiates and/or velocities.

disre weighting : force-weighting in restraints with multiple pairs. By default, the force
due to the distance restraint is distributed equally over all the pairs involved in the restraint.
This can also be explicitly selected withdisre weighting = equal . If you instead
set this option todisre weighting = conservative you get conservative forces
whendisre tau = 0 .

68 Chapter 4. Force fields

disre mixed : how to calculate the violations. disre mixed = no gives normal time-averaged
violations. Whendisre mixed = yes the square root of the product of the time-
averaged and the instantaneous violations is used.

disre fc : force constantkdr for distance restraints. kdr (eqn. 4.66) can be set as variable
disre fc = 1000 for a force constant of 1000 kJ mol−1 nm−2. This value is multi-
plied by the value in thefac column in the distance restraint entries in the topology file.

disre tau : time constant for restraints. τ (eqn.4.70) can be set as variabledisre tau =
10 for a time constant of 10 ps. Time averaging can be turned off by settingdisre tau
to 0.

nstdisreout : pair distance output frequency. Determines how often the time-averaged and
instantaneous distances of all atom pairs involved in distance restraints are written to the
energy file.

4.2.15 Orientation restraints

Theory

In an NMR experiment orientations of vectors can be measured when a molecule does not tum-
ble completely isotropically in the solvent. Two examples of such orientation measurements are
residual dipolar couplings (between two nuclei) or chemical shift anisotropies. An observable for
a vectorri can be written as follows:

δi =
2
3

tr(SDi) (4.74)

whereS is the dimensionless order tensor of the molecule. The tensorDi is given by:

Di =
ci

‖ri‖α

 3xx− 1 3xy 3xz
3xy 3yy − 1 3yz
3xz 3yz 3zz − 1

 (4.75)

with: x =
ri,x
‖ri‖

, y =
ri,y
‖ri‖

, z =
ri,z
‖ri‖

(4.76)

For a dipolar couplingri is the vector connecting the two nuclei,α = 3 and the constantci is
given by:

ci =
µ0

4π
γi

1γ
i
2

h̄

4π
(4.77)

whereγi
1 andγi

2 are the gyromagnetic ratios of the two nuclei.

The order tensor is symmetric and has trace zero. Using a rotation matrixT it can be transformed
into the following form:

TTST = s

 −1
2(1− η) 0 0

0 −1
2(1 + η) 0

0 0 1

 (4.78)

where−1 ≤ s ≤ 1 and 0 ≤ η ≤ 1. s is called the order parameter andη the asymmetry
of the order tensorS. When the molecule tumbles isotropically in the solvents is zero and no
orientational effects can be observed as allδi are zero.

4.2. Bonded interactions 69

Calculating orientations in a simulation

For reasons which are explained below, theD matrices are calculated which respect to a reference
orientation of the molecule. The orientation is defined by a rotation matrixR which is needed to
least-squares fit the current coordinates of a selected set of atoms onto a reference conformation.
The reference conformation is the starting conformation of the simulation. In case of ensemble av-
eraging, which will be treated later, the structure is taken from the first subsystem. The calculated
Dc

i matrix is given by:
Dc

i (t) = R(t)Di(t)RT (t) (4.79)

The calculated orientation for vectori is given by:

δc
i (t) =

2
3

tr(S(t)Dc
i (t)) (4.80)

The order tensorS(t) is usually unknown. A reasonable choice for the order tensor is the tensor
which minimizes the (weighted) mean square difference between the calculated and the observed
orientations:

MSD(t) =

(
N∑

i=1

wi

)−1 N∑
i=1

wi(δc
i (t)− δexp

i)2 (4.81)

Time averaging

Since the tensorsDi fluctuate rapidly in time, much faster than can be observed in experiment,
they should be time averaged in the simulation. However, in a simulation the time as well as the
number of copies of a molecule is limited. Usually one can not obtain a converged average of the
Di tensors over all orientations of the molecule. If one assumes that the average orientations of the
ri vectors within the molecule converge much faster than the tumbling time of the molecule, the
tensor can be averaged in an axis system which rotates with the molecule, as expressed by equa-
tion (4.79). The time averaged tensors are calculated using an exponentially decaying memory
function:

Da
i (t) =

∫ t

u=t0
Dc

i (u) exp
(
− t− u

τ

)
du∫ t

u=t0
exp

(
− t− u

τ

)
du

(4.82)

Assuming that the order tensorS fluctuates slower than theDi, the time averaged orientation can
be calculated as:

δa
i (t) =

2
3

tr(S(t)Da
i (t)) (4.83)

where the order tensorS(t) is calculated using expression (4.81) with δc
i (t) replaced byδa

i (t).

Restraining

The simulated structure can be restrained by applying a force proportional to the difference be-
tween the calculated and the experimental orientations. When no time averaging is applied a

70 Chapter 4. Force fields

proper potential can be defined as:

V =
1
2
k

N∑
i=1

wi(δc
i (t)− δexp

i)2 (4.84)

The forces are given by minus the gradient ofV . The forcefi working on vectorri is:

fi(t) = −dV
dri

= −kwi(δc
i (t)− δexp

i)
dδi(t)
dri

= −kwi(δc
i (t)− δexp

i)
2ci

‖r‖2+α

(
2RTSRri −

2 + α

‖r‖2
tr(RTSRrir

T
i)ri

)

Ensemble averaging

Ensemble averaging can be applied by simulating a system ofM subsystems which each contain
an identical set of orientation restraints. The systems only interact via the orientation restraint
potential which is defined as:

V = M
1
2
k

N∑
i=1

wi〈δc
i (t)− δexp

i 〉2 (4.85)

The force on vectorri,m in subsystemm is given by:

fi,m(t) = − dV
dri,m

= −kwi〈δc
i (t)− δexp

i 〉
dδc

i,m(t)
dri,m

(4.86)

Time averaging

When using time averaging it is not possible to define a potential. We can still define a quantity
which gives a rough idea of the energy stored in the restraints:

V = M
1
2
ka

N∑
i=1

wi〈δa
i (t)− δexp

i 〉2 (4.87)

The force constantka is switched on slowly to compensate for the lack of history at times close to
t0. It is exactly proportional to the amount of average which has been accumulated:

ka = k
1
τ

∫ t

u=t0
exp

(
− t− u

τ

)
du (4.88)

What really matters is the definition of the force. It is chosen to be proportional to the square root
of the product of the time averaged and the instantaneous deviation. Using only the time averaged
deviation induces large oscillations. The force is given by:

fi,m(t) =


0 for a b ≤ 0

kawi
a

|a|
√
a b

dδc
i,m(t)

dri,m
for a b > 0

(4.89)

4.2. Bonded interactions 71

a = 〈δa
i (t)− δexp

i 〉
b = 〈δc

i (t)− δexp
i 〉

Using orientation restraints

Orientation restraints can be added to a molecule definition in the topology in the section[
orientation restraints] . Here we give an example section containing five N-H resid-
ual dipolar coupling restraints:

[orientation_restraints]
; ai aj type exp. label alpha const. obs. weight
; Hz nmˆ3 Hz 1/Hz

31 32 1 1 3 3 6.083 -6.73 1.0
43 44 1 1 4 3 6.083 -7.87 1.0
55 56 1 1 5 3 6.083 -7.13 1.0
65 66 1 1 6 3 6.083 -2.57 1.0
73 74 1 1 7 3 6.083 -2.10 1.0

The unit of the observable is Hz, but one can choose any other unit. In columnsai andaj you
find the atom numbers of the particles to be restrained. Thetype column should always be 1.
Theexp. column denotes the experiment number, this starts numbering at 1. The label should
be a unique number larger than zero for each restraint. Thealpha column contains the powerα
which is used in equation (4.75) to calculate the orientation. Theconst. column contains the
constantci used in the same equation. The constant should have the unit of the observable times
nmα. The columnobs. contains the observable, in any unit you like. The last column contains
the weightswi, the unit should be the inverse unit of the observable.

Some parameters for orientation restraints can be specified in thegrompp.mdp file:

orire : use orientation restraining. no/yes turns the distance restraints off/on. Ensemble av-
eraging can be performed usingmdrun -multi , which simulates multiple subsystems in
separate boxes; supplytopol0.tpr , topol1.tpr , ... with different coordiates and/or
velocities.

orire fc : force constantk for orientation restraints. When set to zero one obtain the calcu-
lated orientation without affecting the simulation.

orire tau : time constant τ for restraints. Setorire tau = 10 for a time constant of 10
ps. Time averaging can be turned off by settingorire tau to 0.

orire fitgrp : the fit group for the restraints. This group of atoms is used to determine the
rotationR of the system with respect to the reference orientation. The reference orientation
is the starting conformation of the first subsystem. For a proteinbackbone should be a
reasonable choice.

nstorireout : orientation output frequency. Determines how often the orientations for all
restraints are written to the energy file. When using time and/or ensemble averaging, the
time and ensemble averaged orientations as well as the instantaneous non-ensemble aver-
aged orientations are written to the energy file. These can be analyzed usingg energy .

72 Chapter 4. Force fields

4.3 Free energy interactions

This section describes theλ-dependence of the potentials used for free energy calculations (see
sec.3.12). All common types of potentials and constraints can be interpolated smoothly from state
A (λ = 0) to state B (λ = 1) and vice versa. All bonded interactions are interpolated by linear
interpolation of the interaction parameters. Non-bonded interactions can be interpolated linearly
or via soft-core interactions.

Harmonic potentials

The example given here is for the bond potential, which is harmonic in GROMACS. However,
these equations apply to the angle potential and the improper dihedral potential as well.

Vb =
1
2
((1− λ)kA

b + λkB
b)(b− (1− λ)bA0 − λbB0)2 (4.90)

∂Vb

∂λ
=

1
2
(kB

b − kA
b)
[
b− (1− λ)bA0 + λbB0)2 + (bA0 − bB0)(b− (1− λ)bA0 − λbB0)

]
(4.91)

GROMOS-96 bonds and angles

Fourth power bond stretching and cosine based angle potentials are interpolated by linear interpo-
lation of the force constant and the equilibrium position. Formulas are not given here.

Proper dihedrals

For the proper dihedrals, the equations are somewhat more complicated:

Vd = ((1− λ)kA
d + λkB

d)(1 + cos(nφφ− ((1− λ)φA
0 + λφB

0)) (4.92)
∂Vd

∂λ
= (kB

d − kA
d)
[
1 + cos(nφφ− [(1− λ)φA

0 + λφB
0])−

((1− λ)kA
d + λkB

d)(φA
0 − φB

0) sin(nφφ− [(1− λ)φA
0 + λφB

0]
]

(4.93)

Note: that the multiplicitynφ can not be parameterized because the function should remain peri-
odic on the interval[0, 2π].

Coulomb interaction

The Coulomb interaction between two particles of which the charge varies withλ is:

Vc =
f

εrfrij

[
((1− λ)qA

i + λqB
i) · ((1− λ)qA

j + λqB
i)
]

(4.94)

∂Vc

∂λ
=

f

εrfrij

[
(qB

j − qA
j)((1− λ)qA

i + λqB
i) + (qB

i − qA
i)((1− λ)qA

j + λqB
j)
]
(4.95)

wheref = 1
4πε0

= 138.935 485 (see chapter2)

4.3. Free energy interactions 73

Coulomb interaction with Reaction Field

The coulomb interaction including a reaction field, between two particles of which the charge
varies withλ is:

Vc = f

[
1
rij

+ krf r
2
ij − crf

] [
((1− λ)qA

i + λqB
i) · ((1− λ)qA

j + λqB
i)
]

(4.96)

∂Vc

∂λ
= f

[
1
rij

+ krf r
2
ij − crf

]
·[

(qB
j − qA

j)((1− λ)qA
i + λqB

i) + (qB
i − qA

i)((1− λ)qA
j + λqB

j)
]

(4.97)

Note that the constantskrf andcrf are defined using the dielectric constantεrf of the medium
(see sec.4.1.4).

Lennard-Jones interaction

For the Lennard-Jones interaction between two particles of which theatom typevaries withλ we
can write:

VLJ =
((1− λ)CA

12 + λCB
12)

r12ij

− (1− λ)CA
6 + λCB

6

r6ij
(4.98)

∂VLJ

∂λ
=

CB
12 − CA

12

r12ij

− CB
6 − CA

6

r6ij
(4.99)

It should be noted that it is also possible to express a pathway from state A to state B usingσ and
ε (see eqn.4.5). It may seem to make sense physically, to vary the forcefield parametersσ andε
rather than the derived parametersC12 andC6. However, the difference between the pathways in
parameter space is not large, and the free energy itself does not depend on the pathway, so we use
the simple formulation presented above.

Kinetic Energy

When the mass of a particle changes, there is also a contribution of the kinetic energy to the free
energy (note that we can not write the momentump as mv, since that would result in the sign of
∂Ek
∂λ being incorrect [53]):

Ek =
1
2

p2

(1− λ)mA + λmB
(4.100)

∂Ek

∂λ
= −1

2
p2(mB −mA)

((1− λ)mA + λmB)2
(4.101)

after taking the derivative, wecan insertp = mv, such that:

∂Ek

∂λ
= − 1

2
v2(mB −mA) (4.102)

74 Chapter 4. Force fields

0
�

0.5 1� 1.5 2
�

2.5 3
�

r�

−1

0

1

2

3

4

5

V
sc�

LJ, α=0
LJ, α=1.5
LJ, α=2
3/r,

�
α=0

3/r,
�

α=1.5
3/r,

�
α=2

Figure 4.14: Soft-core interactions atλ = 0.5, with CA
6 = CA

12 = CB
6 = CB

12 = 1.

Constraints

The constraints are formally part of the Hamiltonian, and therefore they give a contribution to the
free energy. In GROMACS this can be calculated using the LINCS or the SHAKE algorithm. If
we have a number of constraint equationsgk:

gk = rk − dk (4.103)

whererk is the distance vector between two particles anddk is the constraint distance between
the two particles, we can write this using aλ-dependent distance as

gk = rk −
(
(1− λ)dA

k + λdB
k

)
(4.104)

the contributionCλ to the Hamiltonian using Lagrange multipliersλ:

Cλ =
∑
k

λkgk (4.105)

∂Cλ

∂λ
=

∑
k

λk

(
dB

k − dA
k

)
(4.106)

4.3.1 Soft-core interactions

The linear interpolation of the Lennard-Jones and Coulomb potentials gives problems when grow-
ing particles out of nothing or when making particles disappear (λ close to 0 or 1). To circumvent
these problems, the singularities in the potentials need to be removed. This is done with soft-core
potentials. In GROMACS the soft-core potentialVsc is:

Vsc(r) = (1− λ)V A(rA) + λV B(rB) (4.107)

rA =
(
ασ6

Aλ
2 + r6

) 1
6 (4.108)

4.4. Methods 75

i+1 i+3

i i+2 i+4

Figure 4.15: Atoms along an alkane chain.

rB =
(
ασ6

B(1− λ)2 + r6
) 1

6 (4.109)

whereV A andV B are the normal “hard core” Van der Waals or electrostatic potentials in state A
(λ = 0) and state B (λ = 1) respectively,α is the soft-core parameter, which mainly controls the
height of the potential aroundr = 0, σ is the radius of the interaction, which is(C12/C6)1/6 or
a predefined value whenC6 or C12 is zero. For intermediateλ, rA andrB alter the interactions
very little whenr > α1/6σ and they quickly switch the soft-core interaction to an almost constant
value whenr becomes smaller (Fig.4.14). The force is:

Fsc(r) = −∂Vsc(r)
∂r

= (1− λ)FA(rA)
(
r

rA

)5

+ λFB(rB)
(
r

rB

)5

(4.110)

whereFA andFB are the ’hard core’ forces. The contribution to the derivative of the free energy
is:

∂Vsc(r)
∂λ

= −V A(rA) + V B(rB) +
1
3
αλ(1− λ)

(
−FA(rA)σ6

Ar
−5
A + FB(rB)σ6

Br
−5
B

)
(4.111)

4.4 Methods

4.4.1 Exclusions and 1-4 Interactions.

Atoms within a molecule that are close by in the chain,i.e. atoms that are covalently bonded, or
linked by one respectively two atoms are so-calledfirst neighbors, second neighborsand third
neighbors, (see Fig.4.15). Since the interactions of atomi with atomsi+1 andi+2

are mainly quantum mechanical, they can not be modeled by a Lennard-Jones potential. Instead it
is assumed that these interactions are adequately modeled by a harmonic bond term or constraint
(i, i+1) and a harmonic angle term (i, i+2). The first and second neighbors (atomsi+1 andi+2) are
thereforeexcludedfrom the Lennard-Jones interaction list of atomi; atomsi+1 andi+2 are called
exclusionsof atomi.

For third neighbors the normal Lennard-Jones repulsion is sometimes still too strong, which means
that when applied to a molecule the molecule would deform or break due to the internal strain.
This is especially the case for carbon-carbon interactions in acis-conformation (e.g. cis-butane).
Therefore for some of these interactions the Lennard-Jones repulsion has been reduced in the
GROMOS force field, which is implemented by keeping a separate list of 1-4 and normal Lennard-
Jones parameters. In other force fields, such as OPLS [51], the standard Lennard-Jones parameters
are reduced by a factor of two, but in that case also the dispersion (r−6) and the coulomb interaction
are scaled. GROMACS can use either of these methods.

76 Chapter 4. Force fields

4.4.2 Charge Groups.

In principle the force calculation in MD is anO(N2) problem. Therefore we apply a cutoff for
non-bonded force (NBF) calculations: only the particles within a certain distance of each other
are interacting. This reduces the cost toO(N) (typically 100N to 200N) of the NBF. It also
introduces an error, which is, in most cases, acceptable, except when applying the cutoff implies
the creation of charges, in which case you should consider using the lattice sum methods provided
by GROMACS.

Consider a water molecule interacting with another atom. When we would apply the cutoff on an
atom-atom basis we might include the atom-Oxygen interaction (with a charge of -0.82) without
the compensating charge of the protons and so induce a large dipole moment over the system.
Therefore we have to keep groups of atoms with total charge 0 together. These groups are called
charge groups.

4.4.3 Treatment of cutoffs

GROMACS is quite flexible in treating cutoffs, which implies there can be quite a number of
parameters to set. These parameters are set in the input file for grompp. There are two sort of
parameters that affect the cutoff interactions; you can select which type of interaction to use in
each case, and which cutoffs should be used in the neighborsearching.

For both Coulomb and van der Waals interactions there are interaction type selectors (termed
vdwtype and coulombtype) and two parameters, for a total of six nonbonded interaction
parameters. See sec.7.3.1for a complete description of these parameters.

The neighbor searching (NS) can be performed using a single-range, or a twin-range approach.
Since the former is merely a special case of the latter we will discuss the more general twin-range.
In this case NS is described by two radiirlist and max(rcoulomb ,rvdw). Usually one builds
the neighbor list every 10 time steps or every 20 fs (parameternstlist). In the neighbor list all
interaction pairs that fall withinrlist are stored. Furthermore, the interactions between pairs
that do not fall withinrlist but do fall within max(rcoulomb ,rvdw) are computed during
NS, and the forces and energy are stored separately, and added to short-range forces at every time
step between successive NS. Ifrlist = max(rcoulomb ,rvdw), no forces are evaluated during
neighbor list generation. The virial is calculated from the sum of the short- and long-range forces.
This means that the virial can be slightly asymmetrical at non-NS steps. In single precision the
virial is almost always asymmetrical, because the off-diagonal elements are about as large as each
element in the sum. In most cases this is not really a problem, since the fluctuations in de virial
can be 2 orders of magnitude larger than the average.

Except for the plain cutoff, all of the interaction functions in Table4.2 require that neighbor
searching is done with a larger radius than therc specified for the functional form, because of the
use of charge groups. The extra radius is typically of the order of 0.25 nm (roughly the largest
distance between two atoms in a charge group plus the distance a charge group can diffuse within
neighbor list updates).

4.5. Dummy atoms. 77

Type Parameters
Coulomb Plain cutoff rc, εr

Reaction field rc, εrf

Shift function r1, rc, εr
Switch function r1, rc, εr

VdW Plain cutoff rc
Shift function r1, rc
Switch function r1, rc

Table 4.2: Parameters for the different functional forms of the non-bonded interactions.

4.5 Dummy atoms.

Dummy atoms can be used in GROMACS in a number of ways. We write the position of the
dummy particlerd as a function of the positions of other particlesri: rd = f(r1..rn). The
dummy, which may carry charge, or can be involved in other interactions can now be used in the
force calculation. The force acting on the dummy particle must be redistributed over the atoms
in a consistent way. A good way to do this can be found in ref. [54]. We can write the potential
energy as

V = V (rd, r1..rn) = V ∗(r1..rn) (4.112)

The force on the particlei is then

F i = −∂V
∗

∂ri
= −∂V

∂ri
− ∂rd

∂ri

∂V

∂rd
= F direct

i + F ′
i (4.113)

the first term of which is the normal force. The second term is the force on particlei due to the
dummy particle, which can be written in tensor notation:

F ′
i =



∂xd

∂xi

∂yd

∂xi

∂zd
∂xi

∂xd

∂yi

∂yd

∂yi

∂zd
∂yi

∂xd

∂zi

∂yd

∂zi

∂zd
∂zi

F d (4.114)

whereF d is the force on the dummy particle andxd, yd andzd are the coordinates of the dummy
particle. In this way the total force and the total torque are conserved [54].

As a further note, the computation of the virial (eqn.3.18) is non-trivial when dummy atoms are
used. Since the virial involves a summation over all the atoms (rather than virtual particles) the
forces most be redistributed from the dummies to the atoms (using eqn.4.114) beforecomputation
of the virial. In some special cases where the forces on the atoms can be written as a linear
combination of the forces on the dummies (types 2 and 3 below) there is no difference between
computing the virial before and after the redistribution of forces. However, in the general case
redistribution should be done first.

There are six ways to construct dummies from surrounding atoms in GROMACS, which we clas-
sify by the number of constructing atoms. Note that all dummy types mentioned can be con-
structed from types 3fd (normalized, in-plane) and 3out (non-normalized, out of plane). However,

78 Chapter 4. Force fields

�����
�����
�������������������������� ����������

���������� | |

3fd

| || |
1-a

a

b

a

1-a

a
��������������
�����
����� 	�	�	�	

	�	�	�	

�
�

�
�

2 3fad 3out 4fd

cb

3

��������������
�����
�����

θ

d

�
�

�
�

�����
�����

�������
�������
�����
�����

�������
�������
�����
�����

��������������
�����
������������

�������
�����
�����

����������
�����
����� �����

�����
�����
����� �������

�������
�����
�����

�����
�����
�����
�����

Figure 4.16: The six different types of dummy atom construction in GROMACS. The constructing
atoms are shown as black circles, the dummy atoms in grey.

the amount of computation involved increases sharply along this list, so we strongly recommended
using the first adequate dummy type that will be sufficient for a certain purpose. Fig.4.16gives
an overview of the available dummy constructions.

2. As a linear combination of two atoms (Fig.4.162):

rd = ri + arij (4.115)

In this case the dummy is on the line through atomsi andj. The force on particlesi andj
due to the force on the dummy can be computed as:

F ′
i = (1− a)F d

F ′
j = aF d

(4.116)

3. As a linear combination of three atoms (Fig.4.163):

rd = ri + arij + brik (4.117)

In this case the dummy is in the plane of the other three particles. The force on particlesi,
j andk due to the force on the dummy can be computed as:

F ′
i = (1− a− b)F d

F ′
j = aF d

F ′
k = bF d

(4.118)

3fd. In the plane of three atoms, with a fixed distance (Fig.4.163fd):

rd = ri + b
rij + arjk

|rij + arjk|
(4.119)

In this case the dummy is in the plane of the other three particles at a distance of|b| from i.
The force on particlesi, j andk due to the force on the dummy can be computed as:

F ′
i = F d − γ(F d − p)

F ′
j = (1− a)γ(F d − p)

F ′
k = aγ(F d − p)

where
γ =

b

|rij + arjk|

p =
rid · F d

rid · rid
rid

(4.120)

4.5. Dummy atoms. 79

3fad. In the plane of three atoms, with a fixed angle and distance (Fig.4.163fad):

rd = ri + d cos θ
rij

|rij |
+ d sin θ

r⊥
|r⊥|

where r⊥ = rjk −
rij · rjk

rij · rij
rij (4.121)

In this case the dummy is in the plane of the other three particles at a distance of|d| from i
at an angle ofα with rij . Atom k defines the plane and the direction of the angle. Note that
in this caseb andα must be specified, instead ofa andb (see also sec.5.2.2). The force on
particlesi, j andk due to the force on the dummy can be computed as (withr⊥ as defined
in eqn.4.121):

F ′
i = F d − d cos θ

|rij |
F 1 +

d sin θ
|r⊥|

(
rij · rjk

rij · rij
F 2 + F 3

)

F ′
j =

d cos θ
|rij |

F 1 − d sin θ
|r⊥|

(
F 2 +

rij · rjk

rij · rij
F 2 + F 3

)

F ′
k =

d sin θ
|r⊥|

F 2

where F 1 = F d −
rij · F d

rij · rij
rij , F 2 = F 1 −

r⊥ · F d

r⊥ · r⊥
r⊥ and F 3 =

rij · F d

rij · rij
r⊥

(4.122)

3out. As a non-linear combination of three atoms, out of plane (Fig.4.163out):

rd = ri + arij + brik + c(rij × rik) (4.123)

This enables the construction of dummies out of the plane of the other atoms. The force on
particlesi, j andk due to the force on the dummy can be computed as:

F ′
j =

 a −c zik c yik

c zik a −c xik

−c yik c xik a

F d

F ′
k =

 b c zij −c yij

−c zij b c xij

c yij −c xij b

F d

F ′
i = F d − F ′

j − F ′
k

(4.124)

4fd. From four atoms, with a fixed distance (Fig.4.164fd):

rd = ri + c
rij + arjk + brjl

|rij + arjk + brjl|
(4.125)

In this case the dummy is at a distance of|c| from i. The force on particlesi, j, k andl due
to the force on the dummy can be computed as:

F ′
i = F d − γ(F d − p)

F ′
j = (1− a− b)γ(F d − p)

F ′
k = aγ(F d − p)

F ′
l = bγ(F d − p)

where

γ =
c

|rij + arjk + brjl|

p =
rid · F d

rid · rid
rid

(4.126)

80 Chapter 4. Force fields

4.6 Long Range Electrostatics

4.6.1 Ewald summation

The total electrostatic energy ofN particles and the periodic images are given by

V =
f

2

∑
nx

∑
ny

∑
nz∗

N∑
i

N∑
j

qiqj
rij,n

. (4.127)

(nx, ny, nz) = n is the box index vector, and the star indicates that terms withi = j should be
omitted when(nx, ny, nz) = (0, 0, 0). The distancerij,n is the real distance between the charges
and not the minimum-image. This sum is conditionally convergent, but very slow.

Ewald summation was first introduced as a method to calculate long-range interactions of the pe-
riodic images in crystals [55]. The idea is to convert the single slowly-converging sum eqn.4.127
into two quickly-converging terms and a constant term:

V = Vdir + Vrec + V0 (4.128)

Vdir =
f

2

N∑
i,j

∑
nx

∑
ny

∑
nz∗

qiqj
erfc(βrij,n)

rij,n
(4.129)

Vrec =
f

2πV

N∑
i,j

qiqj
∑
mx

∑
my

∑
mz∗

exp
(
−(πm/β)2 + 2πim · (ri − rj)

)
m2

(4.130)

V0 = − fβ√
π

N∑
i

q2i , (4.131)

whereβ is a parameter that determines the relative weight of the direct and reciprocal sums and
m = (mx,my,mz). In this way we can use a short cutoff (of the order of1 nm) in the direct
space sum and a short cutoff in the reciprocal space sum (e.g.10 wave vectors in each direction).
Unfortunately, the computational cost of the reciprocal part of the sum increases asN2 (orN3/2

with a slightly better algorithm) and it is therefore not realistic for use in large systems.

Using Ewald

Don’t use Ewald unless you are absolutely sure this is what you want - for almost all cases the PME
method below will perform much better. If you still want to employ classical Ewald summation
enter this in your.mdp file, if the side of your box is about3 nm:

coulombtype = Ewald
rvdw = 0.9
rlist = 0.9
rcoulomb = 0.9
fourierspacing = 0.6
ewald_rtol = 1e-5

4.6. Long Range Electrostatics 81

The fourierspacing parameter times the box dimensions determines the highest magnitude
of wave vectorsmx,my,mz to use in each direction. With a 3 nm cubic box this example would
use11 wave vectors (from−5 to 5) in each direction. Theewald rtol parameter is the relative
strength of the electrostatic interaction at the cutoff. Decreasing this gives you a more accurate
direct sum, but a less accurate reciprocal sum.

4.6.2 PME

Particle-mesh Ewald is a method proposed by Tom Darden [56, 57] to improve the performance
of the reciprocal sum. Instead of directly summing wave vectors, the charges are assigned to a
grid using cardinal B-spline interpolation. This grid is then Fourier transformed with a 3D FFT
algorithm and the reciprocal energy term obtained by a single sum over the grid in k-space.

The potential at the grid points is calculated by inverse transformation, and by using the interpo-
lation factors we get the forces on each atom.

The PME algorithm scales asN log(N), and is substantially faster than ordinary Ewald summa-
tion on medium to large systems. On very small systems it might still be better to use Ewald to
avoid the overhead in setting up grids and transforms.

Using PME

To use Particle-mesh Ewald summation in GROMACS, specify the following lines in your.mdp
file:

coulombtype = PME
rvdw = 0.9
rlist = 0.9
rcoulomb = 0.9
fourierspacing = 0.12
pme_order = 4
ewald_rtol = 1e-5

In this case thefourierspacing parameter determines the maximum spacing for the FFT grid
andpme order controls the interpolation order. Using 4th order (cubic) interpolation and this
spacing should give electrostatic energies accurate to about5 · 10−3. Since the Lennard-Jones
energies are not this accurate it might even be possible to increase this spacing slightly.

Pressure scaling works with PME, but be aware of the fact that anisotropic scaling can introduce
artificial ordering in some systems.

4.6.3 PPPM

The Particle-Particle Particle-Mesh methods of Hockney & Eastwood can also be applied in GRO-
MACS for the treatment of long range electrostatic interactions [58, 56, 59]. With this algorithm
the charges of all particles are spread over a grid of dimensions (nx,ny,nz) using a weighting

82 Chapter 4. Force fields

function called the triangle-shaped charged distribution:

W (r) = W (x) W (y) W (z)

W (ξ) =


3
4 −

(
ξ
h

)2
|ξ| ≤ h

2

1
2

(
3
2 −

|ξ|
h

)2
h
2 < |ξ| < 3h

2

0 3h
2 ≤ |ξ|

(4.132)

whereξ (is x, y or z) is the distance to a grid point in the corresponding dimension. Only the 27
closest grid points need to be taken into account for each charge.

Then, this charge distribution is Fourier transformed using a 3D inverse FFT routine. In Fourier
space a convolution with function̂G is performed:

Ĝ(k) =
ĝ(k)
ε0k2

(4.133)

where ĝ is the Fourier transform of the charge spread function g(r). This yield the long range
potentialφ̂(k) on the mesh, which can be transformed using a forward FFT routine into the real
space potential. Finally the potential and forces are retrieved using interpolation [59]. It is not easy
to calculate the full long-range virial tensor with PPPM, but it is possible to obtain the trace. This
means that the sum of the pressure components is correct (and therefore the isotropic pressure) but
not necessarily the individual pressure components!

Using PPPM

To use the PPPM algorithm in GROMACS, specify the following lines in your.mdp file:

coulombtype = PPPM
rlist = 1.0
rcoulomb = 0.85
rcoulomb_switch = 0.0
rvdw = 1.0
fourierspacing = 0.075

For details on the switch parameters see the section on modified long-range interactions in this
manual. When using PPPM we recommend to take at most 0.075 nm per gridpoint (e.g.20 grid-
points for 1.5 nm). PPPM does not provide the same accuracy as PME but can be slightly faster
in some cases. Due to the problem with the pressure tensor you shouldn’t use it with pressure
coupling.

We’re somewhat ambivalent about PPPM, so if you use it please contact us - otherwise it might be
removed from future relases so we can concentrate our efforts on PME.

4.6.4 Optimizing Fourier transforms

To get the best possible performance you should try to avoid large prime numbers for grid dimen-
sions. The FFT code used in GROMACS is optimized for grid sizes of the form2a3b5c7d11e13f ,

4.7. All-hydrogen force-field 83

wheree+ f is 0 or 1 and the other exponents arbitrary. (See further the documentation of the FFT
algorithms atwww.fftw.org.

It is also possible to optimize the transforms for the current problem by performing some calcula-
tions at the start of the run. This is not done per default since it takes a couple of minutes, but for
large runs it will save time. Turn it on by specifying

optimize_fft = yes

in your .mdp file.

When running in parallel the grid must be communicated several times and thus hurting scaling
performance. With PME you can improve this by increasing grid spacing while simultaneously
increasing the interpolation toe.g.6th order. Since the interpolation is entirely local a this will
improve the scaling in most cases.

4.7 All-hydrogen force-field

The GROMACS all-hydrogen force-field is almost identical to the normal GROMACS forcefield,
since the extra hydrogens have no Lennard-Jones interaction and zero charge. The only differences
are in the bond angle and improper dihedral angle terms. This forcefield is only useful when
you need the exact hydrogen positions, for instance for distance restraints derived from NMR
measurements.

4.8 GROMOS-96 notes

4.8.1 The GROMOS-96 force field

GROMACS supports the GROMOS-96 force fields [46]. All parameters for the 43a1, 43a2 (de-
velopment, improved alkane dihedrals) and 43b1 (vacuum) force fields are included. All stan-
dard building blocks are included and topologies can be build automatically bypdb2gmx . The
GROMOS-96 force field is a further development of the GROMOS-87 force field on which the
GROMACS forcefield is based. The GROMOS-96 force field has improvements over the GRO-
MACS force field for proteins and small molecules. It is not, however, recommended for use with
long alkanes and lipids. The GROMOS-96 force field differs from the GROMACS force field in a
few aspects:

• the force field parameters

• the parameters for the bonded interactions are not linked to atom types

• a fourth power bond stretching potential (sec.4.2.1)

• an angle potential based on the cosine of the angle (sec.4.2.4)

There are two differences in implementation between GROMACS and GROMOS-96 which can
lead to slightly different results when simulating the same system with both packages:

http://www.fftw.org

84 Chapter 4. Force fields

• in GROMOS-96 neighbor searching for solvents is performed on the first atom of the solvent
molecule, this is not implemented in GROMACS, but the difference with searching with
centers of charge groups is very small

• the virial in GROMOS-96 is molecule-based. This is not implemented in GROMACS,
which uses atomic virials

The GROMOS-96 force field was parameterized with a Lennard-Jones cutoff of 1.4 nm, so be sure
to use a Lennard-Jones cutoff of at least 1.4. A larger cutoff is possible, because the Lennard-Jones
potential and forces are almost zero beyond 1.4 nm.

4.8.2 GROMOS-96 files

GROMACS can read and write GROMOS-96 coordinate and trajectory files. These files should
have the extension.g96 . Such a file can be a GROMOS-96 initial/final configuration file or a
coordinate trajectory file or a combination of both. The file is fixed format; all floats are written
as 15.9 (files can get huge). GROMACS supports the following data blocks in the given order:

• Header block:

TITLE (mandatory)

• Frame blocks:

TIMESTEP (optional)
POSITION/POSITIONRED (mandatory)
VELOCITY/VELOCITYRED (optional)
BOX (optional)

See the GROMOS-96 manual [46] for a complete description of the blocks. Note that all GRO-
MACS programs can read compressed (.Z) or gzipped (.gz) files.

Chapter 5

Topologies

5.1 Introduction

GROMACS must know on which atoms and combinations of atoms the various contributions to
the potential functions (see chapter4) must act. It must also know what parameters must be
applied to the various functions. All this is described in thetopologyfile *.top , which lists the
constant attributesof each atom. There are many more atom types than elements, but only atom
types present in biological systems are parameterized in the force field, plus some metals, ions and
silicon. The bonded and special interactions are determined by fixed lists that are included in the
topology file. Certain non-bonded interactions must be excluded (first and second neighbors), as
these are already treated in bonded interactions. In addition there aredynamic attributesof atoms:
their positions, velocities and forces, but these do not strictly belong to the molecular topology.

This Chapter describes the set up of the topology file, the*.top file and the database files:
what the parameters stand for and how/where to change them if needed. First all file formats are
explained. Section5.7.1describes the organization of the force-field files.

Note: if you construct your own topologies, we encourage you to upload them to our topology
archive at www.gromacs.org! Just imagine how thankful you’d have been if your topology had
been available there before you started. The same goes for new force field or modified versions of
the standard force fields - contribute them to the force field archive!

5.2 Particle type

In GROMACS there are 5 types of particles, see Table5.1. Only regular atoms and dummy
particles are used in GROMACS; shells are necessary for polarizable models like the Shell-Water
models [25].

86 Chapter 5. Topologies

Particle Symbol
atoms A
shells S
dummies D

Table 5.1: Particle types in GROMACS

5.2.1 Atom types

GROMACS uses 47 different atom types, as listed below, with their corresponding masses (in
a.m.u.). This is the same listing as in the fileff???.atp (.atp = atom type parameter file),
therefore in this file you can change and/or add an atom type.

O 15.99940 ; carbonyl oxygen (C=O)
OM 15.99940 ; carboxyl oxygen (CO-)
OA 15.99940 ; hydroxyl oxygen (OH)
OW 15.99940 ; water oxygen

N 14.00670 ; peptide nitrogen (N or NH)
NT 14.00670 ; terminal nitrogen (NH2)
NL 14.00670 ; terminal nitrogen (NH3)

NR5 14.00670 ; aromatic N (5-ring,2 bonds)
NR5* 14.00670 ; aromatic N (5-ring,3 bonds)

NP 14.00670 ; porphyrin nitrogen
C 12.01100 ; bare carbon (peptide,C=O,C-N)

CH1 13.01900 ; aliphatic CH-group
CH2 14.02700 ; aliphatic CH2-group
CH3 15.03500 ; aliphatic CH3-group

CR51 13.01900 ; aromatic CH-group (5-ring), united
CR61 13.01900 ; aromatic CH-group (6-ring), united

CB 12.01100 ; bare carbon (5-,6-ring)
H 1.00800 ; hydrogen bonded to nitrogen

HO 1.00800 ; hydroxyl hydrogen
HW 1.00800 ; water hydrogen
HS 1.00800 ; hydrogen bonded to sulfur

S 32.06000 ; sulfur
FE 55.84700 ; iron
ZN 65.37000 ; zinc
NZ 14.00670 ; arg NH (NH2)
NE 14.00670 ; arg NE (NH)

P 30.97380 ; phosphor
OS 15.99940 ; sugar or ester oxygen

CS1 13.01900 ; sugar CH-group
NR6 14.00670 ; aromatic N (6-ring,2 bonds)

NR6* 14.00670 ; aromatic N (6-ring,3 bonds)
CS2 14.02700 ; sugar CH2-group

SI 28.08000 ; silicon
NA 22.98980 ; sodium (1+)
CL 35.45300 ; chlorine (1-)
CA 40.08000 ; calcium (2+)
MG 24.30500 ; magnesium (2+)

F 18.99840 ; fluorine (cov. bound)

5.2. Particle type 87

CP2 14.02700 ; aliphatic CH2-group using Ryckaert-Bell.
CP3 15.03500 ; aliphatic CH3-group using Ryckaert-Bell.
CR5 12.01100 ; aromatic CH-group (5-ring)+H
CR6 12.01100 ; aromatic C- bonded to H (6-ring)+H
HCR 1.00800 ; H attached to aromatic C (5 or 6 ri

OWT3 15.99940 ; TIP3P water oxygen
SD 32.06000 ; DMSO Sulphur
OD 15.99940 ; DMSO Oxygen
CD 15.03500 ; DMSO Carbon

Atomic detail is used except for hydrogen atoms bound to (aliphatic) carbon atoms, which are
treated asunited atoms. No special hydrogen-bond term is included.

The last 10 atom types are extra atom types with respect to the GROMOS-87 force field [39]:

• F was taken from ref. [43],

• CP2 and CP3 from ref. [40] and references cited therein,

• CR5, CR6 and HCR from ref. [60]

• OWT3 from ref. [42]

• SD, OD and CD from ref. [44]

Therefore, if you use the GROMACS force field as it is, be sure to include these references in
your publications.

Note: GROMACS makes use of the atom types as a name,notas a number (ase.g.in GROMOS).

5.2.2 Dummy atoms

Some force fields use dummy atoms (virtual sites that are constructed from real atoms) on which
certain interactions are located (e.g.on benzene rings, to reproduce the correct quadrupole). This
is described in sec.4.5.

To make dummy atoms in your system, you should include a section[dummies?] in your
topology file, where the ‘?’ stands for the number constructing atoms for the dummy atom. This
will be ‘2’ for type 2, ‘3’ for types 3, 3fd, 3fad and 3out and ‘4’ for type 4fd (the different types
are explained in sec.4.5).

Parameters for type 2 should look like this:

[dummies2]
; Dummy from funct a
5 1 2 1 0.7439756

for type 3 like this:

[dummies3]
; Dummy from funct a b
5 1 2 3 1 0.7439756 0.128012

88 Chapter 5. Topologies

for type 3fd like this:

[dummies3]
; Dummy from funct a d
5 1 2 3 2 0.5 -0.105

for type 3fad like this:

[dummies3]
; Dummy from funct theta d
5 1 2 3 3 120 0.5

for type 3out like this:

[dummies3]
; Dummy from funct a b c
5 1 2 3 4 -0.4 -0.4 6.9281

for type 4fd like this:

[dummies4]
; Dummy from funct a b d
5 1 2 3 4 1 0.33333 0.33333 -0.105

This will result in the construction of a dummy ‘atom’, number 5 (first column ‘Dummy’), based on
the positions of 1 and 2 or 1, 2 and 3 or 1, 2, 3 and 4 (next two, three or four columns ‘from ’) fol-
lowing the rules determined by the function number (next column ‘funct ’) with the parameters
specified (last one, two or three columns ‘a b . .’).

Note that any bonds defined between dummy atoms and/or normal atoms will be removed by
grompp after the exclusions have been generated. This way, exclusions will not be affected by an
atom being defined as dummy atom or not, but by the bonding configuration of the atom.

5.3 Parameter files

5.3.1 Atoms

A number ofstaticproperties are assigned to the atom types in the GROMACS force field: Type,
Mass, Charge,ε andσ (see Table5.2The mass is listed inff???.atp (see5.2.1), whereas the
charge is listed inff???.rtp (.rtp = residuetopologyparameter file, see5.5.1). This implies
that the charges are only defined in the building blocks of amino acids or user defined building
blocks. When generating a topology (*.top) using thepdb2gmx program the information from
these files is combined.

The followingdynamicquantities are associated with an atom

• Positionx

• Velocity v

These quantities are listed in the coordinate file,*.gro (see section File format,5.6.6).

5.3. Parameter files 89

Property Symbol Unit
Type - -
Mass m a.m.u.
Charge q electron
epsilon ε kJ/mol
sigma σ nm

Table 5.2: Static atom type properties in GROMACS

5.3.2 Bonded parameters

The bonded parameters (i.e. bonds, bond angles, improper and proper dihedrals) are listed in
ff???bon.itp . The termfunc is 1 for harmonic and 2 for GROMOS-96 bond and angle
potentials. For the dihedral, this is explained after this listing.

[bondtypes]
; i j func b0 kb

C O 1 0.12300 502080.
C OM 1 0.12500 418400.
......

[angletypes]
; i j k func th0 cth

HO OA C 1 109.500 397.480
HO OA CH1 1 109.500 397.480
......

[dihedraltypes]
; i l func q0 cq

NR5* NR5 2 0.000 167.360
NR5* NR5* 2 0.000 167.360
......

[dihedraltypes]
; j k func phi0 cp mult

C OA 1 180.000 16.736 2
C N 1 180.000 33.472 2
......

[dihedraltypes]
;
; Ryckaert-Bellemans Dihedrals
;
; aj ak funct
CP2 CP2 3 9.2789 12.156 -13.120 -3.0597 26.240 -31.495

Also in this file are the Ryckaert-Bellemans [61] parameters for the CP2-CP2 dihedrals in alkanes
or alkane tails with the following constants:

(kJ/mol)

90 Chapter 5. Topologies

C0 = 9.28 C2 = −13.12 C4 = 26.24
C1 = 12.16 C3 = − 3.06 C5 = −31.5

(Note: The use of this potential implies the exclusion of LJ interactions between the first and the
last atom of the dihedral, andψ is defined according to the ’polymer convention’ (ψtrans = 0)).

So there are three types of dihedrals in the GROMACS force field:

• proper dihedral : funct = 1, with mult = multiplicity, so the number of possible angles

• improper dihedral : funct = 2

• Ryckaert-Bellemans dihedral : funct = 3

In the file ff???bon.itp you can add bonded parameters. If you want to include parameters
for new atom types, make sure you define this new atom type inff???.atp as well.

5.3.3 Non-bonded parameters

The non-bonded parameters consist of the Van der Waals parameters V (c6) and W (c12), as
listed in the fileff???nb.itp , whereptype is the particle type (see Table5.1):

[atomtypes]
;name mass charge ptype c6 c12

O 15.99940 0.000 A 0.22617E-02 0.74158E-06
OM 15.99940 0.000 A 0.22617E-02 0.74158E-06
.....

[nonbond_params]
; i j func c6 c12

O O 1 0.22617E-02 0.74158E-06
O OA 1 0.22617E-02 0.13807E-05
.....

[pairtypes]
; i j func cs6 cs12 ; THESE ARE 1-4 INTERACTIONS

O O 1 0.22617E-02 0.74158E-06
O OM 1 0.22617E-02 0.74158E-06
.....

The parameters V and W can be defined in two different ways, depending on the combination rule
that was chosen in the[defaults] section op the topology file (see5.6.1):

for combination rule 1:
Vii = C

(6)
i = 4 εiσ6

i [kJ mol−1 nm6]

Wii = C
(12)
i = 4 εiσ12

i [kJ mol−1 nm12]
(5.1)

for combination rules 2 and 3:
Vii = σi [nm]
Wii = εi [kJ mol−1]

(5.2)

5.3. Parameter files 91

Some or all combinations for different atom-types can be given in the[nonbond params]
section. Any combination that is not given will be computed according to the combination rule:

for combination rules 1 and 3:
C

(6)
ij =

(
C

(6)
i C

(6)
j

) 1
2

C
(12)
ij =

(
C

(12)
i C

(12)
j

) 1
2

(5.3)

for combination rule 2:
σij = 1

2(σi + σj)
εij = √

εi εj
(5.4)

5.3.4 Pair interactions

Extra Lennard-Jones and electrostatic interactions between pairs of atoms in a molecule can be
added in the[pairs] section of a molecule definition. The parameters for these interactions
can be set independently from the non-bonded interaction parameters. In the GROMACS and
GROMOS force fields pairs are only used to modify the 1-4 interactions (interactions of atoms
separated by three bonds). In these forcefields the 1-4 interactions are excluded from the non-
bonded interactions (see5.3.5).

The pair interaction parameters for the atom types inff???nb.itp are listed in the[pairtypes]
section. The GROMACS and GROMOS force fields lists all these interactions explicitly, but this
section might be empty for force fields like OPLS that calculate the 1-4 interactions by scaling.
Pair parameters which are not present in the[pairtypes] section are only generated when
generate pairs is set to yes in the topology (see5.6.1). When generate pairs is set to no,grompp
will give a warning for each pair type for which no parameters are given.

5.3.5 Exclusions

The exclusions for bonded particles are generated bygrompp for neighboring atoms up to a
certain number of bonds away, as defined in the[moleculetype] section in the topology
file (see5.6.1). Particles are considered bonded when they are connected by bonds ([bonds]
types 1 to 5) or constraints ([constraints] type 1). [bonds] type 5 can be used
to create a connection between two atoms without creating an interaction. There is a harmonic
interaction ([bonds] type 6) which does not connect the atoms by a chemical bond. There is
also a second constraint type ([constraints] type 2) which fixes the distance, but does not
connect the atoms by a chemical bond. For a complete list of all these interactions see Table5.4.

Extra exclusions within a molecule can be added manually in a[exclusions] section. Each
line should start with one atom index, followed by one or more atom indices. All non-bonded
interactions between the first atom and the other atoms will be excluded.

When all non-bonded interactions within or between groups of atoms need to be excluded, is it
more convenient and much more efficient to use energy monitor group exclusions (see sec.3.3).

92 Chapter 5. Topologies

5.4 Constraints

Constraints are defined in the[constraints] section. The format is two atom numbers
followed by the function type, which can be 1 or 2 and the constraint distance. The only difference
between the two types is that type 1 is used for generating exclusions and type 2 is not (see5.3.5).
The distances are constrained using the LINCS or the SHAKE algorithm, which can be selected in
the*.mdp file. Both types of constraints can be perturbed in free-energy calculations by adding
a second constraint distance (see5.6.5). Several types of bonds and angles (see Table5.4) can
be converted automatically to constraints bygrompp . There are several options for this in the
*.mdp file.

We have also implemented the SETTLE algorithm [27] which is an analytical solution of SHAKE
specifically for water. SETTLE can be selected in the topology file. Check for instance the SPC
molecule definition:

[moleculetype]
; molname nrexcl
SOL 1

[atoms]
; nr at type res nr ren nm at nm cg nr charge
1 OW 1 SOL OW1 1 -0.82
2 HW 1 SOL HW2 1 0.41
3 HW 1 SOL HW3 1 0.41

[settles]
; OW funct doh dhh
1 1 0.1 0.16333

[exclusions]
1 2 3
2 1 3
3 1 2

The section[settles] defines the first atom of the watery molecule. The settle funct is
always one, and the distance between O-H and H-H distances must be given. Note that the algo-
rithm can also be used for TIP3P and TIP4P [42]. TIP3P just has another geometry. TIP4P has a
dummy atom, but since that is generated it does not need to be shaken (nor stirred).

5.5 Databases

5.5.1 Residue database

The file holding the residue database isff???.rtp . Originally this file contained building blocks
(amino acids) for proteins, and is the GROMACS interpretation of thert37c4.dat file of GRO-
MOS. So the residue file contains information (bonds, charge, charge groups and improper dihe-

5.5. Databases 93

drals) for a frequently used building block. It is betternot to change this file because it is standard
input forpdb2gmx , but if changes are needed make them in the*.top file (see5.6.1). However,
in the ff???.rtp file the user can define a new building block or molecule: see for example
2,2,2-trifluoroethanol (TFE) orn-decane (C10). But when defining new molecules (non-protein)
it is preferable to create a*.itp file. This will be discussed in section5.6.2. When adding a new
protein residue to the database, don’t forget to add the residue name to theaminoacids.dat
file, so thatgrompp , make ndx and analysis tools can recognize the residue as a protein residue
(see8.1.1).

The fileff???.rtp is only used bypdb2gmx . As mentioned before, the only extra information
this program needs fromff???.rtp is bonds, charges of atoms, charge groups and improper
dihedrals, because the rest is read from the coordinate input file (in the case ofpdb2gmx , a pdb
format file). Some proteins contain residues that are not standard, but are listed in the coordinate
file. You have to construct a building block for this “strange” residue, otherwise you will not
obtain a*.top file. This also holds for molecules in the coordinate file such as phosphate or
sulphate ions. The residue database is constructed in the following way:

[bondedtypes] ; mandatory
; bonds angles dihedrals impropers

1 1 1 2 ; mandatory

[GLY] ; mandatory

[atoms] ; mandatory
; name type charge chargegroup

N N -0.280 0
H H 0.280 0

CA CH2 0.000 1
C C 0.380 2
O O -0.380 2

[bonds] ; optional
;atom1 atom2 b0 kb

N H
N CA

CA C
C O

-C N

[exclusions] ; optional
;atom1 atom2

[angles] ; optional
;atom1 atom2 atom3 th0 cth

[dihedrals] ; optional
;atom1 atom2 atom3 atom4 phi0 cp mult

[impropers] ; optional
;atom1 atom2 atom3 atom4 q0 cq

N -C CA H
-C -CA N -O

94 Chapter 5. Topologies

[ZN]
[atoms]

ZN ZN 2.000 0

The file is free format, the only restriction is that there can be at most one entry on a line. The
first field in the file is the[bondedtypes] field, which is followed by four numbers, that
indicate the interaction type for bonds, angles, dihedrals and improper dihedrals. The file contains
residue entries, which consist of atoms and optionally bonds, angles dihedrals and impropers. The
charge group codes denote the charge group numbers. Atoms in the same charge group should
always be below each other. When using the hydrogen database withpdb2gmx for adding missing
hydrogens, the atom names defined in the.rtp entry should correspond exactly to the naming
convention used in the hydrogen database, see5.5.2. The atom names in the bonded interaction
can be preceded by a minus or a plus, indicating that the atom is in the preceding or following
residue respectively. Parameters can be added to bonds, angles, dihedrals and impropers, these
parameters override the standard parameters in the.itp files. This should only be used in special
cases. Instead of parameters, a string can be added for each bonded interaction, this is used in
GROMOS96.rtp files. These strings are copied to the topology file and can be replaced by
force field parameters by the C-preprocessor ingrompp using#define statements.

pdb2gmx automatically generates all angles. This means that for the GROMACS force field the
[angles] field is only useful for overriding.itp parameters. For the GROMOS-96 force
field the interaction number off all angles need to be specified.

pdb2gmx automatically generates one proper dihedral for every rotatable bond, preferably on
heavy atoms. When the[dihedrals] field is used, no other dihedrals will be generated for
the bonds corresponding to the specified dihedrals. It is possible to put more than one dihedral on
a rotatable bond.

pdb2gmx sets the number of exclusions to 3, which means that interactions between atoms con-
nected by at most 3 bonds are excluded. Pair interactions are generated for all pairs of atoms
which are separated by 3 bonds (except pairs of hydrogens). When more interactions need to be
excluded, or some pair interactions should not be generated, an[exclusions] field can be
added, followed by pairs of atom names on separate lines. All non-bonded and pair interactions
between these atoms will be excluded.

5.5.2 Hydrogen database

The hydrogen database is stored inff???.hdb . It contains information for thepdb2gmx pro-
gram on how to connect hydrogen atoms to existing atoms. Hydrogen atoms are named after the
atom they are connected to: the first letter of the atom name is replaced by an ’H’. If more then one
hydrogen atom is connected to the same atom, a number will be added to the end of the hydrogen
atom name. For example, adding two hydrogen atoms toND2(in asparagine), the hydrogen atoms
will be namedHD21andHD22. This is important since atom naming in the.rtp file (see5.5.1)
must be the same. The format of the hydrogen database is as follows:

; res # additions
H add type i j k

5.5. Databases 95

ALA 1
1 1 N -C CA

ARG 4
1 2 N CA C
1 1 NE CD CZ
2 3 NH1 CZ NE
2 3 NH2 CZ NE

On the first line we see the residue name (ALA or ARG) and the number of additions. After that
follows one line for each addition, on which we see:

• The number of H atoms added

• The way of adding H atoms, can be any of

1 one planar hydrogen,e.g.rings or peptide bond
one hydrogen atom (n) is generated, lying in the plane of atoms (i,j,k) on the plane
bisecting angle (j-i-k) at a distance of 0.1 nm from atom i, such that the angles (n-i-j)
and (n-i-k) are> 90o

2 one single hydrogen,e.g.hydroxyl
one hydrogen atom (n) is generated at a distance of 0.1 nm from atom i, such that angle
(n-i-j)=109.5 degrees and dihedral (n-i-j-k)=trans

3 two planar hydrogens,e.g.-NH2

two hydrogens (n1,n2) are generated at a distance of 0.1 nm from atom i, such that
angle (n1-i-j)=(n2-i-j)=120 degrees and dihedral (n1-i-j-k)=cis and (n2-i-j-k)=trans,
such that names are according to IUPAC standards [62]

4 two or three tetrahedral hydrogens,e.g.-CH3

three (n1,n2,n3) or two (n1,n2) hydrogens are generated at a distance of 0.1 nm from
atom i, such that angle (n1-i-j)=(n2-i-j)=(n3-i-j)=109.47o, dihedral (n1-i-j-k)=trans,
(n2-i-j-k)=trans+120 and (n3-i-j-k)=trans+240 degrees

5 one tetrahedral hydrogen,e.g.C3CH
one hydrogen atom (n′) is generated at a distance of 0.1 nm from atom i in tetrahedral
conformation such that angle (n′-i-j)=(n′-i-k)=(n′-i-l)=109.47o

6 two tetrahedral hydrogens,e.g.C-CH2-C
two hydrogen atoms (n1,n2) are generated at a distance of 0.1 nm from atom i in
tetrahedral conformation on the plane bissecting angle i-j-k with angle (n-i-n2)=(n1-i-
j)=(n1-i-k)=109.5

7 two water hydrogens
two hydrogens are generated around atom i according to SPC [48] water geometry.
The symmetry axis will alternate between three coordinate axes in both directions

• Three or four control atoms (i,j,k,l), where the first always is the atom to which the H atoms
are connected. The other two or three depend on the code selected.

96 Chapter 5. Topologies

5.5.3 Termini database

The termini databases are stored inff???-n.tdb andff???-c.tdb for the N- and C-termini
respectively. They contain information for thepdb2gmx program on how to connect new atoms to
existing ones, which atoms should be removed or changed and which bonded interactions should
be added. The format of the is as follows (this is an example from theffgmx-c.tdb):

[None]

[COO-]
[replace]
C C C 12.011 0.27
[add]
2 8 C CA N

O OM 15.9994 -0.635
[delete]
O
[impropers]
C O1 O2 CA

The file is organized in blocks, each with a header specifying the name of the block. These
blocks correspond to different types of termini that can be added to a molecule. In this exam-
ple [None] is the first block, corresponding to a terminus that leaves the molecule as it is;
[COO-] is the second terminus type, corresponding to changing the terminal carbon atom into
a deprotonated carboxyl group. Block names cannot be any of the following:replace , add ,
delete , bonds , angles , dihedrals , impropers ; this would interfere with the parame-
ters of the block, and would probably also be very confusing to human readers.

Per block the following options are present:

• [replace]
replace an existing atom by one with a different atom type, atom name, charge and/or mass.
For each atom to be replaced on line should be entered with the following fields:

– name of the atom to be replaced

– new atom name

– new atom type

– new mass

– new charge

• [add]
add new atoms. For each (group of) added atom(s), a two-line entry is necessary. The first
line contains the same fields as an entry in the hydrogen database (number of atoms, type of
addition, control atoms, see5.5.1), but the possible types of addition are extended by two
more, specifically for C-terminal additions:

8 two carboxyl oxygens, -COO−

two oxygens (n1,n2) are generated according to rule 3, at a distance of 0.136 nm from
atom i and an angle (n1-i-j)=(n2-i-j)=117 degrees

5.6. File formats 97

9 carboxyl oxygens and hydrogen, -COOH
two oxygens (n1,n2) are generated according to rule 3, at distances of 0.123 nm and
0.125 nm from atom i for n1 and n2 resp. and angles (n1-i-j)=121 and (n2-i-j)=115
degrees. One hydrogen (n’) is generated around n2 according to rule 2, where n-i-j
and n-i-j-k should be read as n’-n2-i and n’-n2-i-j resp.

After this line another line follows which specifies the details of the added atom(s), in the
same way as for replacing atoms,i.e.:

– atom name

– atom type

– mass

– charge

Like in the hydrogen database (see5.5.1), when more then one atom is connected to an
existing one, a number will be appended to the end of the atom name.

• [delete]
delete existing atoms. One atom name per line.

• [bonds] , [angles] , [dihedrals] and[impropers]
add additional bonded parameters. The format is identical to that used in theff???.rtp ,
see5.5.1.

5.6 File formats

5.6.1 Topology file

The topology file is built following the GROMACS specification for a molecular topology. A
*.top file can be generated bypdb2gmx . All possible entries in the topology file are listed in
Table5.3 and Table5.4. Also listed are all the units of the parameters, which interactions can
be perturbed for free energy calculations, which bonded interactions are used bygrompp for
generating exclusions and which bonded interactions can be converted to constraints bygrompp .

Description of the file layout:

• semicolon (;) and newline surround comments

• on a line ending with\ the newline character is ignored.

• directives are surrounded by[and]

• the topology consists of three levels:

– the parameter level (see Table5.3)

– the molecule level, which should contain one or more molecule definitions (see Ta-
ble5.4)

– the system level:[system] , [molecules]

98 Chapter 5. Topologies

Parameters
interaction directive # f. parameters pert
type at. tp

mandatory defaults non-bonded function type;
combination rule(a);
generate pairs (no/yes);
fudge LJ (); fudge QQ ()

mandatory atomtypes atom type; m (u); q (e); particle type;
V(a); W(a)

bondtypes (see Table5.4, directivebonds)
constrainttypes (see Table5.4, directiveconstraints)
pairtypes (see Table5.4, directivepairs)
angletypes (see Table5.4, directiveangles)

proper dih. dihedraltypes 2(c) 1 θmax (deg); fc (kJ mol−1); mult X(b)

improper dih. dihedraltypes 2(d) 2 θ0 (deg); fc (kJ mol−1rad−2) X
RB dihedral dihedraltypes 2(c) 3 C0, C1, C2, C3, C4, C5 (kJ mol−1)
LJ nonbond params 2 1 V(a); W(a)

Buckingham nonbond params 2 2 a (kJ mol−1); b (nm−1);
c6 (kJ mol−1nm6)

Molecule definition(s)

one or more molecule definitions as described in Table5.4(next page)

System
mandatory system system name
mandatory molecules molecule name; number of molecules

’# at’ is the number of atom types
’f. tp’ is function type
’pert’ indicates if this interaction type can be perturbed during free energy calculations
(a) the combination rule determines the type of LJ parameters, see5.3.3
(b) multiplicities can not be perturbed
(c) the inner two atoms in the dihedral
(d) the outer two atoms in the dihedral
For free energy calculations, the parameters for topology ’B’ (lambda = 1) should be added
on the same line, after the normal parameters, in the same order as the normal parameters.

Table 5.3: The topology (*.top) file.

5.6. File formats 99

Molecule definition
interaction directive # f. parameters pert
type at. tp

mandatory moleculetype molecule name;
exclude neighbors # bonds away
for non-bonded interactions

mandatory atoms 1 atom type; residue number;
residue name; atom name;
charge group number; q (e); m (u) X(c)

bond bonds (d,e) 2 1 b0 (nm); fc (kJ mol−1nm−2) X
G96 bond bonds (d,e) 2 2 b0 (nm); fc (kJ mol−1nm−4) X
morse bonds (d,e) 2 3 b0 (nm); D (kJ mol−1); β (nm−1)
cubic bond bonds (d,e) 2 4 b0 (nm); C2 (kJ mol−1nm−2);

C3 (kJ mol−1nm−3)
connection bonds (d) 2 5
harmonic pot. bonds 2 6 b0 (nm); fc (kJ mol−1nm−2) X
LJ/Coul. 1-4 pairs 2 1 V(a); W(a) X
angle angles (e) 3 1 θ0 (deg); fc (kJ mol−1rad−2) X
G96 angle angles (e) 3 2 θ0 (deg); fc (kJ mol−1) X
proper dih. dihedrals 4 1 θmax (deg); fc (kJ mol−1); mult X(b)

improper dih. dihedrals 4 2 θ0 (deg); fc (kJ mol−1rad−2) X
RB dihedral dihedrals 4 3 C0, C1, C2, C3, C4, C5 (kJ mol−1)
constraint constraints (d) 2 1 b0 (nm) X
constr. n.c. constraints 2 2 b0 (nm) X
settle settles 3 1 dOH, dHH (nm)
dummy2 dummies2 3 1 a ()
dummy3 dummies3 4 1 a, b ()
dummy3fd dummies3 4 2 a (); d (nm)
dummy3fad dummies3 4 3 θ (deg); d (nm)
dummy3out dummies3 4 4 a, b (); c (nm−1)
dummy4fd dummies4 5 1 a, b (); d (nm);
position res. position restraints 1 1 kx, ky, kz (kJ mol−1nm−2) X
distance res. distance restraints 2 1 type; label; low, up1, up2 (nm);

weight ()
orient. res. orientation restraints

2 1 exp.; label;α; c (U nmα); obs. (U);
weight (U−1)

angle res. angle restraints 4 1 θ0 (deg); fc (kJ mol−1); mult X(b)

angle res. z angle restraints z 2 1 θ0 (deg); fc (kJ mol−1); mult X(b)

exclusions exclusions 1 one or more atom indices

’# at’ is the number of atom indices
’f. tp’ is function type
’pert’ indicates if this interaction type can be perturbed during free energy calculations
(a) the combination rule determines the type of LJ parameters, see5.3.3
(b) multiplicities can not be perturbed
(c) only the atom type, charge and mass can be perturbed
(d) used bygrompp for generating exclusions
(e) can be converted to constraints bygrompp
For free energy calculations, the parameters for topology ’B’ (lambda = 1) should be added
on the same line, after the normal parameters, in the same order as the normal parameters.

Table 5.4: The molecule definition.

100 Chapter 5. Topologies

• items should be separated by spaces or tabs, not commas

• atoms in molecules should be numbered consecutively starting at 1

• the file is parsed once only which implies that no forward references can be treated: items
must be defined before they can be used

• exclusions can be generated from the bonds or overridden manually

• the bonded force types can be generated from the atom types or overridden per bond

• it is possible to apply multiple bonded interactions of the same type on the same atoms

• descriptive comment lines and empty lines are highly recommended

• starting with GROMACS version 3.1.3 all directives at the parameter level can be used
multiple times and there are no restrictions on the order, except that an atom type needs to
be defined before it can be used in other parameter definitions

• If parameters for a certain interaction are defined multiple times for the same combination
of atom types the last definition is used; starting with GROMACS version 3.1.3grompp
generates a warning for parameter redefinitions with different values

• using one of the[atoms] , [bonds] , [pairs] , [angles] , etc. without
having used[moleculetype] before is meaningless and generates a warning

• using [molecules] without having used[system] before is meaningless and
generates a warning.

• after[system] the only allowed directive is[molecules]

• using an unknown string in[] causes all the data until the next directive to be ignored,
and generates a warning

Here is an example of a topology file,urea.top :

;
; Example topology file
;
; The force field files to be included
#include "ffgmx.itp"

[moleculetype]
; name nrexcl
Urea 3

[atoms]
; nr type resnr residu atom cgnr charge

1 C 1 UREA C1 1 0.683
2 O 1 UREA O2 1 -0.683
3 NT 1 UREA N3 2 -0.622
4 H 1 UREA H4 2 0.346

5.6. File formats 101

5 H 1 UREA H5 2 0.276
6 NT 1 UREA N6 3 -0.622
7 H 1 UREA H7 3 0.346
8 H 1 UREA H8 3 0.276

[bonds]
; ai aj funct b0 kb

3 4 1 1.000000e-01 3.744680e+05
3 5 1 1.000000e-01 3.744680e+05
6 7 1 1.000000e-01 3.744680e+05
6 8 1 1.000000e-01 3.744680e+05
1 2 1 1.230000e-01 5.020800e+05
1 3 1 1.330000e-01 3.765600e+05
1 6 1 1.330000e-01 3.765600e+05

[pairs]
; ai aj funct c6 c12

2 4 1 0.000000e+00 0.000000e+00
2 5 1 0.000000e+00 0.000000e+00
2 7 1 0.000000e+00 0.000000e+00
2 8 1 0.000000e+00 0.000000e+00
3 7 1 0.000000e+00 0.000000e+00
3 8 1 0.000000e+00 0.000000e+00
4 6 1 0.000000e+00 0.000000e+00
5 6 1 0.000000e+00 0.000000e+00

[angles]
; ai aj ak funct th0 cth

1 3 4 1 1.200000e+02 2.928800e+02
1 3 5 1 1.200000e+02 2.928800e+02
4 3 5 1 1.200000e+02 3.347200e+02
1 6 7 1 1.200000e+02 2.928800e+02
1 6 8 1 1.200000e+02 2.928800e+02
7 6 8 1 1.200000e+02 3.347200e+02
2 1 3 1 1.215000e+02 5.020800e+02
2 1 6 1 1.215000e+02 5.020800e+02
3 1 6 1 1.170000e+02 5.020800e+02

[dihedrals]
; ai aj ak al funct phi cp mult

2 1 3 4 1 1.800000e+02 3.347200e+01 2.000000e+00
6 1 3 4 1 1.800000e+02 3.347200e+01 2.000000e+00
2 1 3 5 1 1.800000e+02 3.347200e+01 2.000000e+00
6 1 3 5 1 1.800000e+02 3.347200e+01 2.000000e+00
2 1 6 7 1 1.800000e+02 3.347200e+01 2.000000e+00
3 1 6 7 1 1.800000e+02 3.347200e+01 2.000000e+00
2 1 6 8 1 1.800000e+02 3.347200e+01 2.000000e+00
3 1 6 8 1 1.800000e+02 3.347200e+01 2.000000e+00

[dihedrals]
; ai aj ak al funct q0 cq

3 4 5 1 2 0.000000e+00 1.673600e+02

102 Chapter 5. Topologies

6 7 8 1 2 0.000000e+00 1.673600e+02
1 3 6 2 2 0.000000e+00 1.673600e+02

[position_restraints]
; you wouldn’t normally use this for a molecule like Urea,
; but we include it here for didactic purposes
; ai funct fc

1 1 1000 1000 1000 ; Restrain to a point
2 1 1000 0 1000 ; Restrain to a line (Y-axis)
3 1 1000 0 0 ; Restrain to a plane (Y-Z-plane)

; Include SPC water topology
#include "spc.itp"

[system]
Urea in Water

[molecules]
;molecule name nr.
Urea 1
SOL 1000

Here follows the explanatory text.

[defaults] :

• non-bond type = 1 (Lennard-Jones) or 2 (Buckingham)
note: when using the Buckingham potential no combination rule can be used, and a full
interaction matrix must be provided under thenonbond params section.

• combination rule = 1 (supplyC(6) andC(12), σij = √
σi σj), 2 (supplyσ and ε, σij =

1
2(σi + σj)) or 3 (supplyσ andε, σij = √

σi σj)

• generate pairs = no (get 1-4 interactions from pair list) or yes (generate 1-4 interactions from
normal Lennard-Jones parameters using FudgeLJ and FudgeQQ)

• FudgeLJ = factor to change Lennard-Jones 1-4 interactions

• FudgeQQ = factor to change electrostatic 1-4 interactions

note: FudgeLJ and FudgeQQ only need to be specified when generate pairs is set to ’yes’.

#include "ffgmx.itp" : this includes the bonded and non-bonded GROMACS parameters,
thegmx in ffgmx will be replaced by the name of the force field you are actually using.

[moleculetype] : defines the name of your molecule in this*.top and nrexcl = 3 stands
for excluding non-bonded interactions between atoms that are no further than 3 bonds away.

[atoms] : defines the molecule, wherenr andtype are fixed, the rest is user defined. So
atom can be named as you like,cgnr made larger or smaller (if possible, the total charge of a
charge group should be zero), and charges can be changed here too.

[bonds] : no comment.

5.6. File formats 103

[pairs] : LJ and Coulomb 1-4 interactions

[angles] : no comment

[dihedrals] : in this case there are 9 proper dihedrals (funct = 1), 3 improper (funct =
2) and no Ryckaert-Bellemans type dihedrals. If you want to include Ryckaert-Bellemans type
dihedrals in a topology, do the following (in case ofe.g.decane):

[dihedrals]
; ai aj ak al funct c0 c1 c2

1 2 3 4 3
2 3 4 5 3

and do not forget toerase the 1-4 interactionin [pairs] !!

[position restraints] : harmonically restrain the selected particles to reference posi-
tions (sec.4.2.12). The reference positions are read from a separate coordinate file by grompp.

#include "spc.itp" : includes a topology file that was already constructed (see next sec-
tion, molecule.itp).

[system] : title of your system, user defined

[molecules] : this defines the total number of (sub)molecules in your system that are de-
fined in this*.top . In this example file it stands for 1 urea molecules dissolved in 1000 water
molecules. The molecule type SOL is defined in thespc.itp file.

5.6.2 Molecule.itp file

If you construct a topology file you will use frequently (like a water molecule,spc.itp) it is
better to make amolecule.itp file, which only lists the information of the molecule:

[moleculetype]
; name nrexcl
Urea 3

[atoms]
; nr type resnr residu atom cgnr charge

1 C 1 UREA C1 1 0.683
.................
.................
8 H 1 UREA H8 3 0.276

[bonds]
; ai aj funct c0 c1

3 4 1 1.000000e-01 3.744680e+05
.................
.................

1 6 1 1.330000e-01 3.765600e+05

[pairs]
; ai aj funct c0 c1

104 Chapter 5. Topologies

2 4 1 0.000000e+00 0.000000e+00
.................
.................

5 6 1 0.000000e+00 0.000000e+00

[angles]
; ai aj ak funct c0 c1

1 3 4 1 1.200000e+02 2.928800e+02
.................
.................

3 1 6 1 1.170000e+02 5.020800e+02

[dihedrals]
; ai aj ak al funct c0 c1 c2

2 1 3 4 1 1.800000e+02 3.347200e+01 2.000000e+00
.................
.................

3 1 6 8 1 1.800000e+02 3.347200e+01 2.000000e+00

[dihedrals]
; ai aj ak al funct c0 c1

3 4 5 1 2 0.000000e+00 1.673600e+02
6 7 8 1 2 0.000000e+00 1.673600e+02
1 3 6 2 2 0.000000e+00 1.673600e+02

This results in a very short*.top file as described in the previous section, but this time you only
need to include files:

; The force field files to be included
#include "ffgmx.itp"

; Include urea topology
#include "urea.itp"

; Include SPC water topology
#include "spc.itp"

[system]
Urea in Water

[molecules]
;molecule name number
Urea 1
SOL 1000

5.6.3 Ifdef option

A very powerful feature in GROMACS is the use of#ifdef statements in your*.top file.
By making use of this statement, different parameters for one molecule can be used in the same
*.top file. An example is given for TFE, where there is an option to use different charges on the
atoms: charges derived by De Loofet al. [63] or by Van Buuren and Berendsen [43]. In fact you

5.6. File formats 105

can use all the options of the C-Preprocessor,cpp , because this is used to scan the file. The way
to make use of the#ifdef option is as follows:

• in grompp.mdp (the GROMACS preprocessor input parameters) use the option
define = -DDeloof
or
define =

• put the#ifdef statements in your*.top , as shown below:

...

[atoms]
; nr type resnr residu atom cgnr charge mass
#ifdef DeLoof
; Use Charges from DeLoof

1 C 1 TFE C 1 0.74
2 F 1 TFE F 1 -0.25
3 F 1 TFE F 1 -0.25
4 F 1 TFE F 1 -0.25
5 CH2 1 TFE CH2 1 0.25
6 OA 1 TFE OA 1 -0.65
7 HO 1 TFE HO 1 0.41

#else
; Use Charges from VanBuuren

1 C 1 TFE C 1 0.59
2 F 1 TFE F 1 -0.2
3 F 1 TFE F 1 -0.2
4 F 1 TFE F 1 -0.2
5 CH2 1 TFE CH2 1 0.26
6 OA 1 TFE OA 1 -0.55
7 HO 1 TFE HO 1 0.3

#endif

[bonds]
; ai aj funct c0 c1

6 7 1 1.000000e-01 3.138000e+05
1 2 1 1.360000e-01 4.184000e+05
1 3 1 1.360000e-01 4.184000e+05
1 4 1 1.360000e-01 4.184000e+05
1 5 1 1.530000e-01 3.347000e+05
5 6 1 1.430000e-01 3.347000e+05

...

5.6.4 Free energy calculations

Free energy differences between two systems A and B can be calculated as described in sec.3.12.
The systems A and B are described by topologies consisting of the same number of molecules
with the same number of atoms. Masses and non-bonded interactions can be perturbed by adding

106 Chapter 5. Topologies

B parameters in the[atoms] field. Bonded interactions can be perturbed by adding B pa-
rameters to the bonded types or the bonded interactions. The parameters that can be perturbed
are listed in Table5.3and Table5.4. Theλ-dependence of the interactions is described in section
sec.4.3. Below is an example of a topology which changes from 200 propanols to 200 pentanes
using the GROMOS-96 force field.

; Include forcefield parameters
#include "ffG43a1.itp"

[moleculetype]
; Name nrexcl
PropPent 3

[atoms]
; nr type resnr residue atom cgnr charge mass typeB chargeB massB

1 H 1 PROP PH 1 0.398 1.008 CH3 0.0 15.035
2 OA 1 PROP PO 1 -0.548 15.9994 CH2 0.0 14.027
3 CH2 1 PROP PC1 1 0.150 14.027 CH2 0.0 14.027
4 CH2 1 PROP PC2 2 0.000 14.027
5 CH3 1 PROP PC3 2 0.000 15.035

[bonds]
; ai aj funct par_A par_B

1 2 2 gb_1 gb_26
2 3 2 gb_17 gb_26
3 4 2 gb_26 gb_26
4 5 2 gb_26

[pairs]
; ai aj funct

1 4 1
2 5 1

[angles]
; ai aj ak funct par_A par_B

1 2 3 2 ga_11 ga_14
2 3 4 2 ga_14 ga_14
3 4 5 2 ga_14 ga_14

[dihedrals]
; ai aj ak al funct par_A par_B

1 2 3 4 1 gd_12 gd_17
2 3 4 5 1 gd_17 gd_17

[system]
; Name
Propanol to Pentane

[molecules]
; Compound #mols
PropPent 200

5.6. File formats 107

Atoms that are not perturbed,PC2 andPC3, do not need B parameter specifications, the B pa-
rameters will be copied from the A parameters. Bonded interactions between atoms that are not
perturbed do not need B parameter specifications, here this is the case for the last bond. Topolo-
gies using the GROMACS force field need no bonded parameters at all, since both the A and B
parameters are determined by the atom types. Non-bonded interactions involving one or two per-
turbed atoms use the free-energy perturbation functional forms. Non-bonded interaction between
two non-perturbed atoms use the normal functional forms. This means that when, for instance,
only the charge of a particle is perturbed, its Lennard-Jones interactions will also be affected when
lambda is not equal to zero or one.

Note that this topology uses the GROMOS-96 force field, in which the bonded interactions are not
determined by the atom types. The bonded interaction strings are converted by the C-preprocessor.
The force field parameter files contain lines like:

#define gb_26 0.1530 7.1500e+06

#define gd_17 0.000 5.86 3

5.6.5 Constraint force

The constraint force between two atoms in one molecule can be calculated with the free energy
perturbation code by adding a constraint between the two atoms, with a different length in the A
and B topology. When the B length is 1 nanometer longer than the A length and lambda is kept
constant at zero, the derivative of the Hamiltonian with respect to lambda is the constraint force.
For constraints between molecules the pull code can be used, see sec.6.1. Below is an example for
calculating the constraint force at 0.7 nanometer between two methanes in water, by combining
the two methanes into one molecule. The added constraint is of function type 2, which means that
it is not used for generating exclusions (see5.3.5).

; Include forcefield parameters
#include "ffG43a1.itp"

[moleculetype]
; Name nrexcl
Methanes 1

[atoms]
; nr type resnr residu atom cgnr charge mass

1 CH4 1 CH4 C1 1 0 16.043
2 CH4 1 CH4 C2 2 0 16.043

[constraints]
; ai aj funct length_A length_B

1 2 2 0.7 1.7

#include "spc.itp"

[system]
; Name
Methanes in Water

108 Chapter 5. Topologies

[molecules]
; Compound #mols
Methanes 1
SOL 2002

5.6.6 Coordinate file

Files with the.gro file extension contain a molecular structure in GROMOS87 format. A sample
piece is included below:

MD of 2 waters, reformat step, PA aug-91
6
1WATER OW1 1 0.126 1.624 1.679 0.1227 -0.0580 0.0434
1WATER HW2 2 0.190 1.661 1.747 0.8085 0.3191 -0.7791
1WATER HW3 3 0.177 1.568 1.613 -0.9045 -2.6469 1.3180
2WATER OW1 4 1.275 0.053 0.622 0.2519 0.3140 -0.1734
2WATER HW2 5 1.337 0.002 0.680 -1.0641 -1.1349 0.0257
2WATER HW3 6 1.326 0.120 0.568 1.9427 -0.8216 -0.0244

1.82060 1.82060 1.82060

This format is fixed,i.e. all columns are in a fixed position. If you want to read such a file in your
own program without using the GROMACS libraries you can use the following formats:

C-format: "%5i%5s%5s%5i%8.3f%8.3f%8.3f%8.4f%8.4f%8.4f"

Or to be more precise, with titleetc. it looks like this:

"%s\n", Title
"%5d\n", natoms
for (i=0; (i<natoms); i++) {

"%5d%5s%5s%5d%8.3f%8.3f%8.3f%8.4f%8.4f%8.4f\n",
residuenr,residuename,atomname,atomnr,x,y,z,vx,vy,vz

}
"%10.5f%10.5f%10.5f%10.5f%10.5f%10.5f%10.5f%10.5f%10.5f\n",

box[X][X],box[Y][Y],box[Z][Z],
box[X][Y],box[X][Z],box[Y][X],box[Y][Z],box[Z][X],box[Z][Y]

Fortran format: (i5,2a5,i5,3f8.3,3f8.4)

So confin.gro is the GROMACS coordinate file and is almost the same as the GROMOS-
87 file (for GROMOS users: when used with ntx=7). The only difference is the box for which
GROMACS uses a tensor, not a vector.

5.7 Force-field organization

5.7.1 Force-field files

GROMACS 3.2 includes five forcefields. They are listed the fileFF.dat :

5.7. Force-field organization 109

5
ffgmx Gromacs Forcefield (see manual)
ffgmx2 Gromacs Forcefield with all hydrogens (proteins only)
ffG43a1 GROMOS96 43a1 Forcefield (official distribution)
ffG43b1 GROMOS96 43b1 Vacuum Forcefield (official distribution)
ffG43a2 GROMOS96 43a2 Forcefield (development) (improved ...)

All files for each force field have names beginning with theff??? string in theFF.dat file. A
force field is included at the beginning of a topology file with an#include statement followed
by ff???.itp . This statement includes the force-field file, which in turn may include other
forcefield files. A the five force fields are organized in the same way. As an example we show the
ffgmx.itp force-field file:

#define _FF_GROMACS
#define _FF_GROMACS1

[defaults]
; nbfunc comb-rule gen-pairs fudgeLJ fudgeQQ

1 1 no 1.0 1.0

#include "ffgmxnb.itp"
#include "ffgmxbon.itp"

The first#define can be used in topologies to parse data which is specific for all GROMACS
force-fields, the second#define to parse data which is specific for this force field. Thedefaults
section is explained in5.6.1. The included fileffgmxnb.itp contains all atom types and non-
bonded parameters. The included fileffgmxbon.itp contains all bonded parameters.

For each force field there a five files which are only used bypdb2gmx . These are: the residue
database (.rtp , see5.5.1) the hydrogen database (.hdb , see5.5.2), two termini databases (.tdb ,
see5.5.3) and the atom type database (.atp) which contains only the masses.

5.7.2 Changing force-field parameters

If one wants to change the parameters of few bonded interactions in a molcule, this is most eas-
ily accomplished by typing the parameters behind the definition of the bonded interaction in the
[moleculetype] section (see5.6.1for the format and units). If one wants to change the
parameters for all instances of a certain interaction one can change them in the force-field file or
add a new[???types] section after including the force field. When parameters for a certain
interaction are defined multiple times the last definition is used. As of GROMACS version 3.1.3 a
warning is generated when parameters are redefined with a different value. Changing the Lennard-
Jones parameters of an atom type is not recommended, because in the GROMACS and GROMOS
force-fields the Lennard-Jones parameters for several combinations of atom types are not accord-
ing to the standard combination rules. Such combinations (and possibly also combinations that
do follow the combionation rules) are defined in the[nonbonded params] section and
changing the Lennard-Jones parameters of an atom type has no effect on these combinations.

110 Chapter 5. Topologies

5.7.3 Adding atom types

As of GROMACS version 3.1.3 atom types can be added in an extra[atomtypes] section
after the the inclusing of the normal forcefield. After the definition of the new atom type(s), ad-
ditional non-bonded and pair parameters can be defined. In pre 3.1.3 versions of GROMACS the
new atom types needed to be added in the[atomtypes] section of the forcefield files, be-
cause all non-bonded parameters above the last[atomtypes] section would be overwritten
using the standard combination rules.

Chapter 6

Special Topics

6.1 Calculating potentials of mean force: the pull code

There are a number of options to calculate potentials of mean force and related topics. In the
current version of GROMACS this is implemented through some extra files formdrun .

6.1.1 Overview

Three different types of calculation are supported:

1. AFM pulling A spring is connected to an atom and slowly retracted. This has the effect
of pulling an atom or group of atoms away from its initial location. The rate constant and
spring constant for the spring can be varied to study e.g. the unbinding of a protein and a
ligand (see figure6.1).

2. Constraint forcesThe distance between the centers of mass of two groups of atoms can be
constrained and the constraint force monitored. The distance can be in 1, 2, or 3 dimensions.
This method uses the SHAKE algorithm but only needs 1 iteration to be exact if only two
groups are constrained.

3. Umbrella sampling A simple umbrella sampling with an harmonic umbrella potential that
acts on the center of mass of a group of atoms.

In the calculations, there has to be 1 reference group and 1 to 4 other groups of atoms. For
constrained runs, the distance between the reference group and the other groups is kept constant
at the distance they have in the input coordinate file (.tpr) file.

6.1.2 Usage

Input files

Themdrun programs needs 4 additional files: 2 input files and 2 output files.

112 Chapter 6. Special Topics

V

zz link spring

rup

Figure 6.1: Schematic picture of pulling a lipid out of a lipid bilayer with AFM pulling.Vrup is
the velocity at which the spring is retracted,Zlink is the atom to which the spring is attached and
Zspring is the location of the spring.

-pi pull.ppa
If this file is specified the pull code will be used. It contains the parameters that control what
type of calculation is done. A full explanation of all the options is given below.

-pn index.ndx
This file defines the different groups for use in all pull calculations. The groups are referred
to by name, so the index file can contain other groups that are not used as well.

-po pullout.ppa
A formatted copy of the input parameter file with the parameters that were actually used in
the run.

-pdo pull.pdo
The data file with the calculated forces (AFM pulling, constraint force) or positions (um-
brella sampling).

Definition of groups

The way the reference groups and different reference types work is summarized in figure6.2.
There are four different possibilities for the reference group.

com
The center of mass of the group given underreference group , calculated each step
from the current coordinates.

com t0
The center of mass of the group given underreference group , calculated each step
from the current coordinates, but corrected for atoms that have crossed the box. If the ref-
erence group consists of all the water molecules in the system, and a single water molecule

6.1. Calculating potentials of mean force: the pull code 113

�

�
�

�
�

Figure 6.2: Overview of the different reference group possibilities, applied to interface systems.
C is the reference group. The circles represent the center of mass of 2 groups plus the reference
group, anddc is the reference distance.

moves across the box and enters from the other side, the c.o.m. will show a slight jump.
This is simply due to the periodic boundary conditions, and shows that the center of mass
in a simulation in periodic boundary conditions is ill defined if the group used to calculate
it is e.g.a slab of liquid. If the ’real’ positions are used instead of the coordinates that have
been reset to be inside the box, the center of mass of thewholesystem is conserved.

dynamic
In a phospholipid bilayer system it may be of interest to calculate the pmf of a lipid as
function of its distance from the whole bilayer. The whole bilayer can be taken as reference
group in that case, but it might also be of interest to define the reaction coordinate for the
pmf more locally. dynamic does not use all the atoms of thereference group , but
instead only those within a cylinder with radiusr below the main group. This only works
for distances defined in 1 dimension, and the cylinder is oriented with its long axis along
this 1 dimension. A second cylinder can be defined withrc , with a linear switch function
that weighs the contribution of atoms betweenr andrc with distance. This smoothes the
effects of atoms moving in and out of the cylinder (which causes jumps in the constraint
forces).

dynamic t0
The same asdynamic , but the coordinates are corrected for boxcrossings like incom t0 .
Note that strictly speaking this is not correct if the reference group is not the whole system,
including the groups defined withgroup 1, group 2, group 3 andgroup 4.

To further smooth rapidly fluctuating distances between the reference group and the other groups,
the average distance can be constrained instead of the instanteneous distance. This is defined by
settingreflag to the number of steps to average over. However, using this option is not strictly
correct for calculating potentials of mean force from the average constraint force.

114 Chapter 6. Special Topics

When relative weightswi are used during the calculations, either due to a dynamic reference group
or by supplying weights in the input, the weights need to be scaled to conserve momentum:

w′i = wi

N∑
j=1

wj mj

/
N∑

j=1

w2
j mj (6.1)

wheremj is the mass of atomj of the group. The mass of the group, required for calculating the
constraint force, is:

M =
N∑

i=1

w′imi (6.2)

The definition of the weighted center of mass is:

rcom =
N∑

i=1

w′imi ri

/
M (6.3)

From the centers of mass the AFM, constraint or umbrella forceFcom on each group can be
calculated. The force on the center of mass of a group is redistributed to the atoms as follows:

Fi =
w′imi

M
Fcom (6.4)

6.1.3 The parameter file

General

verbose = no
If this is set toyes , a large amount of detailed information is sent tostderr , which is
only useful for diagnostic purposes. The.pdo file also becomes more detailed, which is
not necessary for normal use.

runtype = constraint
Options areafm, constraint, umbrella . This selects the type of calculation:
AFM pulling, constraint force calculation or umbrella sampling.

group 1 = MB21 1

group 2 = MB21 2

group 3 =

group 4 =
The groups with the atoms to act on. The first group is mandatory, the second optional.

reference group = OCTA
The reference group. Distances are calculated betweeengroup 1 (andgroup 2 if spec-
ified) and this group. Ife.g. the constraint force between two ions is needed, you would
specifiy group 1 as a group with 1 ion, andreference group as the other ion. If
the reference group is left blank, then AFM and umbrella sampling can be performed in
absolute coordinates.

6.1. Calculating potentials of mean force: the pull code 115

weights 1 =

weights 2 =

weights 3 =

weights 4 =

reference weights =
The relative weights for all atoms in each group. The center of mass and the force calculation
are peformed using the masses of the atoms multiplied by the weights. The weights are
scaled before use, thus only the ratios in the input matter. When no weights are given all
weights are set to one. Weights can not be used with dynamic reference groups.

reftype = com
The type of reference group. Options arecom, com t0, dynamic, dynamic t0 as
explained above.

reflag = 1
The position of the reference group can be taken as average over a number of steps, specified
by reflag (see above).

pulldim = N N Y
Selects the dimensions used for the pulling. In this example the distance is calculated using
only the z-component and pulling is performed only in the z-direction. If nothing is given
all three dimensions are used.

Dynamic reference group options

r = 0
If dynamic reference groups are selected (dynamic, dynamic t0), r is the radius of
the cylinder used to define which atoms are part of the reference group (see above).

rc = 0
With dynamic reference groups, the cylinder can be smoothly switched so that atoms that
fall betweenr andrc are weighted linearly from 1 to 0 going fromr to rc . As reasonable
initial values we suggestr = 1.0 andrc = 1.5 , but this will depend strongly on the
exact system of interest.

update = 1
The frequency with which the dynamic reference groups are recalculated. Usually there is
no reason to use anything other than 1.

Constraint run options

constraint direction =
The direction for constraining. The default is 0.0 0.0 0.0, which means no direction and thus
the distance between groups is constrained. The direction is normalized before use.

116 Chapter 6. Special Topics

constraint rate =
The rate of the change of the constraint distance in nm/ps, is 0 by default.

constraint tolerance =
The tolerance for the constraint distance, 1E-6 nm is the default.

AFM options

AFM pulling attaches a spring to the center of mass of the pulled group. This spring moves in
relation to the center of mass of the reference group. It the reference group moves, then the spring
does as well. If thereference group is left blank, then pulling will be in absolute coordinates,
with the reference group position taken to be [0 0 0].

afm rate1 =

afm rate2 =

afm rate3 =

afm rate4 =
The rate at which the spring moves in nm/ps for each group.

afm k1 =

afm k2 =

afm k3 =

afm k4 =
The force constant of the spring for each pulled group in kJ mol−1 nm−2.

afm dir1 =

afm dir2 =

afm dir3 =

afm dir4 =
Unit vector describing the direction of pulling.

afm init1 =

afm init2 =

afm init3 =

afm init4 =
Vector describing the initial position of the spring relative to the reference group. To start
a simulation with zero initial force on the pulled group, the initial position should be set to
the position of the pulled group relative to the reference group.

6.1. Calculating potentials of mean force: the pull code 117

Umbrella Sampling options

Umbrella sampling applies a simple harmonic force maintain the position of the pulled group
relative to the reference group. If the reference group moves, then the pulled group will move as
well. If the reference group is left blank, then pulling will be in absolute coordinates, with
the reference group position taken to be [0 0 0].

k1 =

k2 =

k3 =

k4 =
This option specifies the force constant for each pulled group in kJ mol−1 nm−2.

pos1 =

pos2 =

pos3 =

pos4 =
This option specifies the position that the pulled group will be restrained to, relative to the
reference group.

6.1.4 Output

Header

The pull code begins with a header file. All lines in the header file are prepended with a# symbol.

CONSTRAINT 3.0

AFM 3.0

UMBRELLA 3.0
The first line indicates the type of run and the version of the output file. Future versions of
gromacs may change the output format and the version number will be updated to reflect
this.

Component selection: 0.0 0.0 1.0
The second line shows the value ofpull dim used in the simulation.

Skip 1
The third line shows the output frequency.

Ref. Group ’ref’
The forth line shows the name of the reference group

118 Chapter 6. Special Topics

Nr. of pull groups 2
The fifth line shows the number of pulled groups.

Group 1 grp 1 0.0 0.0 1.0 0.01 500
For AFM, the sixth and further lines show the number of each pulled group, its name, the x,
y, and z components the direction vector, the pull rate, and the force constant.

Group 1 grp 1 1.2 500
For umbrella sampling, the sixth and further lines show the number of each pulled group,
its name, the position relative the pulled group, and the force constant. Note that only the
dimensions for whichpulldim is Y are output.

Group 1 grp 1 1.0
For constraint runs, the sixth and further lines show the number of each pulled group, its
name, and the initial position of the pulled group. Note that only the dimensions for which
pulldim is Y are output.

Constraint

10.5 -81.2
The output file consists of the time and the force the constraint experiences for each group.
A negative number means that the reference group and the pulled group attract each other.

AFM

10.5 3.5 3.63 3.6
The output file consists of the time, the position of the reference group, and the position of
the pulled group, and the position of the spring. The position of the pulled group and spring
are in absolute coordinates. Subtract the reference coordinate to get the position relative to
the pulled group. Note that only the dimensions for whichpulldim is Y are output.

Umbrella Sampling

10.5 0.002
The output file consists of the time, and the deviation of each pulled group from its restrained
position. Note that only the dimensions for whichpulldim is Y are output.

6.1.5 Limitations

Apart from obvious limitations that are simply not implemented (e.g. a better umbrella sampling
and analysis scheme), there is one important limitation: constraint forces canonly be calculated
between molecules or groups of molecules. If a group contains part of a molecule of which the
bondlengths are constrained, SHAKE or LINCS and the constraint force calculation here will
interfere with each other, making the results unreliable. If a constraint force is wanted between
two atoms, this can be done through the free energy perturbation code. In summary:

6.2. Removing fastest degrees of freedom 119

• pull code: between molecules or groups of molecules.

• free energy perturbation code:between single atoms.

• not possible currently: between groups of atoms that are part of a larger molecule for
which the bonds are constrained with SHAKE or LINCS.

6.1.6 Implementation

The code for the options described above can be found in the filespull.c, pullinit.c,
pullio.c, pullutil.c and the headerfilespull.h andpulls.h . This last file defines a
few datatypes,pull.h explains the main functions.

6.1.7 Future development

There are several additional features that would be useful, including more advanced umbrella sam-
pling, an analysis tool to analyse the output of the pull code, incorporation of the input parameters
and index file into thegrompp program input files, extension to more groups, more flexible defi-
nition of a reaction coordinate, extension to groups that are parts of molecules that use SHAKE or
LINCS, and a combination of the starting structure calculation with constraints for faster conver-
gence of starting structures.

6.2 Removing fastest degrees of freedom

The maximum time step in MD simulations is limited by the smallest oscillation period that can
be found in the simulated system. Bond-stretching vibrations are in their quantum-mechanical
ground state and are therefore better represented by a constraint than by a harmonic potential.

For the remaining degrees of freedom, the shortest oscillation period as measured from a simu-
lation is 13 fs for bond-angle vibrations involving hydrogen atoms. Taking as a guideline that
with a Verlet (leap-frog) integration scheme a minimum of 5 numerical integration steps should be
performed per period of a harmonic oscillation in order to integrate it with reasonable accuracy,
the maximum time step will be about 3 fs. Disregarding these very fast oscillations of period 13 fs
the next shortest periods are around 20 fs, which will allow a maximum time step of about 4 fs

Removing the bond-angle degrees of freedom from hydrogen atoms can best be done by defin-
ing them as dummy atoms instead of normal atoms. Where a normal atoms is connected to the
molecule with bonds, angles and dihedrals, a dummy atom’s position is calculated from the po-
sition of three nearby heavy atoms in a predefined manner (see also sec.4.5). For the hydrogens
in water and in hydroxyl, sulfhydryl or amine groups, no degrees of freedom can be removed, be-
cause rotational freedom should be preserved. The only other option available to slow down these
motions, is to increase the mass of the hydrogen atoms at the expense of the mass of the connected
heavy atom. This will increase the moment of inertia of the water molecules and the hydroxyl,
sulfhydryl or amine groups, without affecting the equilibrium properties of the system and with-
out affecting the dynamical properties too much. These constructions will shortly be described in
sec.6.2.1and have previously been described in full detail [64].

120 Chapter 6. Special Topics

D

d

α

d

BA C

����������
���������� ����������

��������������������
����������

����������
����������

	�	�		�	�	

�
�

�
�

����������
����������

�
���

����������
����������

����������
����������

Figure 6.3: The different types of dummy atom constructions used for hydrogen atoms. The atoms
used in the construction of the dummy atom(s) are depicted as black circles, dummy atoms as grey
ones. Hydrogens are smaller than heavy atoms.A: fixed bond angle, note that here the hydrogen
is not a dummy atom;B: in the plane of three atoms, with fixed distance;C: in the plane of three
atoms, with fixed angle and distance;D: construction for amine groups (-NH2 or -NH+

3), see text
for details.

Using both dummy atoms and modified masses, the next bottleneck is likely to be formed by the
improper dihedrals (which are used to preserve planarity or chirality of molecular groups) and
the peptide dihedrals. The peptide dihedral cannot be changed without affecting the physical be-
havior of the protein. The improper dihedrals that preserve planarity, mostly deal with aromatic
residues. Bonds, angles and dihedrals in these residues can also be replaced with somewhat elab-
orate dummy atom constructions, as will be described in sec.6.2.2[65].

All modifications described in this section can be performed using the GROMACS topology build-
ing tool pdb2gmx . Separate options exist to increase hydrogen masses, dummify all hydrogen
atoms or also dummify all aromatic residues. Note that when all hydrogen atoms are dummified,
also those inside the aromatic residues will be dummified,i.e. hydrogens in the aromatic residues
are treated differently depending on the treatment of the aromatic residues.

Parameters for the dummy constructions for the hydrogen atoms are inferred from the forcefield
parameters (vis. bond lengths and angles) directly bygrompp while processing the topology
file. The constructions for the aromatic residues are based on the bond lengths and angles for the
geometry as described in the forcefields, but these parameters are hard-coded intopdb2gmx due
to the complex nature of the construction needed for a whole aromatic group.

6.2.1 Hydrogen bond-angle vibrations

Construction of Dummy Atoms

The goal of defining hydrogen atoms as dummy atoms is to remove all high-frequency degrees
of freedom from them. In some cases not all degrees of freedom of a hydrogen atom should be
removed,e.g. in the case of hydroxyl or amine groups the rotational freedom of the hydrogen
atom(s) should be preserved. Care should be taken that no unwanted correlations are introduced
by the construction of dummy atoms,e.g.bond-angle vibration between the constructing atoms
could translate into hydrogen bond-length vibration. Additionally, since dummy atoms are by
definition massless, in order to preserve total system mass, the mass of each hydrogen atom that
is treated as dummy atom should be added to the bonded heavy atom.

6.2. Removing fastest degrees of freedom 121

ε

η

ζδ

ε

γ

ε

δ ε

δ

ε
δ

γ

ζ
ε

η

εδ

γ

Phe Tyr HisTrp

ζ

ε

ζ

εδ

γ

δδ

��������������������

��������������������

��������������������

��������������������

	�	�		�	�	
�
�

�
�

��������������������

�
���

�������������������� ����������
����������

��������������������

��������������������

��������������������

��������������������
��������������������

Figure 6.4: The different types of dummy atom constructions used for aromatic residues. The
atoms used in the construction of the dummy atom(s) are depicted as black circles, dummy atoms
as grey ones. Hydrogens are smaller than heavy atoms.A: phenylalanine;B: tyrosine (note that
the hydroxyl hydrogen isnota dummy atom);C: tryptophane;D: histidine.

Taking into account these considerations, the hydrogen atoms in a protein naturally fall into several
categories, each requiring a different approach (see also Fig.6.3).

• hydroxyl (-OH) or sulfhydryl (-SH) hydrogen: The only internal degree of freedom in a
hydroxyl group that can be constrained is the bending of theC-O-H angle. This angle is
fixed by defining an additional bond of appropriate length, see Fig.6.3A. This removes the
high frequency angle bending, but leaves the dihedral rotational freedom. The same goes for
a sulfhydryl group. Note that in these cases the hydrogen is not treated as a dummy atom.

• single amine or amide (-NH-) and aromatic hydrogens (-CH-): The position of these hy-
drogens cannot be constructed from a linear combination of bond vectors, because of the
flexibility of the angle between the heavy atoms. Instead, the hydrogen atom is positioned
at a fixed distance from the bonded heavy atom on a line going through the bonded heavy
atom and a point on the line through both second bonded atoms, see Fig.6.3B.

• planar amine (-NH2) hydrogens:The method used for the single amide hydrogen is not well
suited for planar amine groups, because no suitable two heavy atoms can be found to define
the direction of the hydrogen atoms. Instead, the hydrogen is constructed at a fixed distance
from the nitrogen atom, with a fixed angle to the carbon atom, in the plane defined by one
of the other heavy atoms, see Fig.6.3C.

• amine group (umbrella-NH2 or -NH+
3) hydrogens:Amine hydrogens with rotational free-

dom cannot be constructed as dummy atoms from the heavy atoms they are connected to,
since this would result in loss of the rotational freedom of the amine group. To preserve
the rotational freedom while removing the hydrogen bond-angle degrees of freedom, two
“dummy masses” are constructed with the same total mass, moment of inertia (for rotation
around theC-N bond) and center of mass as the amine group. These dummy masses have
no interaction with any other atom, except for the fact that they are connected to the carbon
and to each other, resulting in a rigid triangle. From these three particles the positions of the
nitrogen and hydrogen atoms are constructed as linear combinations of the two carbon-mass
vectors and their outer product, resulting in an amine group with rotational freedom intact,
but without other internal degrees of freedom. See Fig.6.3D.

122 Chapter 6. Special Topics

6.2.2 Out-of-plane vibrations in aromatic groups

The planar arrangements in the side chains of the aromatic residues lends itself perfectly to a
dummy-atom construction, giving a perfectly planar group without the inherently instable con-
straints that are necessary to keep normal atoms in a plane. The basic approach is to define three
atoms or dummy masses with constraints between them to fix the geometry and create the rest of
the atoms as simple dummy type 3 atoms (see sec.4.5) from these three. Each of the aromatic
residues require a different approach:

• Phenylalanine:Cγ , Cε1 andCε2 are kept as normal atoms, but with each a mass of one third
the total mass of the phenyl group. See Fig.6.3A.

• Tyrosine: The ring is treated identical to the phenylalanine ring. Additionally, constraints
are defined betweenCε1 andCε2 andOη. The original improper dihedral angles will keep
both triangles (one for the ring and one withOη) in a plane, but due to the larger moments
of inertia this construction will be much more stable. The bond angle in the hydroxyl group
will be constrained by a constraint betweenCγ andHη, note that the hydrogen is not treated
as a dummy atom. See Fig.6.3B.

• Tryptophane:Cβ is kept as a normal atom and two dummy masses are created at the center
of mass of each of the rings, each with a mass equal to the total mass of the respective ring
(Cδ2 andCε2 are each counted half for each ring). This keeps the overall center of mass and
the moment of inertia almost (but not quite) equal to what it was. See Fig.6.3C.

• Histidine: Cγ , Cε1 andNε2 are kept as normal atoms, but with masses redistributed such
that the center of mass of the ring is preserved. See Fig.6.3D.

6.3 Viscosity calculation

The shear viscosity is a property of liquid which can be determined easily by experiment. It is use-
ful for parameterizing the forcefield, because it is a kinetic property, while most other properties
which are used for parameterization are thermodynamic. The viscosity is also an important prop-
erty, since it influences the rates of conformational changes of molecules solvated in the liquid.

The viscosity can be calculated from an equilibrium simulation using an Einstein relation:

η =
1
2
V

kBT
lim
t→∞

d
dt

〈(∫ t0+t

t0
Pxz(t′)dt′

)2
〉

t0

(6.5)

This can be done withg energy . This method converges very slowly [66]. A nanosecond
simulation might not be long enough for an accurate determinination of the viscoity. The result is
very dependent on the treatment of the electrostatics. Using a (short) cut-off results in large noise
on the off-diagonal pressure elements, which can increase the calculated viscosity by an order of
magnitude.

GROMACS also has a non-equilibrium method for determining the viscosity [66]. This makes use
of the fact that energy, which is fed into system by external forces, is dissipated through viscous

6.3. Viscosity calculation 123

friction. The generated heat is removed by coupling to a heat bath. For a Newtonian liquid adding
a small force will result in a velocity gradient according to the following equation:

ax(z) +
η

ρ

∂2vx(z)
∂z2

= 0 (6.6)

here we have applied an accelerationax(z) in the x-direction, which is a function of thez-
coordinate. In GROMACS the acceleration profile is:

ax(z) = A cos
(

2πz
lz

)
(6.7)

wherelz is the height of the box. The generated velocity profile is:

vx(z) = V cos
(

2πz
lz

)
(6.8)

V = A
ρ

η

(
lz
2π

)2

(6.9)

The viscosity can be calculated fromA andV :

η =
A

V
ρ

(
lz
2π

)2

(6.10)

In the simulationV is defined as:

V =

N∑
i=1

mivi,x2 cos
(

2πz
lz

)
N∑

i=1

mi

(6.11)

The generated velocity profile is not coupled to the heat bath, moreover the velocity profile is
excluded from the kinetic energy. One would likeV to be as large as possible to get good statistics.
However the shear rate should not be so high that the system gets too far from equilibrium. The
maximum shear rate occurs where the cosine is zero, the rate being:

shmax = max
z

∣∣∣∣∂vx(z)
∂z

∣∣∣∣ = A
ρ

η

lz
2π

(6.12)

For a simulation with:η = 10−3 [kg m−1 s−1], ρ = 103 [kg m−3] and lz = 2π [nm], shmax =
1 [ps nm−1] A. This shear rate should be smaller than one over the longest correlation time in the
system. For most liquids this will be the rotation correlation time, which is around 10 picoseconds.
In this caseA should be smaller than 0.1 [nm ps−2]. When the shear rate is too high, the observed
viscosity will be too low. BecauseV is proportional to the square of the box height, the optimal
box is elongated in thez-direction. In general a simulation length of 100 picoseconds is enough
to obtain an accurate value for the viscosity.

The heat generated by the viscous friction is removed by coupling to a heat bath. Because this
coupling is not instantaneous the real temperature of the liquid will be slightly lower than the

124 Chapter 6. Special Topics

observed temperature. Berendsen derived this temperature shift[20], which can be written in terms
of the shear rate as:

Ts =
η τ

2ρCv
sh2max (6.13)

whereτ is the coupling time for the Berendsen thermostat andCv is the heat capacity. Using
the values of the example above,τ = 10−13 [s] andCv = 2 · 103 [J kg−1 K−1], we get: Ts =
25 [K ps−2] sh2

max. When we want the shear rate to be smaller than1/10 [ps−1], Ts is smaller than
0.25 [K], which is negligible.

Note that the system has to build up the velocity profile when starting from an equilibrium state.
This build-up time is of the order of the correlation time of the liquid.

Two quantities are written to the energy file, along with their averages and fluctuations:V and1/η
as obtained from (6.10).

6.4 Tabulated functions

6.4.1 Cubic splines for potentials

In some of the inner loops of GROMACS lookup tables are used for computation of potential and
forces. The tables are interpolated using a cubic spline algorithm. There are separate tables for
electrostatic, dispersion and repulsion interactions, but for the sake of caching performance these
have been combined into a single array. The cubic spline interpolation looks like this:

y(x) = ηyi + εyi+1 +
h2

6

[
(η3 − η)y

′′
i + (ε3 − ε)y

′′
i+1

]
(6.14)

whereε = 1-η, andyi andy
′′
i are the tabulated values of a functiony(x) and its second derivative

respectively. Furthermore,

h = xi+1 − xi (6.15)

ε = (x− xi)/h (6.16)

so that0 ≤ ε < 1. eqn.6.14can be rewritten as

y(x) = yi + ε

(
yi+1 − yi −

h2

6

(
2y

′′
i + y

′′
i+1

))
+ ε2

(
h2

2
y
′′
i

)
+ ε3

h2

6

(
y
′′
i+1 − y

′′
i

)
(6.17)

Note that the x-dependence is completely inε. This can abbreviated to

y(x) = yi + εFi + ε2Gi + ε3Hi (6.18)

From this we can calculate the derivative in order to determine the forces:

dy(x)
dx

=
dy(x)

dε
dε
dx

= (Fi + 2εGi + 3ε2Hi)/h (6.19)

If we store in the tableyi, Fi, Gi andHi we need a table of length 4n. The number of points
per nanometer is 500 and 2000 for single and double precision compiled versions of GROMACS,
respectively. The relative error is less then10−4 when n = 500 points/nm. The force routines get a
scaling factors as a parameter that is equal to the number of points per nm. (Note thath is s−1).

The algorithm goes a little something like this:

6.4. Tabulated functions 125

1. Calculate distance vector (rij) and distance rij

2. Multiply r ij by s and truncate to an integer valuen0 to get a table index

3. Calculate fractional component (ε = srij − n0) andε2

4. Do the interpolation to calculate the potentialV and the the scalar forcef

5. Calculate the vector forceF by multiplyingf with rij

The tables are stored internally as yi, Fi, Gi, Hi in the order coulomb, dispersion, repulsion. In
total there are 12 values in each table entry. However, as evident from eqn.6.14, only two values
(y andy′′) are necessary to determine each of the repulsion, dispersion and Coulomb potentials;
from theseyi, Fi, Gi andHi can be determined. Hence the GROMACS user only has to specify
y andy′′, for each of these, leading to a total of six functions to be specified in the input to the
mdrun program.

Note that table lookup is significantlyslowerthan computation of the most simple Lennard-Jones
and Coulomb interaction. However, it is much faster than the shifted coulomb function used in
conjunction with the PPPM method. Finally it is much easier to modify a table for the potential
(and get a graphical representation of it) than to modify the inner loops of the MD program.

6.4.2 User specified potential functions

You can also use your own potential functions without editing the GROMACS code. The potential
function should be according to the following equation

V (rij) =
qiqj
4πε0

f(rij) + C6g(rij) + C12h(rij) (6.20)

with f,g,h user defined functions. Note that if g(r) represents a normal dispersion interaction, g(r)
should be< 0. C6, C12 and the charges are read from the topology. Also note that combination
rules are only supported for Lennard Jones and Buckingham, and that your tables should match
the parameters in the binary topology.

When you add the following lines in your.mdp file:

rlist = 1.0
coulombtype = User
rcoulomb = 1.0
vdwtype = User
rvdw = 1.0

the MD program will read a single file (the name can be changed with option-table) with seven
columns of table lookup data in the order:x, f(x), f ′′(x), g(x), g′′(x), h(x), h′′(x). Thex should
run from 0 torc + 1 (the value table extension can be changed in themdp file). You can choose
the spacing you like; for the standard tables GROMACS using a spacing of 0.002 and 0.0005 nm
when you run in single and double precision, respectively. In this contextrc denotes the maximum
of the two cut-offsrvdw andrcoulomb (see above). These variables need not be the same (and

126 Chapter 6. Special Topics

need not be 1.0 either). Some functions used for potentials contain a singularity at x = 0, but
since atoms are normally not closer to each other than 0.1 nm, the function value at x = 0 is not
important. Finally, it is also possible to combine a standard Coulomb with a modified LJ potential
(or vice versa). One then specifies e.g. coulombtype = Cut-off or coulombtype = PME, combined
with vdwtype = User. The table file must always contain the 7 columns however, and meaningful
data (i.e. not zeroes) must be entered in all columns. A number of pre-built table files can be found
in the GMXLIB directory, for 6-8, 6-9, 6-10, 6-11, 6-12 Lennard Jones potentials combined with
a normal Coulomb.

Chapter 7

Run parameters and
Programs

7.1 Online and html manuals

All the information in this chapter can also be found in HTML format in your GROMACS data
directory. The path depends on where your files are installed, but the default location is

/usr/local/gromacs/share/html/online.html
Or, if you installed from Linux packages it can be found as

/usr/local/share/gromacs/html/online.html
You can also use the online from our web site,

www.gromacs.org/documentation/reference3.0/online.html

In addition, we install standard UNIX manuals for all the programs. If you have sourced the
GMXRCscript in the GROMACS binary directory for your host they should already be present in
your$MANPATH, and you should be able to type e.g.man grompp.

The program manual pages can also be found in AppendixE in this manual.

7.2 File types

Table7.1 lists the file types used by GROMACS along with a short description, and you can find
a more detail description for each file in your HTML reference, or in our online version.

GROMACS files written in xdr format can be read on any architecture with GROMACS version
1.6 or later if the configuration script found the XDR libraries on your system. They should always
be present on UNIX since they are necessary for NFS support.

http://www.gromacs.org/documentation/reference_3.0/online.html

128 Chapter 7. Run parameters and Programs

Default Default
Name Ext. Type Option Description

atomtp.atp Asc Atomtype file used by pdb2gmx
eiwit.brk Asc -f Brookhaven data bank file

nnnice.dat Asc Generic data file
user.dlg Asc Dialog Box data for ngmx

sam.edi Asc ED sampling input
sam.edo Asc ED sampling output

ener.edr Generic energy:edr ene
ener.edr xdr Energy file in portable xdr format
ener.ene Bin Energy file

eiwit.ent Asc -f Entry in the protein date bank
plot.eps Asc Encapsulated PostScript (tm) file

gtraj.g87 Asc Gromos-87 ASCII trajectory format
conf.g96 Asc -c Coordinate file in Gromos-96 format
conf.gro Asc -c Coordinate file in Gromos-87 format
conf.gro -c Generic structure:gro g96 pdb tpr tpb tpa

out.gro -o Generic structure:gro g96 pdb
polar.hdb Asc Hydrogen data base

topinc.itp Asc Include file for topology
run.log Asc -l Log file

ps.m2p Asc Input file for mat2ps
ss.map Asc File that maps matrix data to colors
ss.mat Asc Matrix Data file

grompp.mdp Asc -f grompp input file with MD parameters
hessian.mtx Bin -m Hessian matrix

index.ndx Asc -n Index file
hello.out Asc -o Generic output file
eiwit.pdb Asc -f Protein data bank file

pull.pdo Asc Pull data output
pull.ppa Asc Pull parameters

residue.rtp Asc Residue Type file used by pdb2gmx
doc.tex Asc -o LaTeX file

topol.top Asc -p Topology file
topol.tpa Asc -s Ascii run input file
topol.tpb Bin -s Binary run input file
topol.tpr -s Generic run input:tpr tpb tpa
topol.tpr -s Structure+mass(db):tpr tpb tpa gro g96 pdb
topol.tpr xdr -s Portable xdr run input file

traj.trj Bin Trajectory file (architecture specific)
traj.trr Full precision trajectory:trr trj
traj.trr xdr Trajectory in portable xdr format
root.xpm Asc X PixMap compatible matrix file
traj.xtc -f Generic trajectory:xtc trr trj gro g96 pdb
traj.xtc xdr Compressed trajectory (portable xdr format)

graph.xvg Asc -o xvgr/xmgr file

Table 7.1: The GROMACS file types.

7.3. Run Parameters 129

7.3 Run Parameters

7.3.1 General

Default values are given in parentheses. The first option is always the default option. Units are
given in square brackets The difference between a dash and an underscore is ignored. A sample
.mdp file is available. This should be appropriate to start a normal simulation. Edit it to suit your
specific needs and desires.

7.3.2 Preprocessing

title:
this is redundant, so you can type anything you want

cpp: (/lib/cpp)
your preprocessor

include:
directories to include in your topology. Format:
-I/home/john/my lib -I../more lib

define: ()
defines to pass to the preprocessor, default is no defines. You can use any defines to control
options in your customized topology files. Options that are already available by default are:

-DFLEX SPC
Will tell grompp to include FLEXSPC in stead of SPC into your topology, this is
necessary to makeconjugate gradientsor l-bfgs minimization work and will allow
steepest descentto minimize further.

-DPOSRE
Will tell grompp to include posre.itp into your topology, used for position restraints.

7.3.3 Run control

integrator:

md
A leap-frog algorithm for integrating Newton’s equations of motion.

sd
A leap-frog stochastic dynamics integrator. The temperature for one or more groups of
atoms (tc grps) is set withref t [K], the inverse friction constant for each group is set
with tau t [ps]. The parametertcoupl is ignored. The random generator is initialized
with ld seed.
NOTE: temperature deviations decay twice as fast as with a Berendsen thermostat with
the sametau t.

130 Chapter 7. Run parameters and Programs

bd
An Euler integrator for Brownian or position Langevin dynamics, the velocity is the
force divided by a friction coefficient (bd fric [amu ps−1]) plus random thermal noise
(bd temp [K]). When bd fric =0, the friction coefficient for each particle is calcu-
lated as mass/tau t, as for the integratorsd . The random generator is initialized with
ld seed.

The following algorithms are not integrators, but selected using
the integrator tag anyway

steep
A steepest descent algorithm for energy minimization. The maximum step size is
emstep[nm], the tolerance isemtol [kJ mol−1 nm−1].

cg
A conjugate gradient algorithm for energy minimization, the tolerance isemtol [kJ
mol−1 nm−1]. CG is more efficient when a steepest descent step is done every once
in a while, this is determined bynstcgsteep. For a minimization prior to a normal
mode analysis, which requires a very high accuracy, GROMACS should be compiled
in double precision.

l-bfgs
A quasi-Newtonian algorithm for energy minimization according to the low-memory
Broyden-Fletcher-Goldfarb-Shanno approach. In practice this seems to converge faster
than Conjugate Gradients, but due to the correction steps necessary it is not (yet) par-
allelized.

nm
Normal mode analysis is performed on the structure in thetpr file. GROMACS
should be compiled in double precision.

tinit: (0) [ps]
starting time for your run (only makes sense for integratorsmd, sd andbd)

dt: (0.001) [ps]
time step for integration (only makes sense for integratorsmd, sd andbd)

nsteps: (0)
maximum number of steps to integrate

init step: (0)
The starting step. The time at an step i in a run is calculated as: t =tinit + dt *(init step
+ i). The free-energy lambda is calculated as: lambda =init lambda + delta lambda *(init step
+ i). Also non-equilibrium MD parameters can depend on the step number. Thus for exact
restarts or redoing part of a run it might be necessary to setinit step to the step number
of the restart frame.tpbconv does this automatically.

comm mode:

Linear
Remove center of mass translation

7.3. Run Parameters 131

Angular
Remove center of mass translation and rotation around the center of mass

No
No restriction on the center of mass motion

nstcomm: (1) [steps]
frequency for center of mass motion removal

comm grps:
group(s) for center of mass motion removal, default is the whole system

7.3.4 Langevin dynamics

bd temp: (300) [K]
temperature in Brownian dynamics run (controls thermal noise level). Whenbd fric =0,
ref t is used instead.

bd fric: (0) [amu ps−1]
Brownian dynamics friction coefficient. Whenbd fric =0, the friction coefficient for each
particle is calculated as mass/tau t.

ld seed: (1993) [integer]
used to initialize random generator for thermal noise for stochastic and Brownian dynam-
ics. Whenld seedis set to -1, the seed is calculated as(time() + getpid()) %
1000000 . When running on multiple processors, each processor uses a seed equal to
ld seedplus the processor number.

7.3.5 Energy minimization

emtol: (100.0) [kJ mol−1 nm−1]
the minimization is converged when the maximum force is smaller than this value

emstep: (0.01) [nm]
initial step-size

nstcgsteep: (1000) [steps]
frequency of performing 1 steepest descent step while doing conjugate gradient energy min-
imization.

nbfgscorr: (10)
Number of correction steps to use for L-BFGS minimization. A higher number is (at least
theoretically) more accurate, but slower.

7.3.6 Shell Molecular Dynamics

When doing shell molecular dynamics the positions of the shells are optimized at every time step
until either the RMS force on the shells is less than emtol, or a maximum number of iterations
(niter) has been reached

132 Chapter 7. Run parameters and Programs

emtol: (100.0) [kJ mol−1 nm−1]
the minimization is converged when the maximum force is smaller than this value. For shell
MD this value should be 1.0 at most, but since the variable is used for energy minimization
as well the default is 100.0.

niter: (20)
maximum number of iterations for optimizing the shell positions.

7.3.7 Output control

nstxout: (100) [steps]
frequency to write coordinates to output trajectory file, the last coordinates are always writ-
ten

nstvout: (100) [steps]
frequency to write velocities to output trajectory, the last velocities are always written

nstfout: (0) [steps]
frequency to write forces to output trajectory.

nstlog: (100) [steps]
frequency to write energies to log file, the last energies are always written

nstenergy: (100) [steps]
frequency to write energies to energy file, the last energies are always written

nstxtcout: (0) [steps]
frequency to write coordinates to xtc trajectory

xtc precision: (1000) [real]
precision to write to xtc trajectory

xtc grps:
group(s) to write to xtc trajectory, default the whole system is written (ifnstxtcout is larger
than zero)

energygrps:
group(s) to write to energy file

7.3.8 Neighbor searching

nstlist: (10) [steps]
Frequency to update the neighbor list (and the long-range forces, when using twin-range
cut-off’s). When this is 0, the neighbor list is made only once.

ns type:

7.3. Run Parameters 133

grid
Make a grid in the box and only check atoms in neighboring grid cells when construct-
ing a new neighbor list everynstlist steps. In large systems grid search is much faster
than simple search.

simple
Check every atom in the box when constructing a new neighbor list everynstlist steps.

pbc:

xyz
Use periodic boundary conditions in all directions.

no
Use no periodic boundary conditions, ignore the box. To simulate without cut-offs, set
all cut-offs to 0 andnstlist=0.

rlist: (1) [nm]
cut-off distance for the short-range neighbor list

7.3.9 Electrostatics and VdW

coulombtype:

Cut-off
Twin range cut-off’s with neighborlist cut-offrlist and Coulomb cut-offrcoulomb,
wherercoulomb > rlist . The dielectric constant is set withepsilon r .

Ewald
Classical Ewald sum electrostatics. Usee.g. rlist =0.9, rcoulomb=0.9. The highest
magnitude of wave vectors used in reciprocal space is controlled byfourierspacing.
The relative accuracy of direct/reciprocal space is controlled byewald rtol .
NOTE: Ewald scales as O(N3/2) and is thus extremely slow for large systems. It is
included mainly for reference - in most cases PME will perform much better.

PME
Fast Particle-Mesh Ewald electrostatics. Direct space is similar to the Ewald sum,
while the reciprocal part is performed with FFTs. Grid dimensions are controlled with
fourierspacing and the interpolation order withpme order. With a grid spacing of
0.1 nm and cubic interpolation the electrostatic forces have an accuracy of 2-3e-4.
Since the error from the vdw-cutoff is larger than this you might try 0.15 nm. When
running in parallel the interpolation parallelizes better than the FFT, so try decreasing
grid dimensions while increasing interpolation.

PPPM
Particle-Particle Particle-Mesh algorithm for long range electrostatic interactions. Use
for examplerlist =0.9 , rcoulomb=0.9 . The grid dimensions are controlled byfouri-
erspacing. Reasonable grid spacing for PPPM is 0.05-0.1 nm. SeeShift for the
details of the particle-particle potential.

NOTE: the pressure in incorrect when using PPPM.

134 Chapter 7. Run parameters and Programs

Reaction-Field
Reaction field with Coulomb cut-offrcoulomb, wherercoulomb > rlist . The di-
electric constant beyond the cut-off isepsilon r . The dielectric constant can be set to
infinity by settingepsilon r=0.

Generalized-Reaction-Field
Generalized reaction field with Coulomb cut-offrcoulomb, wherercoulomb > rlist .
The dielectric constant beyond the cut-off isepsilon r . The ionic strength is computed
from the number of charged (i.e.with non zero charge) charge groups. The temperature
for the GRF potential is set withref t [K].

Shift
The Coulomb potential is decreased over the whole range and the forces decay smoothly
to zero betweenrcoulomb switch andrcoulomb. The neighbor search cut-offrlist
should be 0.1 to 0.3 nm larger thanrcoulomb to accommodate for the size of charge
groups and diffusion between neighbor list updates.

Switch
The Coulomb potential is normal out torcoulomb switch, after which it is switched
off to reach zero atrcoulomb. Both the potential and force functions are continuously
smooth, but be aware that all switch functions will give rise to a bulge (increase) in the
force (since we are switching the potential). The neighbor search cut-offrlist should
be 0.1 to 0.3 nm larger thanrcoulomb to accommodate for the size of charge groups
and diffusion between neighbor list updates.

User
mdrun will now expect to find a filetable.xvg with user-defined potential func-
tions for repulsion, dispersion and Coulomb. This file should contain 7 columns: thex
value,f(x) , -f (2)(x) , g(x) , -g (2)(x) , h(x) , -h (2)(x) , wheref (2)(x) denotes
the2nd derivative of functionf(x) with respect tox . f(x) is the Coulomb function,
g(x) the dispersion function and h(x) the repulsion function. Thex values should
run from 0 to the largest cut-off distance +table-extensionand should be uniformly
spaced. The optimal spacing, which is used for non-user tables, is0.002 [nm] when
you run in single precision or0.0005 [nm] when you run in double precision. The
function value atx=0 is not important. More information is in the printed manual.

rcoulomb switch: (0) [nm]
where to start switching the Coulomb potential

rcoulomb: (1) [nm]
distance for the Coulomb cut-off

epsilon r: (1)
dielectric constant

vdwtype:

Cut-off
Twin range cut-off’s with neighbor list cut-offrlist and VdW cut-offrvdw , where
rvdw > rlist .

7.3. Run Parameters 135

Shift
The LJ (not Buckingham) potential is decreased over the whole range and the forces
decay smoothly to zero betweenrvdw switch andrvdw . The neighbor search cut-off
rlist should be 0.1 to 0.3 nm larger thanrvdw to accommodate for the size of charge
groups and diffusion between neighbor list updates.

Switch
The LJ (not Buckingham) potential is normal out torvdw switch, after which it is
switched off to reach zero atrvdw . Both the potential and force functions are continu-
ously smooth, but be aware that all switch functions will give rise to a bulge (increase)
in the force (since we are switching the potential). The neighbor search cut-offrlist
should be 0.1 to 0.3 nm larger thanrvdw to accommodate for the size of charge groups
and diffusion between neighbor list updates.

User
See above The function value atx=0 is not important. When you want to use LJ
correction, make sure thatrvdw corresponds to the cut-off in the user-defined function.

rvdw switch: (0) [nm]
where to start switching the LJ potential

rvdw: (1) [nm]
distance for the LJ or Buckingham cut-off

DispCorr:

no
don’t apply any correction

EnerPres
apply long range dispersion corrections for Energy and Pressure

Ener
apply long range dispersion corrections for Energy only

table-extension: (1) [nm]
Extension of the non-bonded potential lookup tables beyond the largest cut-off distance. The
value should be large enough to account for charge group sizes and the diffusion between
neighbor-list updates. This value also specifies the length of the lookup tables for the 1-4
interactions, which are always tabulated irrespective of the use of tables for the non-bonded
interactions.

fourierspacing: (0.12) [nm]
The maximum grid spacing for the FFT grid when using PPPM or PME. For ordinary Ewald
the spacing times the box dimensions determines the highest magnitude to use in each di-
rection. In all cases each direction can be overridden by entering a non-zero value for
fourier n* .

fourier nx (0) ; fourier ny (0) ; fourier nz: (0)
Highest magnitude of wave vectors in reciprocal space when using Ewald. Grid size when
using PPPM or PME. These values overridefourierspacing per direction. The best choice
is powers of 2, 3, 5 and 7. Avoid large primes.

136 Chapter 7. Run parameters and Programs

pme order (4)
Interpolation order for PME. 4 equals cubic interpolation. You might try 6/8/10 when run-
ning in parallel and simultaneously decrease grid dimension.

ewald rtol (1e-5)
The relative strength of the Ewald-shifted direct potential at the cutoff is given byewald rtol .
Decreasing this will give a more accurate direct sum, but then you need more wave vectors
for the reciprocal sum.

ewald geometry: (3d)
The geometry to use for Ewald summations.3d means the sum is performed in all three
dimensions. If your system has a slab geometry in the x-y plane you can try to increase box
z dimension and use the3dc geometry. The reciprocal sum is still performed in 3d, but a
force and potential correction applied in the z dimension to produce a pseudo-2d summation.
In the future there might also be a true2d option, but this is not working yet.

surface epsilon: (0)
This controls the dipole correction to the Ewald summation in 3d. The default value of zero
means it is turned off. Turn it on by setting it to the value of the relative permittivity of the
imaginary surface around your infinite system. Be careful - you shouldn’t use this if you
have free mobile charges in your system. This value does not affect the slab 3DC variant of
the long range corrections.

optimize fft:

no
Don’t calculate the optimal FFT plan for the grid at startup.

yes
Calculate the optimal FFT plan for the grid at startup. This saves a few percent for
long simulations, but takes a couple of minutes at start.

7.3.10 Temperature coupling

tcoupl:

no
No temperature coupling.

berendsen
Temperature coupling with a Berendsen-thermostat to a bath with temperatureref t
[K], with time constanttau t [ps]. Several groups can be coupled separately, these are
specified in thetc grps field separated by spaces.

nose-hoover
Temperature coupling with a by using a Nose-Hoover extended ensemble. The refer-
ence temperature and coupling groups are selected as above, but in this casetau t [ps]
controls the period of the temperature fluctuations at equilibrium, which is slightly
different from a relaxation time.

7.3. Run Parameters 137

tc grps:
groups to couple separately to temperature bath

tau t: [ps]
time constant for coupling (one for each group in tcgrps)

ref t: [K]
reference temperature for coupling (one for each group in tcgrps)

7.3.11 Pressure coupling

pcoupl:

no
No pressure coupling. This means a fixed box size.

berendsen
Exponential relaxation pressure coupling with time constanttau p [ps]. The box is
scaled every timestep. It has been argued that this does not yield a correct thermody-
namic ensemble, but it is the most efficient way to scale a box at the beginning of a
run.

Parrinello-Rahman
Extended-ensemble pressure coupling where the box vectors are subject to an equation
of motion. The equation of motion for the atoms is coupled to this. No instantaneous
scaling takes place. As for Nose-Hoover temperature coupling the time constanttau p
[ps] is the period of pressure fluctuations at equilibrium. This is probably a better
method when you want to apply pressure scaling during data collection, but beware
that you can get very large oscillations if you are starting from a different pressure.

pcoupltype:

isotropic
Isotropic pressure coupling with time constanttau p [ps]. The compressibility and
reference pressure are set withcompressibility [bar−1] and ref p [bar], one value is
needed.

semiisotropic
Pressure coupling which is isotropic in the x and y direction, but different in the z
direction. This can be useful for membrane simulations. 2 values are needed for x/y
and z directions respectively.

anisotropic
Idem, but 6 values are needed for xx, yy, zz, xy/yx, xz/zx and yz/zy components
respectively. When the off-diagonal compressibilities are set to zero, a rectangular box
will stay rectangular. Beware that anisotropic scaling can lead to extreme deformation
of the simulation box.

surface-tension
Surface tension coupling for surfaces parallel to the xy-plane. Uses normal pressure

138 Chapter 7. Run parameters and Programs

coupling for the z-direction, while the surface tension is coupled to the x/y dimen-
sions of the box. The firstref p value is the reference surface tension times the num-
ber of surfaces [bar nm], the second value is the reference z-pressure [bar]. The two
compressibility [bar−1] values are the compressibility in the x/y and z direction re-
spectively. The value for the z-compressibility should be reasonably accurate since it
influences the converge of the surface-tension, it can also be set to zero to have a box
with constant height.

triclinic
Fully dynamic box - supported, but experimental. You should provide six values for
the compressibility and reference pressure.

tau p: (1) [ps]
time constant for coupling

compressibility: [bar−1]
compressibility (NOTE: this is now really in bar−1) For water at 1 atm and 300 K the
compressibility is 4.5e-5 [bar−1].

ref p: [bar]
reference pressure for coupling

7.3.12 Simulated annealing

Simulated annealing is controlled separately for each temperature group in Gromacs. The refer-
ence temperature is a piecewise linear function, but you can use an arbitrary number of points
for each group, and choose either a single sequence or a periodic behaviour for each group. The
actual annealing is performed by dynamically changing the reference temperature used in the ther-
mostat algorithm selected, so remember that the system will usually not instantaneously reach the
reference temperature!

annealing:
Type of annealing for each temperature group
no

No simulated annealing - just couple to reference temperature value.

single
A single sequence of annealing points. If your simulation is longer than the time of
the last point, the temperature will be coupled to this constant value after the annealing
sequence has reached the last time point.

periodic
The annealing will start over at the first reference point once the last reference time is
reached. This is repeated until the simulation ends.

annealing npoints:
A list with the number of annealing reference/control points used for each temperature
group. Use 0 for groups that are not annealed. The number of entries should equal the
number of temperature groups.

7.3. Run Parameters 139

annealing time:
List of times at the annealing reference/control points for each group. If you are using
periodic annealing, the times will be used modulo the last value,i.e. if the values are 0, 5,
10, and 15, the coupling will restart at the 0ps value after 15ps, 30ps, 45ps, etc. The number
of entries should equal the sum of the numbers given in annealingnpoints.

annealing temp:
List of temperatures at the annealing reference/control points for each group. The number
of entries should equal the sum of the numbers given in annealingnpoints.

Confused? OK, let’s use an example. Assume you have two temperature groups, set the
group selections toannealing = single periodic , the number of points of each
group toannealing npoints = 3 4 , the times toannealing time = 0 3 6
0 2 4 6 and finally temperatures toannealing temp = 298 280 270 298 320
320 298 . The first group will be coupled to 298K at 0ps, but the reference temperature
will drop linearly to reach 280K at 3ps, and then linearly between 280K and 270K from 3ps
to 6ps. After this is stays constant, at 270K. The second group is coupled to 298K at 0ps,
it increases linearly to 320K at 2ps, where it stays constant until 4ps. Between 4ps and 6ps
it decreases to 298K, and then it starts over with the same pattern again,i.e. rising linearly
from 298K to 320K between 6ps and 8ps. Check the summary printed by grompp if you are
unsure!

7.3.13 Velocity generation

gen vel:

no
Do not generate velocities at startup. The velocities are set to zero when there are no
velocities in the input structure file.

yes
Generate velocities according to a Maxwell distribution at temperaturegen temp [K],
with random seedgen seed. This is only meaningful with integratormd.

gen temp: (300) [K]
temperature for Maxwell distribution

gen seed: (173529) [integer]
used to initialize random generator for random velocities, whengen seedis set to -1, the
seed is calculated as(time() + getpid()) % 1000000

7.3.14 Bonds

constraints:

none
No constraints,i.e.bonds are represented by a harmonic or a Morse potential (depend-
ing on the setting ofmorse) and angles by a harmonic potential.

140 Chapter 7. Run parameters and Programs

hbonds
Only constrain the bonds with H-atoms.

all-bonds
Constrain all bonds.

h-angles
Constrain all bonds and constrain the angles that involve H-atoms by adding bond-
constraints.

all-angles
Constrain all bonds and constrain all angles by adding bond-constraints.

constraint algorithm:

lincs
LINear Constraint Solver. The accuracy in set withlincs order, which sets the num-
ber of matrices in the expansion for the matrix inversion, 4 is enough for a ”normal”
MD simulation, 8 is needed for BD with large time-steps. After the matrix inversion
correction the algorithm does an iterative correction to compensate for lengthening
due to rotation. The number of such iterations can be controlled withlincs iter . The
accuracy of the constraints is printed to the log file everynstlogsteps. If a bond rotates
more thanlincs warnangle [degrees] in one step, a warning will be printed both to the
log file and tostderr . Lincs should not be used with coupled angle constraints.

shake
Shake is slower and less stable than Lincs, but does work with angle constraints. The
relative tolerance is set withshake tol, 0.0001 is a good value for ”normal” MD.

unconstrained start:

no
apply constraints to the start configuration

yes
do not apply constraints to the start configuration

shake tol: (0.0001)
relative tolerance for shake

lincs order: (4)
Highest order in the expansion of the constraint coupling matrix.

lincs iter: (1)
Number of iterations to correct for rotational lengthening in Lincs. For normal runs a single
step is sufficient, but for NVE runs where you want to conserve energy accurately you
might want to increase it to 2, and for energy minimization with constraints it is sometimes
necessary to use 4 or even 8 (double precision) iteration steps.

lincs warnangle: (30) [degrees]
maximum angle that a bond can rotate before Lincs will complain

7.3. Run Parameters 141

morse:

no
bonds are represented by a harmonic potential

yes
bonds are represented by a Morse potential

7.3.15 Energy group exclusions

energygrp excl:
Pairs of energy groups for which all non-bonded interactions are excluded. An example: if
you have two energy groupsProtein andSOL, specifying

energy excl = Protein Protein SOL SOL

would give only the non-bonded interactions between the protein and the solvent. This is
especially useful for speeding up energy calculations withmdrun -rerun and for exclud-
ing interactions within frozen groups.

7.3.16 NMR refinement

disre:

no
no distance restraints (ignore distance restraint information in topology file)

simple
simple (per-molecule) distance restraints, ensemble averaging can be performed with
mdrun -multi

ensemble
distance restraints over an ensemble of molecules in one simulation box, should only
be used for special cases, such as dimers

disre weighting:

conservative
the forces are the derivative of the restraint potential, this results in an r−7 weighting
of the atom pairs

equal
divide the restraint force equally over all atom pairs in the restraint

disre mixed:

no
the violation used in the calculation of the restraint force is the time averaged violation

yes
the violation used in the calculation of the restraint force is the square root of the time
averaged violation times the instantaneous violation

142 Chapter 7. Run parameters and Programs

disre fc: (1000) [kJ mol−1 nm−2]
force constant for distance restraints, which is multiplied by a (possibly) different factor for
each restraint

disre tau: (0) [ps]
time constant for distance restraints running average

nstdisreout: (100) [steps]
frequency to write the running time averaged and instantaneous distances of all atom pairs
involved in restraints to the energy file (can make the energy file very large)

orire:

no
no orientation restraints (ignore orientation restraint information in topology file)

yes
use orientation restraints, ensemble averaging can be performed withmdrun -multi

orire fc: (0) [kJ mol]
force constant for orientation restraints, which is multiplied by a (possibly) different factor
for each restraint, can be set to zero to obtain the orientations from a free simulation

orire tau: (0) [ps]
time constant for orientation restraints running average

orire fitgrp:
fit group for orientation restraining, for a protein backbone is a good choice

nstorireout: (100) [steps]
frequency to write the running time averaged orientations for all restraints to the energy file
(can make the energy file very large)

7.3.17 Free Energy Perturbation

free energy:

no
Only use topology A.

yes
Interpolate between topology A (lambda=0) to topology B (lambda=1) and write the
derivative of the Hamiltonian with respect to lambda to the energy file and todgdl.xvg .
The potentials, bond-lengths and angles are interpolated linearly as described in the
manual. Whensc alpha is larger than zero, soft-core potentials are used for the LJ
and Coulomb interactions.

init lambda: (0)
starting value for lambda

7.3. Run Parameters 143

delta lambda: (0)
increment per time step for lambda

sc alpha: (0)
the soft-core parameter, a value of 0 results in linear interpolation of the LJ and Coulomb
interactions

sc sigma: (0.3) [nm]
the soft-core sigma for particles which have a C6 or C12 parameter equal to zero

7.3.18 Non-equilibrium MD

acc grps:
groups for constant acceleration (e.g.: Protein Sol) all atoms in groups Protein and Sol
will experience constant acceleration as specified in theaccelerateline

accelerate: (0) [nm ps−2]
acceleration foracc grps; x, y and z for each group (e.g. 0.1 0.0 0.0 -0.1 0.0
0.0 means that first group has constant acceleration of 0.1 nm ps−2 in X direction, second
group the opposite).

freezegrps:
Groups that are to be frozen (i.e. their X, Y, and/or Z position will not be updated;e.g.
Lipid SOL). freezedim specifies for which dimension the freezing applies. You might
want to use energy group exclusions for completely frozen groups.

freezedim:
dimensions for which groups infreezegrpsshould be frozen, specifyY or N for X, Y and
Z and for each group (e.g.Y Y N N N Nmeans that particles in the first group can move
only in Z direction. The particles in the second group can move in any direction).

cosacceleration: (0) [nm ps−2]
the amplitude of the acceleration profile for calculating the viscosity. The acceleration is in
the X-direction and the magnitude iscosaccelerationcos(2 pi z/boxheight). Two terms are
added to the energy file: the amplitude of the velocity profile and 1/viscosity.

7.3.19 Electric fields

E x ; E y ; E z:
If you want to use an electric field in a direction, enter 3 numbers after the appropriate E*,
the first number: the number of cosines, only 1 is implemented (with frequency 0) so enter
1, the second number: the strength of the electric field in V nm−1, the third number: the
phase of the cosine, you can enter any number here since a cosine of frequency zero has no
phase.

E xt; E yt; E zt:
not implemented yet

144 Chapter 7. Run parameters and Programs

7.3.20 User defined thingies

user1 grps; user2 grps:

userint1 (0); userint2 (0); userint3 (0); userint4 (0)

userreal1 (0); userreal2 (0); userreal3 (0); userreal4 (0)
These you can use if you modify code. You can pass integers and reals to your subroutine.
Check the inputrec definition insrc/include/types/inputrec.h

7.4 Programs by topic

Generating topologies and coordinates
pdb2gmx converts pdb files to topology and coordinate files
x2top generates a primitive topology from coordinates
editconf edits the box and writes subgroups
genbox solvates a system
genion generates mono atomic ions on energetically favorable positions
genconf multiplies a conformation in ’random’ orientations
genpr generates position restraints for index groups
protonate protonates structures

Running a simulation
grompp makes a run input file
tpbconv makes a run input file for restarting a crashed run
mdrun performs a simulation

Viewing trajectories
ngmx displays a trajectory
trjconv converts trajectories toe.g.pdb which can be viewed withe.g.rasmol

Processing energies
g energy writes energies to xvg files and displays averages
g enemat extracts an energy matrix from an energy file
mdrun with -rerun (re)calculates energies for trajectory frames

Converting files
editconf converts and manipulates structure files
trjconv converts and manipulates trajectory files
trjcat concatenates trajectory files
eneconv converts energy files
xmp2ps converts XPM matrices to encapsulated postscript (or XPM)

7.4. Programs by topic 145

Tools
make ndx makes index files
mk angndxgenerates index files for gangle
gmxcheck checks and compares files
gmxdump makes binary files human readable
g traj plots x, v and f of selected atoms/groups (and more) from a trajectory
g analyze analyzes data sets
trjorder orders molecules according to their distance to a group
g filter frequency filters trajectories, useful for making smooth movies
g lie free energy estimate from linear combinations
g dyndom interpolate and extrapolate structure rotations
g morph linear interpolation of conformations
g wham weighted histogram analysis after umbrella sampling
ffscan scan and modify force field data for a single point energy calculation
xpm2ps convert XPM (XPixelMap) file to postscript

Distances between structures
g rms calculates rmsd’s with a reference structure and rmsd matrices
g confrms fits two structures and calculates the rmsd
g cluster clusters structures
g rmsf calculates atomic fluctuations
disco distance geometry calculation with the CONCOORD algorithm
cdist create input for disco

Distances in structures over time
g mindist calculates the minimum distance between two groups
g dist calculates the distances between the centers of mass of two groups
g bond calculates distances between atoms
g mdmat calculates residue contact maps
g rmsdist calculates atom pair distances averaged with power 2, -3 or -6

Mass distribution properties over time
g traj plots x, v, f, box, temperature and rotational energy
g gyrate calculates the radius of gyration
g msd calculates mean square displacements
g rotacf calculates the rotational correlation function for molecules
g rdf calculates radial distribution functions

Analyzing bonded interactions
g bond calculates bond length distributions
mk angndxgenerates index files for gangle
g angle calculates distributions and correlations for angles and dihedrals
g dih analyzes dihedral transitions

146 Chapter 7. Run parameters and Programs

Structural properties

g hbond computes and analyzes hydrogen bonds
g saltbr computes salt bridges
g sas computes solvent accessible surface area
g order computes the order parameter per atom for carbon tails
g sgangle computes the angle and distance between two groups
g sorient analyzes solvent orientation around solutes
g bundle analyzes bundles of axes,e.g.helices
g disre analyzes distance restraints
g clustsize calculate size distributions of atomic clusters
disco distance geometry calculation with the CONCOORD algorithm
cdist create input for disco
anadock cluster structures from Autodock runs

Kinetic properties

g traj plots x, v, f, box, temperature and rotational energy
g velacc calculates velocity autocorrelation functions
g tcaf calculates viscosities of liquids

Electrostatic properties

genion generates mono atomic ions on energetically favorable positions
g potential calculates the electrostatic potential across the box
g dipoles computes the total dipole plus fluctuations
g dielectric calculates frequency dependent dielectric constants

Protein specific analysis

do dssp assigns secondary structure and calculates solvent accessible surface area
g chi calculates everything you want to know about chi and other dihedrals
g helix calculates everything you want to know about helices
g rama computes Ramachandran plots
xrama shows animated Ramachandran plots
wheel plots helical wheels

Interfaces

g potential calculates the electrostatic potential across the box
g density calculates the density of the system
g order computes the order parameter per atom for carbon tails
g h2order computes the orientation of water molecules
g bundle analyzes bundles of axes,e.g.transmembrane helices

Covariance analysis

7.4. Programs by topic 147

g covar calculates and diagonalizes the covariance matrix
g anaeig analyzes the eigenvectors

Normal modes
grompp makes a run input file
mdrun finds a potential energy minimum
mdrun calculates the Hessian
g nmeig diagonalizes the Hessian
g anaeig analyzes the normal modes
g nmens generates an ensemble of structures from the normal modes

148 Chapter 7. Run parameters and Programs

Chapter 8

Analysis

In this chapter different ways of analyzing your trajectory are described. The names of the corre-
sponding analysis programs are given. Specific info on the in- and output of these programs can be
found in the on-line manual atwww.gromacs.org. The output files are often produced as finished
Grace/Xmgr graphs.

First in sec.8.1 the group concept in analysis is explained. Then the different analysis tools are
presented.

8.1 Groups in Analysis.

make_ndx
mk_angndx

In chapter3 it was explained howgroups of atomscan be used in the MD-program. In most
analysis programs groups of atoms are needed to work on. Most programs can generate several
default index groups, but groups can always be read from an index file. Let’s consider a simulation
of a binary mixture of components A and B. When we want to calculate the radial distribution
function (rdf)gAB(r) of A with respect to B, we have to calculate

4πr2gAB(r) = V
NA∑
i∈A

NB∑
j∈B

P (r) (8.1)

whereV is the volume andP (r) is the probability to find a B atom at a distancer from an A atom.

By having the user define theatom numbersfor groups A and B in a simple file we can calculate
this gAB in the most general way, without having to make any assumptions in the rdf-program
about the type of particles.

http://www.gromacs.org

150 Chapter 8. Analysis

Groups can therefore consist of a series ofatom numbers, but in some cases also ofmolecule
numbers. It is also possible to specify a series of angles bytriples of atom numbers, dihedrals
by quadruplesof atom numbersand bonds or vectors (in a molecule) bypairs of atom numbers.
When appropriate the type of index file will be specified for the following analysis programs. To
help creating such index files (index.ndx), there are a couple of programs to generate them,
using either your input configuration or the topology. To generate an index file consisting of a
series ofatom numbers(as in the example ofgAB) usemake ndx . To generate an index file with
angles or dihedrals, usemk angndx . Of course you can also make them by hand. The general
format is presented here:

[Oxygen]
1 4 7

[Hydrogen]
2 3 5 6
8 9

First the group name is written between square brackets. The following atom numbers may be
spread out over as many lines as you like. The atom numbering starts at 1.

8.1.1 Default Groups

When no index file is supplied to analysis tools orgrompp , a number of default groups are
generated to choose from:

System
all atoms in the system

Protein
all protein atoms

Protein-H
protein atoms excluding hydrogens

C-alpha
Cα atoms

Backbone
protein backbone atoms; N, Cα and C

MainChain
protein main chain atoms: N, Cα, C and O, including oxygens in C-terminus

MainChain+Cb
protein main chain atoms including Cβ

MainChain+H
protein main chain atoms including backbone amide hydrogen and hydrogens on the N-
terminus

8.2. Looking at your trajectory 151

SideChain
protein side chain atoms; that is all atoms except N, Cα, C, O, backbone amide hydrogen,
oxygens in C-terminus and hydrogens on the N-terminus

SideChain-H
protein side chain atoms excluding all hydrogens

Prot-Masses
protein atoms excluding dummy masses (as used in dummy atom constructions of NH3

groups and Tryptophane sidechains), see also sec.5.2.2; this group is only included when it
differs from the ’Protein ’ group

Non-Protein
all non-protein atoms

DNA
all DNA atoms

molecule name
for all residues/molecules which are not recognized as protein or DNA, one group per
residue/molecule name is generated

Other
all atoms which are neither protein nor DNA.

Empty groups will not be generated. Most of the groups only contain protein atoms. An atom is
considered a protein atom if its residue name is listed in theaminoacids.dat file.

8.2 Looking at your trajectory

ngmx

Before analyzing your trajectory it is often informative to look at your trajectory first. Gromacs
comes with a simple trajectory viewerngmx; the advantage with this one is that it does not require
OpenGL, which usually isn’t present e.g. on supercomputers. It is also possible to generate a hard-
copy in Encapsulated Postscript format, see Fig.8.1. If you want a faster and more fancy viewer
there are several programs that can read the GROMACS trajectory formats – have a look at our
homepagewww.gromacs.orgfor updated links.

8.3 General properties

g_energy
g_com

To analyze some or allenergiesand other properties, such astotal pressure, pressure tensor,
density, box-volumeandbox-sizes, use the programg energy . A choice can be made from a list

http://www.gromacs.org

152 Chapter 8. Analysis

Figure 8.1: The window ofngmx showing a box of water.

a set of energies, like potential, kinetic or total energy, or individual contributions, like Lennard-
Jones or dihedral energies.

Thecenter-of-mass velocity, defined as

vcom =
1
M

N∑
i=1

mivi (8.2)

withM =
∑N

i=1mi the total mass of the system, can be monitored in time by the programg com.
It is however recommended to remove the center-of-mass velocity every step (see chapter3)!

8.4 Radial distribution functions

g_rdf

Theradial distribution function(rdf) or pair correlation functiongAB(r) between particles of type
A andB is defined in the following way:

gAB(r) =
〈ρB(r)〉
〈ρB〉local

=
1

〈ρB〉local

1
NA

NA∑
i∈A

NB∑
j∈B

δ(rij − r)
4πr2

(8.3)

with 〈ρB(r)〉 the particle density of typeB at a distancer around particlesA, and〈ρB〉local the
particle density of typeB averaged over all spheres around particlesA with radiusrmax (see
Fig. 8.2C).

8.5. Correlation functions 153

r

r+dr r+dr

r
θ+dθ

θ

e

A B

DC
Figure 8.2: Definition of slices ing rdf : A. gAB(r). B. gAB(r, θ). The slices are colored grey. C.
Normalization〈ρB〉local. D. Normalization〈ρB〉local, θ. Normalization volumes are colored grey.

Usually the value ofrmax is half of the box length. The averaging is also performed in time. In
practice the analysis programg rdf divides the system into spherical slices (fromr to r+dr, see
Fig. 8.2A) and makes a histogram in stead of theδ-function. An example of the rdf of Oxygen-
Oxygen in SPC-water [48] is given in Fig.8.3.

With g rdf it is also possible to calculate an angle dependent rdfgAB(r, θ), where the angleθ is
defined with respect to a certain laboratory axise, see Fig.8.2B.

gAB(r, θ) =
1

〈ρB〉local, θ

1
NA

NA∑
i∈A

NB∑
j∈B

δ(rij − r)δ(θij − θ)
2πr2sin(θ)

(8.4)

cos(θij) =
rij · e

‖rij‖ ‖e‖
(8.5)

ThisgAB(r, θ) is useful for analyzing anisotropic systems. Note that in this case the normalization
〈ρB〉local, θ is the average density in all angle slices fromθ toθ+dθ up tormax, so angle dependent,
see Fig.8.2D.

8.5 Correlation functions

8.5.1 Theory of correlation functions

The theory of correlation functions is well established [67]. However we want to describe here the
implementation of the various correlation function flavors in the GROMACS code. The definition
of the autocorrelation function (ACF)Cf (t) for a propertyf(t) is

Cf (t) = 〈f(ξ)f(ξ + t)〉ξ (8.6)

154 Chapter 8. Analysis

0.0 0.5 1.0 1.5 2.0
r (nm)

0.0

1.0

2.0

3.0

g(
r) �

Gromacs RDF
OW1-OW1

Figure 8.3:gOO(r) for Oxygen-Oxygen of SPC-water.

where the notation on the right hand side means averaging overξ, i.e. over time origins. It is also
possible to compute cross-correlation function from two propertiesf(t) andg(t):

Cfg(t) = 〈f(ξ)g(ξ + t)〉ξ (8.7)

however, in GROMACS there is no standard mechanism to do this (note: you can use thexmgr
program to compute cross correlations). The integral of the correlation function over time is the
correlation timeτf :

τf =
∫ ∞

0
Cf (t)dt (8.8)

In practice correlation functions are calculated based on data points with discrete time intervals
∆t, so that the ACF from an MD simulation is:

Cf (j∆t) =
1

N − j

N−1−j∑
i=0

f(i∆t)f((i+ j)∆t) (8.9)

whereN is the number of available time frames for the calculation. The resulting ACF is obviously
only available at time points with the same interval∆t. Since for many applications it is necessary
to know the short time behavior of the ACF (e.g.the first 10 ps) this often means that we have to
save the atomic coordinates with short intervals. Another implication of eqn.8.9is that in principle
we can not compute all points of the ACF with the same accuracy, since we haveN−1 data points
for Cf (∆t) but only 1 forCf ((N − 1)∆t). However, if we decide to compute only an ACF of
lengthM∆t, whereM ≤ N/2 we can compute all points with the same statistical accuracy:

Cf (j∆t) =
1
M

N−1−M∑
i=0

f(i∆t)f((i+ j)∆t) (8.10)

here of coursej < M . M is sometimes referred to as the time lag of the correlation function.
When we decide to do this, we intentionally do not use all the available points for very short time

8.5. Correlation functions 155

intervals (j << M), but it makes it easier to interpret the results. Another aspect that may not be
neglected when computing ACFs from simulation, is that usually the time originsξ (eqn.8.6) are
not statistically independent, which may introduce a bias in the results. This can be tested using a
block-averaging procedure, where only time origins with a spacing at least the length of the time
lag are included,e.g.usingk time origins with spacing ofM∆t (wherekM ≤ N):

Cf (j∆t) =
1
k

k−1∑
i=0

f(iM∆t)f((iM + j)∆t) (8.11)

However, one needs very long simulations to get good accuracy this way, because there are many
fewer points that contribute to the ACF.

8.5.2 Using FFT for computation of the ACF

The computational cost for calculating an ACF according to eqn.8.9is proportional toN2, which
is considerable. However, this can be improved by using fast Fourier transforms to do the convo-
lution [67].

8.5.3 Special forms of the ACF

There are some important varieties on the ACF,e.g.the ACF of a vectorp:

Cp(t) =
∫ ∞

0
Pn(cos 6 (p(t),p(t+ ξ)) dξ (8.12)

wherePn(x) is thenth order Legendre polynomial1. Such correlation times can actually be ob-
tained experimentally usinge.g.NMR or other relaxation experiments. GROMACS can compute
correlations using the 1st and 2nd order Legendre polynomial (eqn.8.12). This can a.o. be used
for rotational autocorrelation (g rotacf), dipole autocorrelation (g dipoles).

In order to study torsion angle dynamics we define a dihedral autocorrelation function as [68]:

C(t) = 〈cos(θ(τ)− θ(τ + t))〉τ (8.13)

Note that this is not a product of two functions as is generally used for correlation functions, but it
may be rewritten as the sum of two products:

C(t) = 〈cos(θ(τ)) cos(θ(τ + t)) + sin(θ(τ)) sin(θ(τ + t))〉τ (8.14)

8.5.4 Some Applications

The programg velacc calculates thisVelocity Auto Correlation Function.

Cv(τ) = 〈vi(τ) · vi(0)〉i∈A (8.15)

1P0(x) = 1, P1(x) = x, P2(x) = (3x2 − 1)/2

156 Chapter 8. Analysis

The self diffusion coefficient can be calculated using the Green-Kubo relation [67]

DA =
1
3

∫ ∞

0
〈vi(t) · vi(0)〉i∈A dt (8.16)

which is just the integral of the velocity autocorrelation function. There is a widely held belief
that the velocity ACF converges faster than the mean square displacement (sec.8.5.5), which can
also be used for the computation of diffusion constants. However, Allen & Tildesly [67] warn us
that the long time contribution to the velocity ACF can not be ignored, so care must be taken.

Another important quantity is the dipole correlation time. Thedipole correlation functionfor
particlesA is calculated as follows byg dipoles :

Cµ(τ) = 〈µi(τ) · µi(0)〉i∈A (8.17)

with µi =
∑

j∈i rjqj . The dipole correlation time can be computed using eqn.8.8. For some
applications see [69].

The viscosity of a liquid can be related to the correlation time of the Pressure tensorP [70, 71].
g energy can compute the viscosity, but this is not very accurate [66] (actually the values do not
converge...).

8.5.5 Mean Square Displacement

To determine the self diffusion coefficientDA of particlesA one can use the Einstein relation [67]

lim
t→∞

〈‖ri(t)− ri(0)‖2〉i∈A = 6DAt (8.18)

This Mean Square DisplacementandDA are calculated by the programg msd. For molecules
consisting of more than one atom,ri is the center of mass positions. In that case you should use
an index file with molecule numbers! The program can also be used for calculating diffusion in
one or two dimensions. This is useful for studying lateral diffusion on interfaces.

An example of the mean square displacement of SPC-water is given in Fig.8.4.

8.6 Bonds, angles and dihedrals

g_bond
g_angle
g_sgangle

8.6. Bonds, angles and dihedrals 157

0.0 50.0
�

100.0
�

150.0
�

Time (ps)
�

0.0

1000.0

2000.0

3000.0

4000.0

M
S

D
 (

10
-5
 c

m
2 s

-1
)

Mean Square Displacement
D = 3.5027 (10

-5
 cm

2
 s

-1
)

Figure 8.4: Mean Square Displacement of SPC-water.

To monitor specificbondsin your molecules during time, the programg bond calculates the
distribution of the bond length in time. The index file consists of pairs of atom numbers, for
example

[bonds_1]
1 2
3 4
9 10

[bonds_2]
12 13

The programg angle calculates the distribution ofanglesanddihedralsin time. It also gives
the average angle or dihedral. The index file consists of triplets or quadruples of atom numbers:

[angles]
1 2 3
2 3 4
3 4 5

[dihedrals]
1 2 3 4
2 3 5 5

For the dihedral angles you can use either the “biochemical convention” (φ = 0 ≡ cis) or “poly-
mer convention” (φ = 0 ≡ trans), see Fig.8.5.

To follow specificanglesin time between two vectors, a vector and a plane or two planes (defined
by 2, resp. 3 atoms inside your molecule, see Fig.8.6A, B, C), use the programg sgangle .

158 Chapter 8. Analysis

φ = 0φ = 0

A B

Figure 8.5: Dihedral conventions: A. “Biochemical convention”. B. “Polymer convention”.

b b
a

φ

2

C

D

d

d

E

φ

d

φ

A B

n

1d

n

n

Figure 8.6: Options ofg sgangle : A. Angle between 2 vectors. B. Angle between a vector and
the normal of a plane. C. Angle between two planes. D. Distance between the geometrical centers
of 2 planes. E. Distances between a vector and the center of a plane.

8.7. Radius of gyration and distances 159

For planes it uses the normal vector perpendicular to the plane. It can also calculate thedistanced
between the geometrical center of two planes (see Fig.8.6D), and the distancesd1 andd2 between
2 atoms (of a vector) and the center of a plane defined by 3 atoms (see Fig.8.6D). It further
calculates the distanced between the center of the plane and the middle of this vector. Depending
on the input groups (i.e. groups of 2 or 3 atom numbers), the program decides what angles and
distances to calculate. For example, the index-file could look like this:

[a_plane]
1 2 3

[a_vector]
3 4 5

8.7 Radius of gyration and distances

g_gyrate
g_sgangle
g_mindist
g_mdmat
xpm2ps

To have a rough measure for the compactness of a structure, you can calculate theradius of gyra-
tion with the programg gyrate as follows:

Rg =

(∑
i ‖ri‖2mi∑

imi

) 1
2

(8.19)

wheremi is the mass of atomi andri the position of atomi with respect to the center of mass of
the molecule. It is especially useful to characterize polymer solutions and proteins.

Sometimes it is interesting to plot thedistancebetween two atoms, or theminimumdistance be-
tween two groups of atoms (e.g.: protein side-chains in a salt bridge). To calculate these distances
between certain groups there are several possibilities:

• Thedistance between the geometrical centersof two groups can be calculated with the program
g sgangle , as explained in sec.8.6.

• The minimum distancebetween two groups of atoms during time can be calculated with the
programg mindist . It also calculates thenumber of contactsbetween these groups within
a certain radiusrmax.

• To monitor theminimum distances between residues(see chapter5) within a (protein) molecule,
you can use the programg mdmat. This minimum distance between two residues Ai and
Aj is defined as the smallest distance between any pair of atoms (i∈ Ai, j ∈ Aj). The output
is a symmetrical matrix of smallest distances between all residues. To visualize this matrix,
you can use a program such asxv . If you want to view the axes and legend or if you want
to print the matrix, you can convert it withxpm2ps into a Postscript picture, see Fig.8.7.

Plotting these matrices for different time-frames, one can analyze changes in the structure,
ande.g.forming of salt bridges.

160 Chapter 8. Analysis

21 30 40 50 60 70 80 90

21

30

40

50

60

70

80

90

t=
0

ps

Residue Number

0 Distance (nm) 1.2

Figure 8.7: A minimum distance matrix for a peptide [72].

8.8 Root mean square deviations in structure

g_rms
g_rmsdist

The root mean square deviation(RMSD) of certain atoms in a molecule with respect to a refer-
ence structure can be calculated with the programg rms by least-square fitting the structure to
the reference structure (t2 = 0) and subsequently calculating theRMSD (eqn.8.20).

RMSD(t1, t2) =

[
1
M

N∑
i=1

mi‖ri(t1)− ri(t2)‖2

] 1
2

(8.20)

whereM =
∑N

i=1mi andri(t) is the position of atomi at timet. NOTE that fitting does not
have to use the same atoms as the calculation of theRMSD; e.g.: a protein is usually fitted on
the backbone atoms (N,Cα,C), but theRMSD can be computed of the backbone or of the whole
protein.

Instead of comparing the structures to the initial structure at timet = 0 (so for example a crystal
structure), one can also calculate eqn.8.20with a structure at timet2 = t1 − τ . This gives some
insight in the mobility as a function ofτ . Also a matrix can be made with theRMSD as a
function oft1 andt2, this gives a nice graphical impression of a trajectory. If there are transitions
in a trajectory, they will clearly show up in such a matrix.

Alternatively theRMSD can be computed using a fit-free method with the programg rmsdist :

RMSD(t) =

 1
N2

N∑
i=1

N∑
j=1

‖rij(t)− rij(0)‖2

 1
2

(8.21)

where thedistancer ij between atoms at timet is compared with the distance between the same
atoms at time0.

8.9. Covariance analysis 161

8.9 Covariance analysis

Covariance analysis, also called principal component analysis or essential dynamics [73], can find
correlated motions. It uses the covariance matrixC of the atomic coordinates:

Cij =
〈
M

1
2
ii (xi − 〈xi〉)M

1
2
jj(xj − 〈xj〉)

〉
(8.22)

whereM is a diagonal matrix containing the masses of the atoms (mass-weighted analysis) or
the unit matrix (non-mass weighted analysis).C is a symmetric3N × 3N matrix, which can be
diagonalized with an orthonormal transformation matrixR:

RTCR = diag(λ1, λ2, . . . , λ3N) where λ1 ≥ λ2 ≥ . . . ≥ λ3N (8.23)

The columns ofR are the eigenvectors, also called principal or essential modes.R defines a
transformation to a new coordinate system. The trajectory can be projected on the principal modes
to give the principal componentspi(t):

p(t) = RTM
1
2 (x(t)− 〈x〉) (8.24)

The eigenvalueλi is the mean square fluctuation of principal componenti. The first few principal
modes often describe collective, global motions in the system. The trajectory can be filtered along
one (or more) principal modes. For one principal modei this goes as follows:

xf (t) = 〈x〉+M− 1
2R∗i pi(t) (8.25)

When the analysis is performed on a macromolecule, one often wants to remove the overall rota-
tion and translation to look at the internal motion only. This can be achieved by least square fitting
to a reference structure. Care has to be taken that the reference structure is representative for the
ensemble, since the choice of reference structure influences the covariance matrix.

One should always check if the principal modes are well defined. If the first principal component
resembles a half cosine and the second resembles a full cosine, you might be filtering noise (see
below). A good way to check the relevance of the first few principal modes is to calculate the
overlap of the sampling between the first and second half of the simulation. Note that this can
only be done when the same reference structure is used for the two halves.

A good measure for the overlap has been defined in [74]. The elements of the covariance matrix
are proportional to the square of the displacement, so we need to take the square root of the matrix
to examine the extent of sampling. The square root can be calculated from the eigenvaluesλi and
the eigenvectors, which are the columns of the rotation matrixR. For a symmetric and diagonally-
dominant matrixA of size3N × 3N the square root can be calculated as:

A
1
2 = R diag(λ

1
2
1 , λ

1
2
2 , . . . , λ

1
2
3N)RT (8.26)

It can be verified easily that the product of this matrix with itself givesA. Now we can define a
differenced between covariance matricesA andB as follows:

d(A,B) =

√
tr
((
A

1
2 −B

1
2

)2
)

(8.27)

162 Chapter 8. Analysis

=
√

tr
(
A+B − 2A

1
2B

1
2

)
(8.28)

=

 N∑
i=1

(
λA

i + λB
i

)
− 2

N∑
i=1

N∑
j=1

√
λA

i λ
B
j

(
RA

i ·RB
j

)2

 1
2

(8.29)

where tr is the trace of a matrix. We can now define the overlaps as:

s(A,B) = 1− d(A,B)√
trA+ trB

(8.30)

The overlap is 1 if and only if matricesA andB are identical. It is 0 when the sampled subspaces
are completely orthogonal.

A commonly used measure is the subspace overlap of the first few eigenvectors of covariance
matrices. The overlap of the subspace spanned bym orthonormal vectorsw1, . . . ,wm with a
reference subspace spanned byn orthonormal vectorsv1, . . . ,vn can be quantified as follows:

overlap(v,w) =
1
n

n∑
i=1

m∑
j=1

(vi ·wj)2 (8.31)

The overlap will increase with increasingm and will be 1 when setv is a subspace of setw. The
disadvantage of this method is that it does not take the eigenvalues into account. All eigenvectors
are weighted equally and when degenerate subspaces are present (equal eigenvalues) the calculated
overlap will be too low.

Another useful check is the cosine content. It has been proven the the principal components of
random diffusion are cosines with the number of periods equal to half the principal component
index[75, 74]. The eigenvalues are proportional to the index to the power−2. The cosine content
is defined as:

2
T

(∫ T

0
cos(kπt) pi(t)dt

)2(∫ T

0
p2

i (t)dt

)−1

(8.32)

When the cosine content of the first few principal components is close to 1, the largest fluctuations
are not connected with the potential, but with random diffusion.

The covariance matrix is built and diagonalized byg covar . The principal components and
overlap (any many more things) can be plotted and analyzed withg anaeig . The cosine content
can be calculated withg analyze .

8.10 Hydrogen bonds

g_hbond

The programg hbond analyses thehydrogen bonds(H-bonds) between all possible donors D and
acceptors A. To determine if an H-bond exists, a geometrical criterion is used, see also Fig.8.8:

r ≤ rHB = 0.35nm
α ≤ αHB = 60o (8.33)

8.10. Hydrogen bonds 163

D

H

α

A

r

Figure 8.8: Geometrical Hydrogen bond criterion.

O

D A

H

H

H

(1)
(2)

(2)

Figure 8.9: Insertion of water into an H-bond. (1) Normal H-bond between two residues. (2)
H-bonding bridge via a water molecule.

The value ofrHB = 0.35 nm corresponds to the first minimum of the rdf of SPC-water (see also
Fig. 8.3).

The programg hbond analyses all hydrogen bonds existing between two groups of atoms (which
must be either identical or non-overlapping) or in specified Donor Hydrogen Acceptor triplets, in
the following ways:

• Donor-Acceptor distance (r) distribution of all H-bonds

• Hydrogen-Donor-Acceptor angle (α) distribution of all H-bonds

• The total number of H-bonds in each time frame

• The number of H-bonds in time between residues, divided into groupsn-n+i wheren and
n+i stand for residue numbers andi goes from 0 to 6. The group fori = 6 also includes
all H-bonds fori > 6. These groups include then-n+3, n-n+4 andn-n+5 H-bonds which
provide a measure for the formation ofα-helices orβ-turns or strands.

• The lifetime of the H-bonds is calculated from the average over all autocorrelation functions
of the existence functions (either 0 or 1) of all H-bonds:

C(τ) = 〈si(t) si(t+ τ)〉 (8.34)

with si(t) = {0, 1} for H-bondi at timet. The integral ofC(τ) gives a rough estimate of
the average H-bond lifetimeτHB:

τHB =
∫ ∞

0
C(τ)dτ (8.35)

164 Chapter 8. Analysis

0 100 200 300 400 500 600 700 800 900 1000

1

5

10

15

R
es

id
ue

Time (ps)
Coil Bend Turn A-Helix B-Bridge

Figure 8.10: Analysis of the secondary structure elements of a peptide in time.

Both the integral and the complete auto correlation functionC(τ) will be output, so that
more sophisticated analysis (e.g.using multi-exponential fits) can be used to get better esti-
mates forτHB.

• An H-bond existence map can be generated of dimensions# H-bonds×# frames.

• Index groups are output containing the analyzed groups, all donor-hydrogen atom pairs
and acceptor atoms in these groups, donor-hydrogen-acceptor triplets involved in hydrogen
bonds between the analyzed groups and all solvent atoms involved in insertion.

• Solvent insertion into H-bonds can be analyzed, see Fig.8.9. In this case an additional group
identifying the solvent must be selected. The occurrence of insertion will be indicated in
the existence map. Note that insertion into and existence of a specific H-bond can occur
simultaneously and will also be indicated as such in the existence map.

8.11 Protein related items

do_dssp
g_rama
xrama
wheel

To analyze structural changes of a protein, you can calculate the radius of gyration or the minimum
residue distances during time (see sec.8.7), or calculate the RMSD (sec.8.8).

You can also look at the changing ofsecondary structure elementsduring your run. For this you
can use the programdo dssp , which is an interface for the commercial programdssp [76]. For
further information, see thedssp -manual. A typical output plot ofdo dssp is given in Fig.8.10.

One other important analysis of proteins is the so calledRamachandran plot. This is the projection
of the structure on the two dihedral anglesφ andψ of the protein backbone, see Fig.8.11.

To evaluate this Ramachandran plot you can use the programg rama . A typical output is given
in Fig. 8.12.

It is also possible to generate an animation of the Ramachandran plot in time. This can be of help
for analyzing certain dihedral transitions in your protein. You can use the programxrama for
this.

8.11. Protein related items 165

C

O

N

C
H

R

C

Oα

N

H

H

ψ
φ

Figure 8.11: Definition of the dihedral anglesφ andψ of the protein backbone.

–180.0
�

–120.0
�

–60.0 0.0 60.0
�

120.0
�

180.0
�

Phi

–180.0
�

–120.0
�

–60.0
�

0.0

60.0

120.0

180.0

P
si

Ramachandran Plot

Figure 8.12: Ramachandran plot of a small protein.

166 Chapter 8. Analysis

HPr-A HIS-15+

T
H

R
-16

ARG-17+

PR
O

-1
8

ALA-19

ALA-20

G
LN

-2
1

PHE-22

V
A

L-23

LYS-24+

G
LU

-2
5-

ALA-26

LYS-27+

GLY-28

Figure 8.13: Helical wheel projection of the N-terminal helix of HPr.

When studyingα-helices it is useful to have ahelical wheelprojection of your peptide, to see
whether a peptide is amphipatic. This can be done using thewheel program. Two examples are
plotted in Fig.8.13.

8.12 Interface related items

g_order
g_density
g_potential
g_coord

When simulating molecules with long carbon tails, it can be interesting to calculate their average
orientation. There are several flavors of order parameters, most of which are related. The program
g order can calculate order parameters using the equation

Sz =
3
2
〈cos2 θz〉 −

1
2

(8.36)

whereθz is the angle between thez-axis of the simulation box and the molecular axis under
consideration. The latter is defined as the vector from Cn−1 to Cn+1. The parametersSx andSy are
defined in the same way. The brackets imply averaging over time and molecules. Order parameters
can vary between 1 (full order along the interface normal) and−1/2 (full order perpendicular to
the normal), with a value of zero in the case of isotropic orientation.

The program can do two things for you. It can calculate the order parameter for each CH2 segment
separately, for any of three axes, or it can divide the box in slices and calculate the average value
of the order parameter per segment in one slice. The first method gives an idea of the ordering of

8.13. Chemical shifts 167

a molecule from head to tail, the second method gives an idea of the ordering as function of the
box length.

The electrostatic potential (ψ) across the interface can be computed from a trajectory by evaluating
the double integral of the charge density (ρ(z)):

ψ(z)− ψ(−∞) = −
∫ z

−∞
dz′

∫ z′

−∞
ρ(z′′)dz′′/ε0 (8.37)

where the positionz = −∞ is far enough in the bulk phase that the field is zero. With this
method, it is possible to “split” the total potential into separate contributions from lipid and water
molecules. The programg potential divides the box in slices and sums all charges of the
atoms in each slice. It then integrates this charge density, giving the electric field, and the electric
field, giving the potential. Charge density, field and potential are written toxvgr- input files.

The programg coord is a very simple analysis program. All it does is print the coordinates of
selected atoms to three files, containing respectively thex-, y- andz-coordinates of those atoms.
It can also calculate the center of mass of one or more molecules and print the coordinates of the
center of mass to three files. By itself, this is probably not a very useful analysis, but having the
coordinates of selected molecules or atoms can be very handy for further analysis, not only in
interface systems.

The programg pvd calculates a lot of properties, among which the density of a group in particles
per unit of volume, but not a density that takes the mass of the atoms into account. The program
g density also calculates the density of a group, but takes the masses into account and gives a
plot of the density against a box axis. This is useful for looking at the distribution of groups or
atoms across the interface.

8.13 Chemical shifts

total
do_shift

You can compute the NMR chemical shifts of protons with the programdo shift . This is just
an GROMACS interface to the public domain programtotal [77]. For further information, read
the article.

168 Chapter 8. Analysis

Appendix A

Technical Details

A.1 Installation

The entire GROMACS package is Free Software, licensed under the GNU General Public License.
The main distribution site is our WWW server atwww.gromacs.org.

The package is mainly distributed as source code, but we also provide RPM packages for Linux.
On the home page you will find all the information you need to install the package, mailing lists
with archives, and several additional online resources like contributed topologies, etc. The default
installation action is simply to unpack the source code and the issue

./configure
make
make install

The configuration script should automatically determine the best options for your platform, and
it will tell you if anything is missing on your system. You will also find detailed step-by-step
installation instructions on the website.

A.2 Single or Double precision

GROMACS can be compiled in either single or double precision. The default choice is single
precision, but it is easy to turn on double precision by selecting the--disable-float option to
the configuration script. Double precision will be 0 to 50% slower than single precision depending
on the architecture you are running on. Double precision will use somewhat more memory and
run input, energy and full-precision trajectory files will be almost twice as large. Note that the
assembly loops are only available in single precision; Although the Intel SSE2 instruction set
(available on Pentium IV and later) supports double precision instructions the performance is
much lower than single precision. It would also mean very much extra work for a feature that very
few people use, so we will probably not provide double precision assembly loops in the future
either.

http://www.gromacs.org

170 Appendix A. Technical Details

The energies in single precision are accurate up to the last decimal, the last one or two decimals of
the forces are non-significant. The virial is less accurate than the forces, since the virial is only one
order of magnitude larger than the size of each element in the sum over all atoms (sec.B.1). In most
cases this is not really a problem, since the fluctuations in de virial can be 2 orders of magnitude
larger than the average. In periodic charged systems these errors are often negligible. Especially
cut-off’s for the Coulomb interactions cause large errors in the energies, forces and virial. Even
when using a reaction-field or lattice sum method the errors are larger than or comparable to
the errors due to the single precision. Since MD is chaotic, trajectories with very similar starting
conditions will diverge rapidly, the divergence is faster in single precision than in double precision.

For most simulations single precision is accurate enough. In some cases double precision is re-
quired to get reasonable results:

• normal mode analysis, for the conjugate gradient or l-bfgs minimization and the calculation
and diagonalization of the Hessian

• calculation of the constraint force between two large groups of atoms

• energy conservation (this can only be done without temperature coupling and without cut-
off’s)

A.3 Porting GROMACS

The GROMACS system is designed with portability as a major design goal. However there are
a number of things we assume to be present on the system GROMACS is being ported on. We
assume the following features:

1. A UNIX-like operating system (BSD 4.x or SYSTEM V rev.3 or higher) or UNIX-like
libraries running under e.g. CygWin

2. an ANSI C compiler

3. optionally a Fortran-77 compiler or Fortran-90 compiler for faster (on some computers)
inner loop routines

4. optionally the Nasm assembler to use the assembly innerloops on x86 processors.

There are some additional features in the package that require extra stuff to be present, but it is
checked for in the configuration script and you will be warned if anything important is missing.

That’s the requirements for a single processor system. If you want to compile GROMACS for
a multiple processor environment you also need a MPI library (Message-Passing Interface) to
perform the parallel communication. This is always shipped with supercomputers, and for work-
stations you can find links to free MPI implementations through the GROMACS homepage at
www.gromacs.org.

http://www.gromacs.org

A.4. Environment Variables 171

A.3.1 Multi-processor Optimization

If you want to, you could write your own optimized communication (perhaps using specific li-
braries for your hardware) instead of MPI. This should never be necessary for normal use (we
haven’t heard of a modern computer where it isn’t possible to run MPI), but if you absolutely want
to do it, here are some clues.

The interface between the communication routines and the rest of the GROMACS system is de-
scribed in the file$GMXHOME/src/include/network.h We will give a short description of
the different routines below.

extern void gmx tx(int pid,void *buf,int bufsize);
This routine, when called with the destination processor number, a pointer to a (byte ori-
ented) transfer buffer, and the size of the buffer will send the buffer to the indicated processor
(in our case always the neighboring processor). The routine doesnot wait until the transfer
is finished.

extern void gmx tx wait(int pid);
This routine waits until the previous, or the ongoing transmission is finished.

extern void gmx txs(int pid,void *buf,int bufsize);
This routine implements a synchronous send by calling the a-synchronous routine and then
the wait. It might come in handy to code this differently.

extern void gmx rx(int pid,void *buf,int bufsize);

extern void gmx rx wait(int pid);

extern void gmx rxs(int pid,void *buf,int bufsize);
The very same routines for receiving a buffer and waiting until the reception is finished.

extern void gmx init(int pid,int nprocs);
This routine initializes the different devices needed to do the communication. In general it
sets up the communication hardware (if it is accessible) or does an initialize call to the lower
level communication subsystem.

extern void gmx stat(FILE *fp,char *msg);
With this routine we can diagnose the ongoing communication. In the current implemen-
tation it prints the various contents of the hardware communication registers of the (Intel
i860) multiprocessor boards to a file.

A.4 Environment Variables

GROMACS programs may be influenced by the use of environment variables. First of all, the vari-
ables set in the GMXRC file are essential for running and compiling GROMACS. Other variables
are:

1. DUMPNL, dump neighbor list. If set to a positive number theentireneighbor list is printed
in the log file (may be many megabytes). Mainly for debugging purposes, but may also be
handy for porting to other platforms.

172 Appendix A. Technical Details

2. IAMCOOL, if this is explicitly set to NO your GROMACS life will be dull and boring. (i.e.,
no cool quotes).

3. WHERE, when set print debugging info on line numbers.

4. LOGBUFS, the size of the buffer for file I/O. When set to 0, all file I/O will be unbuffered
and therefore very slow. This can be handy for debugging purposes, because it ensures that
all files are always totally up-to-date.

5. GMXNPRI, for SGI systems only. When set, gives the default non-degrading priority (npri)
for mdrun , nmrun , g covar andg nmeig , e.g.settingsetenv GMXNPRI 250 causes
all runs to be performed at near-lowest priority by default.

6. GMXVIEW XPM, GMXVIEW XVG, GMXVIEW EPSandGMXVIEW PDB, commands used
to automatically view resp..xvg , .xpm , .eps and .pdb file types; they default toxv ,
xmgrace , ghostview and rasmol . Set to empty to disable automatic viewing of a
particular file type. The command will be forked off and run in the background at the same
priority as the GROMACS tool (which might not be what you want). Be careful not to use
a command which blocks the terminal (e.g.vi), since multiple instances might be run.

Some other environment variables are specific to one program, such as TOTAL for thedo shift
program, and DSPP for thedo dssp program.

A.5 Running GROMACS in parallel

If you have installed the MPI (Message Passing Interface) on your computer(s) you can compile
GROMACS with this library to run simulations in parallel. All supercomputers are shipped with
MPI libraries optimized for that particular platform, and if you are using a cluster of workstations
there are several good free MPI implementations. You can find updated links to these on the gro-
macs homepagewww.gromacs.org. Once you have an MPI library installed it’s trivial to compile
GROMACS with MPI support: Just set the option--enable-mpi to the configure script and
recompile. (But don’t forget to make distclean before running configure if you have previously
compiled with a different configuration.) If you are using a supercomputer you might also want to
turn of the default nicing of the mdrun process with the--disable-nice option.

There is usually a program calledmpirun with which you can fire up the parallel processes. A
typical command line looks like:
% mpirun -p goofus,doofus,fred 10 mdrun -s topol -v -N 30
this runs on each of the machines goofus,doofus,fred with 10 processes on each1.

If you have a single machine with multiple processors you don’t have to use thempirun com-
mand, but you can do with an extra option tomdrun :
% mdrun -np 8 -s topol -v -N 8
In this example MPI reads the first option from the command line. Sincemdrun also wants to
know the number of processes you have to type it twice.

Check your local manuals (or online manual) for exact details of your MPI implementation.

1Example taken from Silicon Graphics manual

http://www.gromacs.org

A.5. Running GROMACS in parallel 173

If you are interested in programming MPI yourself, you can find manuals and reference literature
on the internet.

174 Appendix A. Technical Details

Appendix B

Some implementation details

In this chapter we will present some implementation details. This is far from complete, but we
deemed it necessary to clarify some things that would otherwise be hard to understand.

B.1 Single Sum Virial in GROMACS.

The virialΞ can be written in full tensor form as:

Ξ = − 1
2

N∑
i<j

rij ⊗ F ij (B.1)

where⊗ denotes thedirect productof two vectors1. When this is computed in the inner loop of
an MD program 9 multiplications and 9 additions are needed2.

Here it is shown how it is possible to extract the virial calculation from the inner loop [78].

B.1.1 Virial.

In a system with Periodic Boundary Conditions, the periodicity must be taken into account for the
virial:

Ξ = − 1
2

N∑
i<j

rn
ij ⊗ F ij (B.2)

wherern
ij denotes the distance vector of thenearest imageof atomi from atomj. In this definition

we add ashift vectorδi to the position vectorri of atomi. The difference vectorrn
ij is thus equal

to:
rn

ij = ri + δi − rj (B.3)

or in shorthand:
rn

ij = rn
i − rj (B.4)

1(u⊗ v)αβ = uαvβ
2The calculation of Lennard-Jones and Coulomb forces is about 50 floating point operations.

176 Appendix B. Some implementation details

In a triclinic system there are 27 possible images ofi, when truncated octahedron is used there are
15 possible images.

B.1.2 Virial from non-bonded forces.

Here the derivation for the single sum virial in thenon-bonded forceroutine is given.i 6= j in all
formulae below.

Ξ = −1
2

N∑
i<j

rn
ij ⊗ F ij (B.5)

= −1
4

N∑
i=1

N∑
j=1

(ri + δi − rj)⊗ F ij (B.6)

= −1
4

N∑
i=1

N∑
j=1

(ri + δi)⊗ F ij − rj ⊗ F ij (B.7)

= −1
4

 N∑
i=1

N∑
j=1

(ri + δi)⊗ F ij −
N∑

i=1

N∑
j=1

rj ⊗ F ij

 (B.8)

= −1
4

 N∑
i=1

(ri + δi)⊗
N∑

j=1

F ij −
N∑

j=1

rj ⊗
N∑

i=1

F ij

 (B.9)

= −1
4

 N∑
i=1

(ri + δi)⊗ F i +
N∑

j=1

rj ⊗ F j

 (B.10)

= −1
4

(
2

N∑
i=1

ri ⊗ F i +
N∑

i=1

δi ⊗ F i

)
(B.11)

In these formulae we introduced

F i =
N∑

j=1

F ij (B.12)

F j =
N∑

i=1

F ji (B.13)

which is the total force oni resp.j. Because we use Newton’s third law

F ij = − F ji (B.14)

we must in the implementation double the term containing the shiftδi.

B.1.3 The intramolecular shift (mol-shift).

For the bonded-forces and shake it is possible to make amol-shift list, in which the periodicity
is stored. We simple have an arraymshift in which for each atom an index in theshiftvec
array is stored.

B.1. Single Sum Virial in GROMACS. 177

The algorithm to generate such a list can be derived from graph theory, considering each particle
in a molecule as a bead in a graph, the bonds as edges.

1 represent the bonds and atoms as bidirectional graph

2 make all atoms white

3 make one of the white atoms black (atomi) and put it in the central box

4 make all of the neighbors ofi that are currently white, grey

5 pick one of the grey atoms (atomj), give it the correct periodicity with respect to any of its
black neighbors and make it black

6 make all of the neighbors ofj that are currently white, grey

7 if any grey atom remains, goto [5]

8 if any white atom remains, goto [3]

Using this algorithm we can

• optimize the bonded force calculation as well as shake

• calculate the virial from the bonded forces in the single sum way again

Find a representation of the bonds as a bidirectional graph.

B.1.4 Virial from Covalent Bonds.

The covalent bond force gives a contribution to the virial, we have

b = ‖rn
ij‖ (B.15)

Vb =
1
2
kb(b− b0)2 (B.16)

F i = −∇Vb (B.17)

= kb(b− b0)
rn

ij

b
(B.18)

F j = −F i (B.19)

The virial contribution from the bonds then is

Ξb = −1
2
(rn

i ⊗ F i + rj ⊗ F j) (B.20)

= −1
2
rn

ij ⊗ F i (B.21)

178 Appendix B. Some implementation details

B.1.5 Virial from Shake.

An important contribution to the virial comes from shake. Satisfying the constraints a forceG is
exerted on the particles shaken. If this force does not come out of the algorithm (as in standard
shake) it can be calculated afterwards (when usingleap-frog) by:

∆ri = ri(t+ ∆t)− [ri(t) + vi(t−
∆t
2

)∆t+
F i

mi
∆t2] (B.22)

Gi =
mi∆ri

∆t2
(B.23)

but this does not help us in the general case. Only when no periodicity is needed (like in rigid
water) this can be used, otherwise we must add the virial calculation in the inner loop of shake.

When it is applicable the virial can be calculated in the single sum way:

Ξ = − 1
2

Nc∑
i

ri ⊗ F i (B.24)

whereNc is the number of constrained atoms.

B.2 Optimizations

Here we describe some of the algorithmic optimizations used in GROMACS, apart from par-
allelism. One of these, the implementation of the 1.0/sqrt(x) function is treated separately in
sec.B.3. The most important other optimizations are described below.

B.2.1 Inner Loops for Water

GROMACS users special inner loop to calculate non-bonded interactions for water molecules with
other atoms, and yet another set of loops for interactions between pairs of water molecules. This
very optimized loop assumes a water model similar to SPC [48], i.e.:

1. There are three atoms in the molecule.

2. The first atom has Lennard-Jones (sec.4.1.1) and coulomb (sec.4.1.3) interactions.

3. Atoms two and three have only coulomb interactions, and equal charges.

The loop also works for the SPC/E [79] and TIP3P [42] water models. For more complicated
molecules there is a general solvent loop assuming (note the order):

1. At the beginning of the molecule topology there is an arbitrary number of atoms with
Lennard-Jones and coulomb interactions.

2. Then we have an arbitrary number of atoms with coulomb interactions only.

3. And finally there can be an arbitrary number of atoms with Lennard-Jones interactions only.

B.3. Computation of the 1.0/sqrt function. 179

Note that this loop provides much less optimization than the water loop, but it is slightly better
than the default routine.

The gain of these implementations is that there are more floating point operations in a single
loop, which implies that some compilers can schedule the code better. However, it turns out that
even some of the most advanced compilers have problems with scheduling, implying that manual
tweaking is necessary to get optimum performance. This may include common-subexpression
elimination, or moving code around.

B.2.2 Fortran Code

Unfortunately, Fortran compilers are still better than C-compilers, for most machines anyway. For
some machines (e.g.SGI Power Challenge) the difference may be up to a factor of 3, in the case
of vector computers this may be even larger. Therefore, some of the routines that take up a lot of
computer time have been translated into Fortran and even assembly code for Intel and AMD x86
processors. In most cases, the Fortran or assembly loops should be selected automatically by the
configure script when appropriate, but you can also tweak this by setting options to the configure
script.

B.3 Computation of the 1.0/sqrt function.

B.3.1 Introduction.

The GROMACS project started with the development of a1/
√
x processor which calculates

Y (x) =
1√
x

(B.25)

As the project continued, the Inteli860 processor was used to implement GROMACS, which now
turned into almost a full software project. The1/

√
x processor was implemented using a Newton-

Raphson iteration scheme for one step. For this it needed lookup tables to provide the initial
approximation. The1/

√
x function makes it possible to use two almost independent tables for the

exponent seed and the fraction seed with the IEEE floating point representation.

B.3.2 General

According to [80] the 1/
√
x can be calculated using the Newton-Raphson iteration scheme. The

inverse function is

X(y) =
1
y2

(B.26)

So instead of calculating
Y (a) = q (B.27)

the equation
X(q)− a = 0 (B.28)

180 Appendix B. Some implementation details

︸ ︷︷ ︸︸ ︷︷ ︸?
FES

02331

V alue = (−1)S(2E−127)(1.F)

02331

V alue = (−1)S(2E−127)(1.F)

Figure B.1: IEEE single precision floating point format

can now be solved using Newton-Raphson. An iteration is performed by calculating

yn+1 = yn −
f(yn)
f ′(yn)

(B.29)

The absolute errorε, in this approximation is defined by

ε ≡ yn − q (B.30)

using Taylor series expansion to estimate the error results in

εn+1 = −ε
2
n

2
f ′′(yn)
f ′(yn)

(B.31)

according to [80] equation (3.2). This is an estimation of the absolute error.

B.3.3 Applied to floating point numbers

Floating point numbers in IEEE 32 bit single precision format have a nearly constant relative error
of ∆x/x = 2−24. As seen earlier in the Taylor series expansion equation (eqn.B.31), the error in
every iteration step is absolute and in general dependent ofy. If the error is expressed as a relative
errorεr the following holds

εrn+1 ≡
εn+1

y
(B.32)

and so

εrn+1 = −(
εn
y

)2y
f ′′

2f ′
(B.33)

for the functionf(y) = y−2 the termyf ′′/2f ′ is constant (equal to−3/2) so the relative errorεrn

is independent ofy.

εrn+1 =
3
2
(εrn)2 (B.34)

The conclusion of this is that the function1/
√
x can be calculated with a specified accuracy.

B.3. Computation of the 1.0/sqrt function. 181

B.3.4 Specification of the lookup table

To calculate the function1/
√
x using the previously mentioned iteration scheme, it is clear that the

first estimation of the solution must be accurate enough to get precise results. The requirements
for the calculation are

• Maximum possible accuracy with the used IEEE format

• Use only one iteration step for maximum speed

The first requirement states that the result of1/
√
x may have a relative errorεr equal to the

εr of a IEEE 32 bit single precision floating point number. From this the1/
√
x of the initial

approximation can be derived, rewriting the definition of the relative error for succeeding steps,
equation (eqn.B.34)

εn
y

=

√
εrn+1

2f ′

yf ′′
(B.35)

So for the lookup table the needed accuracy is

∆Y
Y

=
√

2
3
2−24 (B.36)

which defines the width of the table that must be≥ 13 bit.

At this point the relative errorεrn of the lookup table is known. From this the maximum relative
error in the argument can be calculated as follows. The absolute error∆x is defined as

∆x ≡ ∆Y
Y ′

(B.37)

and thus
∆x
Y

=
∆Y
Y

(Y ′)−1 (B.38)

and thus

∆x = constant
Y

Y ′
(B.39)

for the 1/
√
x functionY/Y ′ ∼ x holds, so∆x/x = constant. This is a property of the used

floating point representation as earlier mentioned. The needed accuracy of the argument of the
lookup table follows from

∆x
x

= −2
∆Y
Y

(B.40)

so, using the floating point accuracy, equation (eqn.B.36)

∆x
x

= −2
√

2
3
2−24 (B.41)

This defines the length of the lookup table which should be≥ 12 bit.

182 Appendix B. Some implementation details

B.3.5 Separate exponent and fraction computation

The used IEEE 32 bit single precision floating point format specifies that a number is represented
by a exponent and a fraction. The previous section specifies for every possible floating point
number the lookup table length and width. Only the size of the fraction of a floating point number
defines the accuracy. The conclusion from this can be that the size of the lookup table is length of
lookup table, earlier specified, times the size of the exponent (21228, 1Mb). The1/

√
x function

has the property that the exponent is independent of the fraction. This becomes clear if the floating
point representation is used. Define

x ≡ (−1)S(2E−127)(1.F) (B.42)

see Fig.B.1 where0 ≤ S ≤ 1, 0 ≤ E ≤ 255, 1 ≤ 1.F < 2 andS, E, F integer (normalization
conditions). The sign bit (S) can be omitted because1/

√
x is only defined forx > 0. The1/

√
x

function applied tox results in

y(x) =
1√
x

(B.43)

or

y(x) =
1√

(2E−127)(1.F)
(B.44)

this can be rewritten as
y(x) = (2E−127)−1/2(1.F)−1/2 (B.45)

Define
(2E′−127) ≡ (2E−127)−1/2 (B.46)

1.F ′ ≡ (1.F)−1/2 (B.47)

then 1√
2
< 1.F ′ ≤ 1 holds, so the condition1 ≤ 1.F ′ < 2 which is essential for normalized real

representation is not valid anymore. By introducing an extra term this can be corrected. Rewrite
the1/

√
x function applied to floating point numbers, equation (eqn.B.45) as

y(x) = (2
127−E

2
−1)(2(1.F)−1/2) (B.48)

and
(2E′−127) ≡ (2

127−E
2

−1) (B.49)

1.F ′ ≡ 2(1.F)−1/2 (B.50)

then
√

2 < 1.F ≤ 2 holds. This is not the exact valid range as defined for normalized floating
point numbers in equation (eqn.B.42). The value2 causes the problem. By mapping this value
on the nearest representation< 2 this can be solved. The small error that is introduced by this
approximation is within the allowable range.

The integer representation of the exponent is the next problem. Calculating(2
127−E

2
−1) introduces

a fractional result if(127 − E) = odd. This is again easily accounted for by splitting up the
calculation into an odd and an even part. For(127 − E) = even E′ in equation (eqn.B.49) can
be exactly calculated in integer arithmetic as a function ofE.

E′ =
127− E

2
+ 126 (B.51)

B.3. Computation of the 1.0/sqrt function. 183

For (127− E) = odd equation (eqn.B.45) can be rewritten as

y(x) = (2
127−E−1

2)(
1.F
2

)−1/2 (B.52)

thus

E′ =
126− E

2
+ 127 (B.53)

which also can be calculated exactly in integer arithmetic. Note that the fraction is automatically
corrected for its range earlier mentioned, so the exponent does not need an extra correction.

The conclusions from this are:

• The fraction and exponent lookup table are independent. The fraction lookup table exists
of two tables (odd and even exponent) so the odd/even information of the exponent (lsb bit)
has to be used to select the right table.

• The exponent table is an 256 x 8 bit table, initialized forodd andeven.

B.3.6 Implementation

The lookup tables can be generated by a small C program, which uses floating point numbers
and operations with IEEE 32 bit single precision format. Note that because of theodd/even
information that is needed, the fraction table is twice the size earlier specified (13 bit i.s.o. 12 bit).

The function according to equation (eqn.B.29) has to be implemented. Applied to the1/
√
x

function, equation (eqn.B.28) leads to

f = a− 1
y2

(B.54)

and so

f ′ =
2
y3

(B.55)

so

yn+1 = yn −
a− 1

y2
n

2
y3

n

(B.56)

or
yn+1 =

yn

2
(3− ay2

n) (B.57)

Wherey0 can be found in the lookup tables, andy1 gives the result to the maximum accuracy. It
is clear that only one iteration extra (in double precision) is needed for a double precision result.

184 Appendix B. Some implementation details

Appendix C

Long range corrections

C.1 Dispersion

In this section we derive long range corrections due to the use of a cut-off for Lennard Jones
interactions. We assume that the cut-off is so long that the repulsion term can safely be neglected,
and therefore only the dispersion term is taken into account. Due to the nature of the dispersion
interaction, energy and pressure corrections both are negative. While the energy correction is
usually small, it may be important for free energy calculations. The pressure correction in contrast
is very large and can not be neglected. Although it is in principle possible to parameterize a force
field such that the pressure is close to 1 bar even without correction, such a method makes the
parameterization dependent on the cut-off and is therefore undesirable. Please note that it is not
consistent to use the long range correction to the dispersion without using either a reaction field
method or a proper long range electrostatics method such as Ewald summation or PPPM.

C.1.1 Energy

The long range contribution of the dispersion interaction to the virial can be derived analytically, if
we assume a homogeneous system beyond the cut-off distancerc. The dispersion energy between
two particles is written as:

V (rij) = − C6r
−6
ij (C.1)

and the corresponding force is
F ij = − 6C6r

−8
ij rij (C.2)

The long range contribution to the dispersion energy in a system withN particles and particle
densityρ =N/V , whereV is the volume, is [67]:

Vlr =
1
2
Nρ

∫ ∞

rc

4πr2g(r)V (r)dr (C.3)

which we can integrate assuming that the radial distribution functiong(r) is 1 beyond the cut-off
rc

Vlr = − 2
3
NρπC6r

−3
c (C.4)

186 Appendix C. Long range corrections

If we consider for example a box of pure water, simulated with a cut-off of 0.9 nm and a density
of 1 g cm−3 this correction is -0.25 kJ mol−1.

For a homogeneous mixture ofM componentsj with Nj particles each, we can write the long
range contribution to the energy as:

Vlr =
M∑
i6=j

−2NiNj

3V
πC6(ij)r−3

c (C.5)

This can be rewritten if we define anaverage dispersion constant〈C6〉:

〈C6〉 =
∑
i6=j

NiNj

N2
C6(ij) (C.6)

Vlr = −2
3
Nρπ 〈C6〉 r−3

c (C.7)

A special form of a non-homogeneous system in this respect, is a pure liquid in which the atoms
have differentC6 values. In practice this definition encompasses almost every molecule, except
mono-atomic molecules and symmetric molecules likeN2 or O2. Therefore we always have to
determine the average dispersion constant〈C6〉 in simulations.

In the case of inhomogeneous simulation systems,e.g.a system with a lipid interface, the energy
correction can be applied if〈C6〉 for both components is comparable.

C.1.2 Virial and pressure

The scalar virial of the system due to the dispersion interaction between two particlesi andj is
given by:

Ξ = − rij · F ij = 6C6r
−6
ij (C.8)

The pressure is given by:

P =
2

3V
(Ekin − Ξ) (C.9)

We can again integrate the long range contribution to the virial [67]:

Ξlr =
1
2
Nρ

∫ ∞

rc

4πr2 Ξdr

= 12NπρC6

∫ ∞

rc

r−4
ij dr

= 4πC6Nρr
−3
c (C.10)

The corresponding correction to the pressure is

Plr = − 4
3
πC6ρ

2r−3
c (C.11)

Using the same example of a water box, the correction to the virial is 3 kJ mol−1 the corresponding
correction to the pressure for SPC water at liquid density is approx. -280 bar.

C.1. Dispersion 187

For homogeneous mixtures we can again use the average dispersion constant〈C6〉 (eqn.C.6):

Plr = − 4
3
π 〈C6〉 ρ2r−3

c (C.12)

For inhomogeneous systems eqn.C.12can be applied under the same restriction as holds for the
energy (see sec.C.1.1).

188 Appendix C. Long range corrections

Appendix D

Averages and fluctuations

D.1 Formulae for averaging

Note: this section was taken from ref [81].

When analyzing a MD trajectory averages〈x〉 and fluctuations

〈
(∆x)2

〉 1
2 =

〈
[x− 〈x〉]2

〉 1
2 (D.1)

of a quantityx are to be computed. The varianceσx of a series of Nx values,{xi}, can be computed
from

σx =
Nx∑
i=1

x2
i − 1

Nx

(
Nx∑
i=1

xi

)2

(D.2)

Unfortunately this formula is numerically not very accurate, especially whenσ
1
2
x is small compared

to the values ofxi. The following (equivalent) expression is numerically more accurate

σx =
Nx∑
i=1

[xi − 〈x〉]2 (D.3)

with

〈x〉 =
1
Nx

Nx∑
i=1

xi (D.4)

Using eqns.D.2 andD.4 one has to go through the series ofxi values twice, once to determine
〈x〉 and again to computeσx, whereas eqn.D.1 requires only one sequential scan of the series
{xi}. However, one may cast eqn.D.2 in another form, containing partial sums, which allows for
a sequential update algorithm. Define the partial sum

Xn,m =
m∑

i=n

xi (D.5)

190 Appendix D. Averages and fluctuations

and the partial variance

σn,m =
m∑

i=n

[
xi −

Xn,m

m− n+ 1

]2
(D.6)

It can be shown that
Xn,m+k = Xn,m +Xm+1,m+k (D.7)

and

σn,m+k = σn,m + σm+1,m+k +
[

Xn,m

m− n+ 1
− Xn,m+k

m+ k − n+ 1

]2
∗

(m− n+ 1)(m+ k − n+ 1)
k

(D.8)

Forn = 1 one finds

σ1,m+k = σ1,m + σm+1,m+k +
[
X1,m

m
− X1,m+k

m+ k

]2 m(m+ k)
k

(D.9)

and forn = 1 andk = 1 (eqn.D.8) becomes

σ1,m+1 = σ1,m +
[
X1,m

m
− X1,m+1

m+ 1

]2
m(m+ 1) (D.10)

= σ1,m +
[X1,m −mxm+1]2

m(m+ 1)
(D.11)

where we have used the relation

X1,m+1 = X1,m + xm+1 (D.12)

Using formulae (eqn.D.11) and (eqn.D.12) the average

〈x〉 =
X1,Nx

Nx
(D.13)

and the fluctuation 〈
(∆x)2

〉 1
2 =

[
σ1,Nx

Nx

] 1
2

(D.14)

can be obtained by one sweep through the data.

D.2 Implementation

In GROMACS the instantaneous energiesE(m) are stored in the energy file, along with the values
of σ1,m andX1,m. Although the steps are counted from 0, for the energy and fluctuations steps are
counted from 1. This means that the equations presented here are the ones that are implemented.
We give somewhat lengthy derivations in this section to simplify checking of code and equations
later on.

D.2. Implementation 191

D.2.1 Part of a Simulation

It is not uncommon to perform a simulation where the first part,e.g.100 ps, is taken as equili-
bration. However, the averages and fluctuations as printed in the log file are computed over the
whole simulation. The equilibration time, which is now part of the simulation, may in such a case
invalidate the averages and fluctuations, because these numbers are now dominated by the initial
drift towards equilibrium.

Using eqns.D.7 andD.8 the average and standard deviation over part of the trajectory can be
computed as:

Xm+1,m+k = X1,m+k −X1,m (D.15)

σm+1,m+k = σ1,m+k − σ1,m −
[
X1,m

m
− X1,m+k

m+ k

]2 m(m+ k)
k

(D.16)

or, more generally (withp ≥ 1 andq ≥ p):

Xp,q = X1,q −X1,p−1 (D.17)

σp,q = σ1,q − σ1,p−1 −
[
X1,p−1

p− 1
− X1,q

q

]2 (p− 1)q
q − p+ 1

(D.18)

Note that implementation of this is not entirely trivial, since energies are not stored every time
step of the simulation. We therefore have to constructX1,p−1 andσ1,p−1 from the information at
timep using eqns.D.11andD.12:

X1,p−1 = X1,p − xp (D.19)

σ1,p−1 = σ1,p −
[X1,p−1 − (p− 1)xp]2

(p− 1)p
(D.20)

D.2.2 Combining two simulations

Another frequently occurring problem is, that the fluctuations of two simulations must be com-
bined. Consider the following example: we have two simulations (A) ofn and (B) ofm steps, in
which the second simulation is a continuation of the first. However, the second simulation starts
numbering from 1 instead of fromn + 1. For the partial sum this is no problem, we have to add
XA

1,n from run A:

XAB
1,n+m = XA

1,n +XB
1,m (D.21)

When we want to compute the partial variance from the two components we have to make a
correction∆σ:

σAB
1,n+m = σA

1,n + σB
1,m + ∆σ (D.22)

if we definexAB
i as the combined and renumbered set of data points we can write:

σAB
1,n+m =

n+m∑
i=1

[
xAB

i −
XAB

1,n+m

n+m

]2

(D.23)

192 Appendix D. Averages and fluctuations

and thus

n+m∑
i=1

[
xAB

i −
XAB

1,n+m

n+m

]2

=
n∑

i=1

[
xA

i −
XA

1,n

n

]2

+
m∑

i=1

[
xB

i −
XB

1,m

m

]2

+ ∆σ (D.24)

or

n+m∑
i=1

(xAB
i)2 − 2xAB

i

XAB
1,n+m

n+m
+

(
XAB

1,n+m

n+m

)2
 −

n∑
i=1

(xA
i)2 − 2xA

i

XA
1,n

n
+

(
XA

1,n

n

)2
 −

m∑
i=1

(xB
i)2 − 2xB

i

XB
1,m

m
+

(
XB

1,m

m

)2
 = ∆σ (D.25)

all thex2
i terms drop out, and the terms independent of the summation counteri can be simplified:(

XAB
1,n+m

)2

n+m
−

(
XA

1,n

)2

n
−

(
XB

1,m

)2

m
−

2
XAB

1,n+m

n+m

n+m∑
i=1

xAB
i + 2

XA
1,n

n

n∑
i=1

xA
i + 2

XB
1,m

m

m∑
i=1

xB
i = ∆σ (D.26)

we recognize the three partial sums on the second line and use eqn.D.21to obtain:

∆σ =

(
mXA

1,n − nXB
1,m

)2

nm(n+m)
(D.27)

if we check this by insertingm = 1 we get back eqn.D.11

D.2.3 Summing energy terms

The genergy program can also sum energy terms into one,e.g.potential + kinetic = total. For the
partial averages this is again easy if we haveS energy componentss:

XS
m,n =

n∑
i=m

S∑
s=1

xs
i =

S∑
s=1

n∑
i=m

xs
i =

S∑
s=1

Xs
m,n (D.28)

For the fluctuations it is less trivial again, considering for example that the fluctuation in potential
and kinetic energy should cancel. Nevertheless we can try the same approach as before by writing:

σS
m,n =

S∑
s=1

σs
m,n + ∆σ (D.29)

if we fill in eqn. D.6:

n∑
i=m

[(
S∑

s=1

xs
i

)
−

XS
m,n

m− n+ 1

]2

=
S∑

s=1

n∑
i=m

[
(xs

i)−
Xs

m,n

m− n+ 1

]2
+ ∆σ (D.30)

D.2. Implementation 193

which we can expand to:

n∑
i=m

 S∑
s=1

(xs
i)

2 +

(
XS

m,n

m− n+ 1

)2

− 2

 XS
m,n

m− n+ 1

S∑
s=1

xs
i +

S∑
s=1

S∑
s′=s+1

xs
ix

s′
i


−

S∑
s=1

n∑
i=m

[
(xs

i)
2 − 2

Xs
m,n

m− n+ 1
xs

i +
(

Xs
m,n

m− n+ 1

)2
]

= ∆σ (D.31)

the terms with(xs
i)

2 cancel, so that we can simplify to:(
XS

m,n

)2

m− n+ 1
− 2

XS
m,n

m− n+ 1

n∑
i=m

S∑
s=1

xs
i − 2

n∑
i=m

S∑
s=1

S∑
s′=s+1

xs
ix

s′
i −

S∑
s=1

n∑
i=m

[
−2

Xs
m,n

m− n+ 1
xs

i +
(

Xs
m,n

m− n+ 1

)2
]

= ∆σ (D.32)

or

−

(
XS

m,n

)2

m− n+ 1
− 2

n∑
i=m

S∑
s=1

S∑
s′=s+1

xs
ix

s′
i +

S∑
s=1

(
Xs

m,n

)2

m− n+ 1
= ∆σ (D.33)

If we now expand the first term using eqn.D.28we obtain:

−

(∑S
s=1X

s
m,n

)2

m− n+ 1
− 2

n∑
i=m

S∑
s=1

S∑
s′=s+1

xs
ix

s′
i +

S∑
s=1

(
Xs

m,n

)2

m− n+ 1
= ∆σ (D.34)

which we can reformulate to:

− 2

 S∑
s=1

S∑
s′=s+1

Xs
m,nX

s′
m,n +

n∑
i=m

S∑
s=1

S∑
s′=s+1

xs
ix

s′
i

 = ∆σ (D.35)

or

− 2

 S∑
s=1

Xs
m,n

S∑
s′=s+1

Xs′
m,n +

S∑
s=1

n∑
i=m

xs
i

S∑
s′=s+1

xs′
i

 = ∆σ (D.36)

which gives

− 2
S∑

s=1

Xs
m,n

S∑
s′=s+1

n∑
i=m

xs′
i +

n∑
i=m

xs
i

S∑
s′=s+1

xs′
i

 = ∆σ (D.37)

Since we need all data pointsi to evaluate this, in general this is not possible. We can then make an
estimate ofσS

m,n using only the data points that are available using the left hand side of eqn.D.30.
While the average can be computed using all time steps in the simulation, the accuracy of the
fluctuations is thus limited by the frequency with which energies are saved. Since this can be
easily done with a program such as xmgr this is not built-in in GROMACS.

194 Appendix D. Averages and fluctuations

Appendix E

Manual Pages

E.1 options

All GROMACS programs have 6 standard options, of which some are hidden by default:

Other options
-h bool no Print help info and quit

-nice int 0 Set the nicelevel

• If the configuration script found Motif or Lesstif on your system, you can use the graphical interface
(if not, you will get an error):
-X boolno Use dialog box GUI to edit command line options

• When compiled on an SGI-IRIX system, all GROMACS programs have an additional option:
-npri int 0 Set non blocking priority (try 128)

• Optional files are not used unless the option is set, in contrast to non optional files, where the default
file name is used when the option is not set.

• All GROMACS programs will accept file options without a file extension or filename being specified.
In such cases the default filenames will be used. With multiple input file types, such as generic
structure format, the directory will be searched for files of each type with the supplied or default
name. When no such file is found, or with output files the first file type will be used.

• All GROMACS programs with the exception ofmdrun , nmrun andeneconv check if the com-
mand line options are valid. If this is not the case, the program will be halted.

• Enumerated options (enum) should be used with one of the arguments listed in the option description,
the argument may be abbreviated. The first match to the shortest argument in the list will be selected.

• Vector options can be used with 1 or 3 parameters. When only one parameter is supplied the two
others are also set to this value.

• For many GROMACS programs, the time options can be supplied in different time units, depending
on the setting of the-tu option.

• All GROMACS programs can read compressed or g-zipped files. There might be a problem with
reading compressed.xtc , .trr and.trj files, but these will not compress very well anyway.

196 Appendix E. Manual Pages

• Most GROMACS programs can process a trajectory with less atoms than the run input or structure
file, but only if the trajectory consists of the first n atoms of the run input or structure file.

• Many GROMACS programs will accept the-tu option to set the time units to use in output files
(e.g. forxmgr graphs orxpm matrices) and in all time options.

E.2 anadock

anadock analyses the results of an Autodock run and clusters the structures together, based on distance or
RMSD. The docked energy and free energy estimates are analysed, and for each cluster the energy statistics
are printed.

An alternative approach to this is to cluster the structures first (usingg cluster and then sort the clusters
on either lowest energy or average energy.

Files
-f eiwit.pdb Input Protein data bank file

-ox cluster.pdb Output Protein data bank file
-od edocked.xvg Output xvgr/xmgr file
-of efree.xvg Output xvgr/xmgr file

-g anadock.log Output Log file

Other options
-h bool no Print help info and quit

-nice int 0 Set the nicelevel
-free bool no Use Free energy estimate from autodock for sorting the classes

-rms bool yes Cluster on RMS or distance
-cutoff real 0.2 Maximum RMSD/distance for belonging to the same cluster

E.3 anadock d

anadock analyses the results of an Autodock run and clusters the structures together, based on distance or
RMSD. The docked energy and free energy estimates are analysed, and for each cluster the energy statistics
are printed.

An alternative approach to this is to cluster the structures first (usingg cluster and then sort the clusters
on either lowest energy or average energy.

Files
-f eiwit.pdb Input Protein data bank file

-ox cluster.pdb Output Protein data bank file
-od edocked.xvg Output xvgr/xmgr file
-of efree.xvg Output xvgr/xmgr file

-g anadock.log Output Log file

Other options
-h bool no Print help info and quit

-nice int 0 Set the nicelevel
-free bool no Use Free energy estimate from autodock for sorting the classes

-rms bool yes Cluster on RMS or distance
-cutoff real 0.2 Maximum RMSD/distance for belonging to the same cluster

E.4. cdist 197

E.4 cdist

cdist read atpx file and dumps an input file for disco. Bond lengths etc. are read from the topology. Pairs
of atoms that can form hydrogen bonds are given a lowest possible distance ofhblen (can be specified by
the user). Other nonbonded pairs take their minimum distance from the Lennard Jones parameters (at the
combined sigma).

The program uses proper dihedrals to give a distance too, as minimum respectively maximum thecis and
transconfigurations are taken. It is therefore beneficial to use the-alldih option ofpdb2gmx to generate a
topology with all dihedrals in there. If the optional pdb file is given, weights are read from the occupancy
field, so that not all atoms are part of the disco run, only those of which one of the weights is non-zero.

If the option -engh is on (default) bond lengths and angles etc. are read from another database, which is
basically the Engh-Huber data but refined to be completely self consistent. The database name is refiaa.dat
and it resides in the $GMXLIB directory, or in the current directory.

The program can read a file with distances from NMR distance restraints (-d option). Note that these
distance are treated slightly different in the disco program, and therefore these distance should be NMR
derived distance restraints only.

Furthermore, the program can read an index file with hydrogen bond information as generated byg hbond .
This is then used to set tighter restraints on the hydrogen bonded atoms than on the other non bonded
atom pairs, in order to maintain secondary structure. This option is useful only in combination with the
-measure option, when a sensible structure is known.

The option-dom can be used to release distances bounds between different domains to the lower bounds
given by Van der Waals contacts. This way, different domains can move independently, but without over-
lapping. The index file should contain domains that do not overlap with each other.

Files
-s topol.tpr Input Structure+mass(db): tpr tpb tpa gro g96 pdb xml
-g cdist.log Output Log file
-q eiwit.pdb Input, Opt. Protein data bank file
-d nnnice.dat Input, Opt. Generic data file
-o cdist.dat Output Generic data file
-n hbond.ndx Input, Opt. Index file

-dom domain.ndx Input, Opt. Index file

Other options
-h bool no Print help info and quit

-nice int 0 Set the nicelevel
-engh bool yes Use the Engh&Huber parameters for bond-lengths etc.

-bm real 0.01 Relative margin for bond lengths
-am real 0.01 Relative margin for bond angle lengths
-pm real 0.01 Relative margin for peptidebond dihedrals
-rr real 0.01 Relative margin to keep rings flat (trp,tyr,phe,hisb)
-ar real 0.01 Relative margin for arginine
-er real 0.01 Relative margin for asn and gln
-vm real 0.01 Relative margin for valine (0 disables)
-lm real 0.01 Relative margin for leucine (0 disables)
-il real 0.03 Relative margin for isoleucine (0 disables)
-dm real 0.01 !inactive! Relative margin for dihedral lengths
-im real 0.01 Relative margin for improper dihedral lengths
-nm real 0.05 Relative margin for nonbonded lower bounds
-hm real 0.02 Relative margin for hydrogen bonded atoms, which must be specified in

an index file, as generated by ghbond

198 Appendix E. Manual Pages

-hb real 2.3 Shortest possible distance for a hydrogen bond (in Angstrom!)
-bon bool yes Make bonded distance constraints

-nb bool yes Make nonbonded distance constraints (lower bound only)
-measure real 0 Add (nonbonded) distances by examining all atoms within the distance

given (in Angstrom), and using the margin given by the -nm option.
-maxdist real 0 Maximum distance between any pair of atoms

-add bool no Write restraints in format of additional restraints for disco
-vir bool no Use virtual particles

-sm enum none Smoothing: none, tri (Using triangle inequality), or tetra (Partial tetrangle
inequaliy):none , tri or tetra

E.5 cdist d

cdist read atpx file and dumps an input file for disco. Bond lengths etc. are read from the topology. Pairs
of atoms that can form hydrogen bonds are given a lowest possible distance ofhblen (can be specified by
the user). Other nonbonded pairs take their minimum distance from the Lennard Jones parameters (at the
combined sigma).

The program uses proper dihedrals to give a distance too, as minimum respectively maximum thecis and
transconfigurations are taken. It is therefore beneficial to use the-alldih option ofpdb2gmx to generate a
topology with all dihedrals in there. If the optional pdb file is given, weights are read from the occupancy
field, so that not all atoms are part of the disco run, only those of which one of the weights is non-zero.

If the option -engh is on (default) bond lengths and angles etc. are read from another database, which is
basically the Engh-Huber data but refined to be completely self consistent. The database name is refiaa.dat
and it resides in the $GMXLIB directory, or in the current directory.

The program can read a file with distances from NMR distance restraints (-d option). Note that these
distance are treated slightly different in the disco program, and therefore these distance should be NMR
derived distance restraints only.

Furthermore, the program can read an index file with hydrogen bond information as generated byg hbond .
This is then used to set tighter restraints on the hydrogen bonded atoms than on the other non bonded
atom pairs, in order to maintain secondary structure. This option is useful only in combination with the
-measure option, when a sensible structure is known.

The option-dom can be used to release distances bounds between different domains to the lower bounds
given by Van der Waals contacts. This way, different domains can move independently, but without over-
lapping. The index file should contain domains that do not overlap with each other.

Files
-s topol.tpr Input Structure+mass(db): tpr tpb tpa gro g96 pdb xml
-g cdist.log Output Log file
-q eiwit.pdb Input, Opt. Protein data bank file
-d nnnice.dat Input, Opt. Generic data file
-o cdist.dat Output Generic data file
-n hbond.ndx Input, Opt. Index file

-dom domain.ndx Input, Opt. Index file

Other options
-h bool no Print help info and quit

-nice int 0 Set the nicelevel
-engh bool yes Use the Engh&Huber parameters for bond-lengths etc.

-bm real 0.01 Relative margin for bond lengths

E.6. disco 199

-am real 0.01 Relative margin for bond angle lengths
-pm real 0.01 Relative margin for peptidebond dihedrals
-rr real 0.01 Relative margin to keep rings flat (trp,tyr,phe,hisb)
-ar real 0.01 Relative margin for arginine
-er real 0.01 Relative margin for asn and gln
-vm real 0.01 Relative margin for valine (0 disables)
-lm real 0.01 Relative margin for leucine (0 disables)
-il real 0.03 Relative margin for isoleucine (0 disables)
-dm real 0.01 !inactive! Relative margin for dihedral lengths
-im real 0.01 Relative margin for improper dihedral lengths
-nm real 0.05 Relative margin for nonbonded lower bounds
-hm real 0.02 Relative margin for hydrogen bonded atoms, which must be specified in

an index file, as generated by ghbond
-hb real 2.3 Shortest possible distance for a hydrogen bond (in Angstrom!)

-bon bool yes Make bonded distance constraints
-nb bool yes Make nonbonded distance constraints (lower bound only)

-measure real 0 Add (nonbonded) distances by examining all atoms within the distance
given (in Angstrom), and using the margin given by the -nm option.

-maxdist real 0 Maximum distance between any pair of atoms
-add bool no Write restraints in format of additional restraints for disco
-vir bool no Use virtual particles

-sm enum none Smoothing: none, tri (Using triangle inequality), or tetra (Partial tetrangle
inequaliy):none , tri or tetra

E.6 disco

disco reads a topology (tpr) file and runs distance geometry calculations based on the distances defined
in the distance-restraints section of the topology. An appropriate tpr file may be generated by the cdist
program.

The algorithm is the CONCOORD algorithm of De Groot et al., which in turn is derived from the SHAKE
alogrithm.

A parallel version of disco is under development whihc uses a master-slave approach. Slaves work asyn-
chronously, and it is no problem when nodes are not equally fast, or when a node dies, unless it is the master
node.

Files
-g disco.log Output Log file
-f conf.gro Input Generic structure: gro g96 pdb tpr tpb tpa xml
-d cdist.dat Input Generic data file

-do distout.dat Output, Opt. Generic data file
-c out.gro Input Generic structure: gro g96 pdb xml

-center out.gro Input, Opt. Generic structure: gro g96 pdb xml
-n index.ndx Input, Opt. Index file
-o structs.xtc Output Generic trajectory: xtc trr trj gro g96 pdb

-keepunconverged.xtc Output, Opt. Generic trajectory: xtc trr trj gro g96 pdb
-viol vvv.pdb Output, Opt. Protein data bank file

Other options
-h bool no Print help info and quit

-nice int 19 Set the nicelevel
-nf int 10 Number of structures to generate

200 Appendix E. Manual Pages

-nit int 1000 Max number of iterations for a structure to converge
-v bool yes Be verbosive

-chiral bool yes Check chirality during disco-ing
-pep bool yes Flip all cis-peptide bonds automatically to trans

-lower bool no Use lower bounds only for nonbondeds.
-weighted bool no Use weighted disco. The STX file must be a pdb file in this case and

weights are read from the occupancy field
-dump bool no Dump the trajectory of the shaking to testX.xtc file where X is the struc-

ture number.
-cubic bool no Generate coordinates in a cubic box, rather than rectangular

-explicit bool no Use explicit updating of positions if the sum of deviations is smaller than
lowdev

-fit bool no Fit output structures to reference structure in tpx file
-nbcheck int 1 Check non-bonded interactions every N steps

-nstprint int 1 Print number of violations every N steps
-ranlist int 0 Update list order to avoid bias every n steps

-ranlistfirst bool yes Randomize list once before shaking
-lowdev real 0.05 Low deviation [Sum of distance deviation per atom in nm] beyond which

nonbondeds are done every step
-seed int 1997 Seed for the random number generator

-box vector 2 2 2 Boxsize (nm) for generating random coordinates
-grow int 0 Number of steps after which Van der Waals lower bounds grow from 0

to the real lower bounds. If this is 0 (default), the Van der Waals lower
bounds are in effect from the beginning

E.7 disco d

disco reads a topology (tpr) file and runs distance geometry calculations based on the distances defined
in the distance-restraints section of the topology. An appropriate tpr file may be generated by the cdist
program.

The algorithm is the CONCOORD algorithm of De Groot et al., which in turn is derived from the SHAKE
alogrithm.

A parallel version of disco is under development whihc uses a master-slave approach. Slaves work asyn-
chronously, and it is no problem when nodes are not equally fast, or when a node dies, unless it is the master
node.

Files
-g disco.log Output Log file
-f conf.gro Input Generic structure: gro g96 pdb tpr tpb tpa xml
-d cdist.dat Input Generic data file

-do distout.dat Output, Opt. Generic data file
-c out.gro Input Generic structure: gro g96 pdb xml

-center out.gro Input, Opt. Generic structure: gro g96 pdb xml
-n index.ndx Input, Opt. Index file
-o structs.xtc Output Generic trajectory: xtc trr trj gro g96 pdb

-keepunconverged.xtc Output, Opt. Generic trajectory: xtc trr trj gro g96 pdb
-viol vvv.pdb Output, Opt. Protein data bank file

Other options
-h bool no Print help info and quit

-nice int 19 Set the nicelevel

E.8. dodssp 201

-nf int 10 Number of structures to generate
-nit int 1000 Max number of iterations for a structure to converge

-v bool yes Be verbosive
-chiral bool yes Check chirality during disco-ing

-pep bool yes Flip all cis-peptide bonds automatically to trans
-lower bool no Use lower bounds only for nonbondeds.

-weighted bool no Use weighted disco. The STX file must be a pdb file in this case and
weights are read from the occupancy field

-dump bool no Dump the trajectory of the shaking to testX.xtc file where X is the struc-
ture number.

-cubic bool no Generate coordinates in a cubic box, rather than rectangular
-explicit bool no Use explicit updating of positions if the sum of deviations is smaller than

lowdev
-fit bool no Fit output structures to reference structure in tpx file

-nbcheck int 1 Check non-bonded interactions every N steps
-nstprint int 1 Print number of violations every N steps

-ranlist int 0 Update list order to avoid bias every n steps
-ranlistfirst bool yes Randomize list once before shaking

-lowdev real 0.05 Low deviation [Sum of distance deviation per atom in nm] beyond which
nonbondeds are done every step

-seed int 1997 Seed for the random number generator
-box vector 2 2 2 Boxsize (nm) for generating random coordinates

-grow int 0 Number of steps after which Van der Waals lower bounds grow from 0
to the real lower bounds. If this is 0 (default), the Van der Waals lower
bounds are in effect from the beginning

E.8 do dssp

do dssp reads a trajectory file and computes the secondary structure for each time frame calling the dssp
program. If you do not have the dssp program, get it. dodssp assumes that the dssp executable is
/usr/local/bin/dssp. If this is not the case, then you should set an environment variableDSSPpointing
to the dssp executable, e.g.:

setenv DSSP /opt/dssp/bin/dssp

The structure assignment for each residue and time is written to an.xpm matrix file. This file can be
visualized with for instancexv and can be converted to postscript withxpm2ps . The number of residues
with each secondary structure type and the total secondary structure (-sss) count as a function of time are
also written to file (-sc).

Solvent accessible surface (SAS) per residue can be calculated, both in absolute values (A2) and in fractions
of the maximal accessible surface of a residue. The maximal accessible surface is defined as the accessible
surface of a residue in a chain of glycines.Note that the programg sas can also compute SAS and that is
more efficient.

Finally, this program can dump the secondary structure in a special filessdump.dat for usage in the
programg chi . Together these two programs can be used to analyze dihedral properties as a function of
secondary structure type.

Files
-f traj.xtc Input Generic trajectory: xtc trr trj gro g96 pdb
-s topol.tpr Input Structure+mass(db): tpr tpb tpa gro g96 pdb xml
-n index.ndx Input, Opt. Index file

-ssdump ssdump.dat Output, Opt. Generic data file

202 Appendix E. Manual Pages

-map ss.map Input, Lib. File that maps matrix data to colors
-o ss.xpm Output X PixMap compatible matrix file

-sc scount.xvg Output xvgr/xmgr file
-a area.xpm Output, Opt. X PixMap compatible matrix file

-ta totarea.xvg Output, Opt. xvgr/xmgr file
-aa averarea.xvg Output, Opt. xvgr/xmgr file

Other options
-h bool no Print help info and quit

-nice int 19 Set the nicelevel
-b time -1 First frame (ps) to read from trajectory
-e time -1 Last frame (ps) to read from trajectory

-dt time -1 Only use frame when t MOD dt = first time (ps)
-tu enum ps Time unit: ps , fs , ns , us , ms, s , mor h

-w bool no View output xvg, xpm, eps and pdb files
-sss string HEBT Secondary structures for structure count

• The program is very slow

E.9 do dssp d

do dssp reads a trajectory file and computes the secondary structure for each time frame calling the dssp
program. If you do not have the dssp program, get it. dodssp assumes that the dssp executable is
/usr/local/bin/dssp. If this is not the case, then you should set an environment variableDSSPpointing
to the dssp executable, e.g.:

setenv DSSP /opt/dssp/bin/dssp

The structure assignment for each residue and time is written to an.xpm matrix file. This file can be
visualized with for instancexv and can be converted to postscript withxpm2ps . The number of residues
with each secondary structure type and the total secondary structure (-sss) count as a function of time are
also written to file (-sc).

Solvent accessible surface (SAS) per residue can be calculated, both in absolute values (A2) and in fractions
of the maximal accessible surface of a residue. The maximal accessible surface is defined as the accessible
surface of a residue in a chain of glycines.Note that the programg sas can also compute SAS and that is
more efficient.

Finally, this program can dump the secondary structure in a special filessdump.dat for usage in the
programg chi . Together these two programs can be used to analyze dihedral properties as a function of
secondary structure type.

Files
-f traj.xtc Input Generic trajectory: xtc trr trj gro g96 pdb
-s topol.tpr Input Structure+mass(db): tpr tpb tpa gro g96 pdb xml
-n index.ndx Input, Opt. Index file

-ssdump ssdump.dat Output, Opt. Generic data file
-map ss.map Input, Lib. File that maps matrix data to colors

-o ss.xpm Output X PixMap compatible matrix file
-sc scount.xvg Output xvgr/xmgr file

-a area.xpm Output, Opt. X PixMap compatible matrix file
-ta totarea.xvg Output, Opt. xvgr/xmgr file
-aa averarea.xvg Output, Opt. xvgr/xmgr file

E.10. editconf 203

Other options
-h bool no Print help info and quit

-nice int 19 Set the nicelevel
-b time -1 First frame (ps) to read from trajectory
-e time -1 Last frame (ps) to read from trajectory

-dt time -1 Only use frame when t MOD dt = first time (ps)
-tu enum ps Time unit: ps , fs , ns , us , ms, s , mor h

-w bool no View output xvg, xpm, eps and pdb files
-sss string HEBT Secondary structures for structure count

• The program is very slow

E.10 editconf

editconf converts generic structure format to.gro , .g96 or .pdb .

The box can be modified with options-box , -d and-angles . Both-box and-d will center the system
in the box.

Option -bt determines the box type:tric is a triclinic box,cubic is a cubic box,dodecahedron
is a rhombic dodecahedron andoctahedron is a truncated octahedron. The last two are special cases
of a triclinic box. The length of the three box vectors of the truncated octahedron is the shortest distance
between two opposite hexagons. The volume of a dodecahedron is 0.71 and that of a truncated octahedron
is 0.77 of that of a cubic box with the same periodic image distance.

Option-box requires only one value for a cubic box, dodecahedron and a truncated octahedron. With-d
andtric the size of the system in the x, y and z directions is used. With-d andcubic , dodecahedron
or octahedron the diameter of the system is used, which is the largest distance between two atoms.

Option-angles is only meaningful with option-box and a triclinic box and can not be used with option
-d .

When-n or -ndef is set, a group can be selected for calculating the size and the geometric center, other-
wise the whole system is used.

-rotate rotates the coordinates and velocities.-princ aligns the principal axes of the system along
the coordinate axes, this may allow you to decrease the box volume, but beware that molecules can rotate
significantly in a nanosecond.

Scaling is applied before any of the other operations are performed. Boxes can be scaled to give a certain
density (option-density). A special feature of the scaling option, when the factor -1 is given in one
dimension, one obtains a mirror image, mirrored in one of the plains, when one uses -1 in three dimensions
a point-mirror image is obtained.

Groups are selected after all operations have been applied.

Periodicity can be removed in a crude manner. It is important that the box sizes at the bottom of your input
file are correct when the periodicity is to be removed.

The program can optionally rotate the solute molecule to align the molecule along its principal axes
(-rotate)

When writing.pdb files, B-factors can be added with the-bf option. B-factors are read from a file with
with following format: first line states number of entries in the file, next lines state an index followed by a
B-factor. The B-factors will be attached per residue unless an index is larger than the number of residues
or unless the-atom option is set. Obviously, any type of numeric data can be added instead of B-factors.

204 Appendix E. Manual Pages

-legend will produce a row of CA atoms with B-factors ranging from the minimum to the maximum
value found, effectively making a legend for viewing.

With the option -mead a special pdb file for the MEAD electrostatics program (Poisson-Boltzmann solver)
can be made. A further prerequisite is that the input file is a run input file. The B-factor field is then filled
with the Van der Waals radius of the atoms while the occupancy field will hold the charge.

The option -grasp is similar, but it puts the charges in the B-factor and the radius in the occupancy.

Finally with option -label editconf can add a chain identifier to a pdb file, which can be useful for
analysis with e.g. rasmol.

To convert a truncated octrahedron file produced by a package which uses a cubic box with the corners cut
off (such as Gromos) use:
editconf -f <in > -rotate 0 -45 -35.264 -bt o -box <veclen > -o <out >
whereveclen is the size of the cubic box times sqrt(3)/2.

Files
-f conf.gro Input Generic structure: gro g96 pdb tpr tpb tpa xml
-n index.ndx Input, Opt. Index file
-o out.gro Output Generic structure: gro g96 pdb xml

-bf bfact.dat Input, Opt. Generic data file

Other options
-h bool no Print help info and quit

-nice int 0 Set the nicelevel
-w bool no View output xvg, xpm, eps and pdb files

-ndef bool no Choose output from default index groups
-bt enum tric Box type for -box and -d: tric , cubic , dodecahedron or

octahedron
-box vector 0 0 0 Box vector lengths (a,b,c)

-angles vector90 90 90 Angles between the box vectors (bc,ac,ab)
-d real 0 Distance between the solute and the box
-c bool no Center molecule in box (implied by -box and -d)

-center vector 0 0 0 Coordinates of geometrical center
-translate vector 0 0 0 Translation

-rotate vector 0 0 0 Rotation around the X, Y and Z axes in degrees
-princ bool no Orient molecule(s) along their principal axes
-scale vector 1 1 1 Scaling factor

-density real 1000 Density (g/l) of the output box achieved by scaling
-vol bool yes Compute and print volume of the box
-pbc bool no Remove the periodicity (make molecule whole again)

-mead bool no Store the charge of the atom in the occupancy field and the radius of the
atom in the B-factor field

-grasp bool no Store the charge of the atom in the B-factor field and the radius of the
atom in the occupancy field

-rvdw real 0.12 Default Van der Waals radius if one can not be found in the database
-atom bool no Force B-factor attachment per atom

-legend bool no Make B-factor legend
-label string A Add chain label for all residues

• For complex molecules, the periodicity removal routine may break down, in that case you can use
trjconv

E.11. editconfd 205

E.11 editconf d

editconf converts generic structure format to.gro , .g96 or .pdb .

The box can be modified with options-box , -d and-angles . Both-box and-d will center the system
in the box.

Option -bt determines the box type:tric is a triclinic box,cubic is a cubic box,dodecahedron
is a rhombic dodecahedron andoctahedron is a truncated octahedron. The last two are special cases
of a triclinic box. The length of the three box vectors of the truncated octahedron is the shortest distance
between two opposite hexagons. The volume of a dodecahedron is 0.71 and that of a truncated octahedron
is 0.77 of that of a cubic box with the same periodic image distance.

Option-box requires only one value for a cubic box, dodecahedron and a truncated octahedron. With-d
andtric the size of the system in the x, y and z directions is used. With-d andcubic , dodecahedron
or octahedron the diameter of the system is used, which is the largest distance between two atoms.

Option-angles is only meaningful with option-box and a triclinic box and can not be used with option
-d .

When-n or -ndef is set, a group can be selected for calculating the size and the geometric center, other-
wise the whole system is used.

-rotate rotates the coordinates and velocities.-princ aligns the principal axes of the system along
the coordinate axes, this may allow you to decrease the box volume, but beware that molecules can rotate
significantly in a nanosecond.

Scaling is applied before any of the other operations are performed. Boxes can be scaled to give a certain
density (option-density). A special feature of the scaling option, when the factor -1 is given in one
dimension, one obtains a mirror image, mirrored in one of the plains, when one uses -1 in three dimensions
a point-mirror image is obtained.

Groups are selected after all operations have been applied.

Periodicity can be removed in a crude manner. It is important that the box sizes at the bottom of your input
file are correct when the periodicity is to be removed.

The program can optionally rotate the solute molecule to align the molecule along its principal axes
(-rotate)

When writing.pdb files, B-factors can be added with the-bf option. B-factors are read from a file with
with following format: first line states number of entries in the file, next lines state an index followed by a
B-factor. The B-factors will be attached per residue unless an index is larger than the number of residues
or unless the-atom option is set. Obviously, any type of numeric data can be added instead of B-factors.
-legend will produce a row of CA atoms with B-factors ranging from the minimum to the maximum
value found, effectively making a legend for viewing.

With the option -mead a special pdb file for the MEAD electrostatics program (Poisson-Boltzmann solver)
can be made. A further prerequisite is that the input file is a run input file. The B-factor field is then filled
with the Van der Waals radius of the atoms while the occupancy field will hold the charge.

The option -grasp is similar, but it puts the charges in the B-factor and the radius in the occupancy.

Finally with option -label editconf can add a chain identifier to a pdb file, which can be useful for
analysis with e.g. rasmol.

To convert a truncated octrahedron file produced by a package which uses a cubic box with the corners cut
off (such as Gromos) use:
editconf -f <in > -rotate 0 -45 -35.264 -bt o -box <veclen > -o <out >
whereveclen is the size of the cubic box times sqrt(3)/2.
Files

206 Appendix E. Manual Pages

-f conf.gro Input Generic structure: gro g96 pdb tpr tpb tpa xml
-n index.ndx Input, Opt. Index file
-o out.gro Output Generic structure: gro g96 pdb xml

-bf bfact.dat Input, Opt. Generic data file

Other options
-h bool no Print help info and quit

-nice int 0 Set the nicelevel
-w bool no View output xvg, xpm, eps and pdb files

-ndef bool no Choose output from default index groups
-bt enum tric Box type for -box and -d: tric , cubic , dodecahedron or

octahedron
-box vector 0 0 0 Box vector lengths (a,b,c)

-angles vector90 90 90 Angles between the box vectors (bc,ac,ab)
-d real 0 Distance between the solute and the box
-c bool no Center molecule in box (implied by -box and -d)

-center vector 0 0 0 Coordinates of geometrical center
-translate vector 0 0 0 Translation

-rotate vector 0 0 0 Rotation around the X, Y and Z axes in degrees
-princ bool no Orient molecule(s) along their principal axes
-scale vector 1 1 1 Scaling factor

-density real 1000 Density (g/l) of the output box achieved by scaling
-vol bool yes Compute and print volume of the box
-pbc bool no Remove the periodicity (make molecule whole again)

-mead bool no Store the charge of the atom in the occupancy field and the radius of the
atom in the B-factor field

-grasp bool no Store the charge of the atom in the B-factor field and the radius of the
atom in the occupancy field

-rvdw real 0.12 Default Van der Waals radius if one can not be found in the database
-atom bool no Force B-factor attachment per atom

-legend bool no Make B-factor legend
-label string A Add chain label for all residues

• For complex molecules, the periodicity removal routine may break down, in that case you can use
trjconv

E.12 eneconv

With multiple filesspecified for the-f option:
Concatenates several energy files in sorted order. In case of double time frames the one in the later file is
used. By specifying-settime you will be asked for the start time of each file. The input files are taken
from the command line, such that the commandeneconv -o fixed.edr *.edr should do the trick.

With one filespecified for-f :
Reads one energy file and writes another, applying the-dt , -offset , -t0 and-settime options and
converting to a different format if necessary (indicated by file extentions).

-settime is applied first, then-dt /-offset followed by-b and-e to select which frames to write.

Files
-f ener.edr Input, Mult. Generic energy: edr ene
-o fixed.edr Output Generic energy: edr ene

E.13. eneconvd 207

Other options
-h bool no Print help info and quit

-nice int 19 Set the nicelevel
-b real -1 First time to use
-e real -1 Last time to use

-dt real 0 Only write out frame when t MOD dt = offset
-offset real 0 Time offset for -dt option

-settime bool no Change starting time interactively
-sort bool yes Sort energy files (not frames)

-scalefac real 1 Multiply energy component by this factor
-error bool yes Stop on errors in the file

• When combining trajectories the sigma and E2 (necessary for statistics) are not updated correctly.
Only the actual energy is correct. One thus has to compute statistics in another way.

E.13 eneconv d

With multiple filesspecified for the-f option:
Concatenates several energy files in sorted order. In case of double time frames the one in the later file is
used. By specifying-settime you will be asked for the start time of each file. The input files are taken
from the command line, such that the commandeneconv -o fixed.edr *.edr should do the trick.

With one filespecified for-f :
Reads one energy file and writes another, applying the-dt , -offset , -t0 and-settime options and
converting to a different format if necessary (indicated by file extentions).

-settime is applied first, then-dt /-offset followed by-b and-e to select which frames to write.

Files
-f ener.edr Input, Mult. Generic energy: edr ene
-o fixed.edr Output Generic energy: edr ene

Other options
-h bool no Print help info and quit

-nice int 19 Set the nicelevel
-b real -1 First time to use
-e real -1 Last time to use

-dt real 0 Only write out frame when t MOD dt = offset
-offset real 0 Time offset for -dt option

-settime bool no Change starting time interactively
-sort bool yes Sort energy files (not frames)

-scalefac real 1 Multiply energy component by this factor
-error bool yes Stop on errors in the file

• When combining trajectories the sigma and E2 (necessary for statistics) are not updated correctly.
Only the actual energy is correct. One thus has to compute statistics in another way.

E.14 ffscan

The ffscan program performs a single point energy and force calculation in which the force field is modified.
This way a range of parameters can be changed and tested for reproduction of e.g. quantum chemical or

208 Appendix E. Manual Pages

experimental data. A grid scan over the parameters is done as specified using command line arguments. All
parameters that reproduce the energy within a given absolute tolerance are printed to a log file.

Obviously polarizable models can be used, and shell optimisation is performed if necessary. Also, like in
mdrun table functions can be used for user defined potential functions.

If the option -ga with appropriate file is passed, a genetic algorithm will be used rather than a grid scan.

Files
-s topol.tpr Input Generic run input: tpr tpb tpa xml
-g md.log Output Log file

-table table.xvg Input, Opt. xvgr/xmgr file
-parm params.dat Input Generic data file

-ga genalg.dat Input, Opt. Generic data file
-c junk.gro Output Coordinate file in Gromos-87 format
-e junk.edr Output Generic energy: edr ene
-o junk.trr Output Full precision trajectory: trr trj

Other options
-h bool no Print help info and quit

-nice int 19 Set the nicelevel
-tol real 0.1 Energy tolerance (kJ/mol) (zero means everything is printed)

-fmax real 100 Force tolerance (zero means everything is printed)
-comb bool yes Use combination rules
-npow real 12 Power for LJ in case of table use

-logeps bool no Use a logarithmic scale for epsilon
-v bool no Be loud and noisy

-epot real 0 Target energy (kJ/mol)
-fepot real 1 Factor for scaling energy violations (0 turns energy contribution off)

-pres real 1 Value for reference pressure
-fpres real 0.1 Factor for scaling pressure violations (0 turns pressure contribution off)

-fmsf real 0.1 Factor for scaling mean square force violations (0 turns MSF contribution
off)

-molsize int 1 Number of atoms per molecule
-nmol int 1 Number of molecules (Epot is divided by this value!)

E.15 ffscan d

The ffscan program performs a single point energy and force calculation in which the force field is modified.
This way a range of parameters can be changed and tested for reproduction of e.g. quantum chemical or
experimental data. A grid scan over the parameters is done as specified using command line arguments. All
parameters that reproduce the energy within a given absolute tolerance are printed to a log file.

Obviously polarizable models can be used, and shell optimisation is performed if necessary. Also, like in
mdrun table functions can be used for user defined potential functions.

If the option -ga with appropriate file is passed, a genetic algorithm will be used rather than a grid scan.

Files
-s topol.tpr Input Generic run input: tpr tpb tpa xml
-g md.log Output Log file

-table table.xvg Input, Opt. xvgr/xmgr file
-parm params.dat Input Generic data file

-ga genalg.dat Input, Opt. Generic data file

E.16. ganaeig 209

-c junk.gro Output Coordinate file in Gromos-87 format
-e junk.edr Output Generic energy: edr ene
-o junk.trr Output Full precision trajectory: trr trj

Other options
-h bool no Print help info and quit

-nice int 19 Set the nicelevel
-tol real 0.1 Energy tolerance (kJ/mol) (zero means everything is printed)

-fmax real 100 Force tolerance (zero means everything is printed)
-comb bool yes Use combination rules
-npow real 12 Power for LJ in case of table use

-logeps bool no Use a logarithmic scale for epsilon
-v bool no Be loud and noisy

-epot real 0 Target energy (kJ/mol)
-fepot real 1 Factor for scaling energy violations (0 turns energy contribution off)

-pres real 1 Value for reference pressure
-fpres real 0.1 Factor for scaling pressure violations (0 turns pressure contribution off)

-fmsf real 0.1 Factor for scaling mean square force violations (0 turns MSF contribution
off)

-molsize int 1 Number of atoms per molecule
-nmol int 1 Number of molecules (Epot is divided by this value!)

E.16 g anaeig

g anaeig analyzes eigenvectors. The eigenvectors can be of a covariance matrix (g covar) or of a
Normal Modes anaysis (g nmeig).

When a trajectory is projected on eigenvectors, all structures are fitted to the structure in the eigenvector
file, if present, otherwise to the structure in the structure file. When no run input file is supplied, periodicity
will not be taken into account. Most analyses are performed on eigenvectors-first to -last , but when
-first is set to -1 you will be prompted for a selection.

-comp : plot the vector components per atom of eigenvectors-first to -last .

-rmsf : plot the RMS fluctuation per atom of eigenvectors-first to -last (requires-eig).

-proj : calculate projections of a trajectory on eigenvectors-first to -last . The projections of a
trajectory on the eigenvectors of its covariance matrix are called principal components (pc’s). It is often
useful to check the cosine content the pc’s, since the pc’s of random diffusion are cosines with the number
of periods equal to half the pc index. The cosine content of the pc’s can be calculated with the program
g analyze .

-2d : calculate a 2d projection of a trajectory on eigenvectors-first and-last .

-3d : calculate a 3d projection of a trajectory on the first three selected eigenvectors.

-filt : filter the trajectory to show only the motion along eigenvectors-first to -last .

-extr : calculate the two extreme projections along a trajectory on the average structure and interpolate
-nframes frames between them, or set your own extremes with-max . The eigenvector-first will be
written unless-first and-last have been set explicitly, in which case all eigenvectors will be written
to separate files. Chain identifiers will be added when writing a.pdb file with two or three structures (you
can userasmol -nmrpdb to view such a pdb file).

Overlap calculations between covariance analysis:
NOTE: the analysis should use the same fitting structure

210 Appendix E. Manual Pages

-over : calculate the subspace overlap of the eigenvectors in file-v2 with eigenvectors-first to -last
in file -v .

-inpr : calculate a matrix of inner-products between eigenvectors in files-v and-v2 . All eigenvectors
of both files will be used unless-first and-last have been set explicitly.

When-v , -eig , -v2 and-eig2 are given, a single number for the overlap between the covariance ma-
trices is generated. The formulas are:
difference = sqrt(tr((sqrt(M1) - sqrt(M2))2))
normalized overlap = 1 - difference/sqrt(tr(M1) + tr(M2))
shape overlap = 1 - sqrt(tr((sqrt(M1/tr(M1)) - sqrt(M2/tr(M2)))2))
where M1 and M2 are the two covariance matrices and tr is the trace of a matrix. The numbers are pro-
portional to the overlap of the square root of the fluctuations. The normalized overlap is the most useful
number, it is 1 for identical matrices and 0 when the sampled subspaces are orthogonal.

Files
-v eigenvec.trr Input Full precision trajectory: trr trj

-v2 eigenvec2.trr Input, Opt. Full precision trajectory: trr trj
-f traj.xtc Input, Opt. Generic trajectory: xtc trr trj gro g96 pdb
-s topol.tpr Input, Opt. Structure+mass(db): tpr tpb tpa gro g96 pdb xml
-n index.ndx Input, Opt. Index file

-eig eigenval.xvg Input, Opt. xvgr/xmgr file
-eig2 eigenval2.xvg Input, Opt. xvgr/xmgr file
-comp eigcomp.xvg Output, Opt. xvgr/xmgr file
-rmsf eigrmsf.xvg Output, Opt. xvgr/xmgr file
-proj proj.xvg Output, Opt. xvgr/xmgr file

-2d 2dproj.xvg Output, Opt. xvgr/xmgr file
-3d 3dproj.pdb Output, Opt. Generic structure: gro g96 pdb xml

-filt filtered.xtc Output, Opt. Generic trajectory: xtc trr trj gro g96 pdb
-extr extreme.pdb Output, Opt. Generic trajectory: xtc trr trj gro g96 pdb
-over overlap.xvg Output, Opt. xvgr/xmgr file
-inpr inprod.xpm Output, Opt. X PixMap compatible matrix file

Other options
-h bool no Print help info and quit

-nice int 19 Set the nicelevel
-b time -1 First frame (ps) to read from trajectory
-e time -1 Last frame (ps) to read from trajectory

-dt time -1 Only use frame when t MOD dt = first time (ps)
-tu enum ps Time unit: ps , fs , ns , us , ms, s , mor h

-w bool no View output xvg, xpm, eps and pdb files
-first int 1 First eigenvector for analysis (-1 is select)

-last int 8 Last eigenvector for analysis (-1 is till the last)
-skip int 1 Only analyse every nr-th frame

-max real 0 Maximum for projection of the eigenvector on the average structure,
max=0 gives the extremes

-nframes int 2 Number of frames for the extremes output
-split bool no Split eigenvector projections where time is zero

E.17 g anaeig d

g anaeig analyzes eigenvectors. The eigenvectors can be of a covariance matrix (g covar) or of a
Normal Modes anaysis (g nmeig).

E.17. ganaeigd 211

When a trajectory is projected on eigenvectors, all structures are fitted to the structure in the eigenvector
file, if present, otherwise to the structure in the structure file. When no run input file is supplied, periodicity
will not be taken into account. Most analyses are performed on eigenvectors-first to -last , but when
-first is set to -1 you will be prompted for a selection.

-comp : plot the vector components per atom of eigenvectors-first to -last .

-rmsf : plot the RMS fluctuation per atom of eigenvectors-first to -last (requires-eig).

-proj : calculate projections of a trajectory on eigenvectors-first to -last . The projections of a
trajectory on the eigenvectors of its covariance matrix are called principal components (pc’s). It is often
useful to check the cosine content the pc’s, since the pc’s of random diffusion are cosines with the number
of periods equal to half the pc index. The cosine content of the pc’s can be calculated with the program
g analyze .

-2d : calculate a 2d projection of a trajectory on eigenvectors-first and-last .

-3d : calculate a 3d projection of a trajectory on the first three selected eigenvectors.

-filt : filter the trajectory to show only the motion along eigenvectors-first to -last .

-extr : calculate the two extreme projections along a trajectory on the average structure and interpolate
-nframes frames between them, or set your own extremes with-max . The eigenvector-first will be
written unless-first and-last have been set explicitly, in which case all eigenvectors will be written
to separate files. Chain identifiers will be added when writing a.pdb file with two or three structures (you
can userasmol -nmrpdb to view such a pdb file).

Overlap calculations between covariance analysis:
NOTE: the analysis should use the same fitting structure

-over : calculate the subspace overlap of the eigenvectors in file-v2 with eigenvectors-first to -last
in file -v .

-inpr : calculate a matrix of inner-products between eigenvectors in files-v and-v2 . All eigenvectors
of both files will be used unless-first and-last have been set explicitly.

When-v , -eig , -v2 and-eig2 are given, a single number for the overlap between the covariance ma-
trices is generated. The formulas are:
difference = sqrt(tr((sqrt(M1) - sqrt(M2))2))
normalized overlap = 1 - difference/sqrt(tr(M1) + tr(M2))
shape overlap = 1 - sqrt(tr((sqrt(M1/tr(M1)) - sqrt(M2/tr(M2)))2))
where M1 and M2 are the two covariance matrices and tr is the trace of a matrix. The numbers are pro-
portional to the overlap of the square root of the fluctuations. The normalized overlap is the most useful
number, it is 1 for identical matrices and 0 when the sampled subspaces are orthogonal.

Files
-v eigenvec.trr Input Full precision trajectory: trr trj

-v2 eigenvec2.trr Input, Opt. Full precision trajectory: trr trj
-f traj.xtc Input, Opt. Generic trajectory: xtc trr trj gro g96 pdb
-s topol.tpr Input, Opt. Structure+mass(db): tpr tpb tpa gro g96 pdb xml
-n index.ndx Input, Opt. Index file

-eig eigenval.xvg Input, Opt. xvgr/xmgr file
-eig2 eigenval2.xvg Input, Opt. xvgr/xmgr file
-comp eigcomp.xvg Output, Opt. xvgr/xmgr file
-rmsf eigrmsf.xvg Output, Opt. xvgr/xmgr file
-proj proj.xvg Output, Opt. xvgr/xmgr file

-2d 2dproj.xvg Output, Opt. xvgr/xmgr file
-3d 3dproj.pdb Output, Opt. Generic structure: gro g96 pdb xml

-filt filtered.xtc Output, Opt. Generic trajectory: xtc trr trj gro g96 pdb

212 Appendix E. Manual Pages

-extr extreme.pdb Output, Opt. Generic trajectory: xtc trr trj gro g96 pdb
-over overlap.xvg Output, Opt. xvgr/xmgr file
-inpr inprod.xpm Output, Opt. X PixMap compatible matrix file

Other options
-h bool no Print help info and quit

-nice int 19 Set the nicelevel
-b time -1 First frame (ps) to read from trajectory
-e time -1 Last frame (ps) to read from trajectory

-dt time -1 Only use frame when t MOD dt = first time (ps)
-tu enum ps Time unit: ps , fs , ns , us , ms, s , mor h

-w bool no View output xvg, xpm, eps and pdb files
-first int 1 First eigenvector for analysis (-1 is select)

-last int 8 Last eigenvector for analysis (-1 is till the last)
-skip int 1 Only analyse every nr-th frame

-max real 0 Maximum for projection of the eigenvector on the average structure,
max=0 gives the extremes

-nframes int 2 Number of frames for the extremes output
-split bool no Split eigenvector projections where time is zero

E.18 g analyze

g analyze reads an ascii file and analyzes data sets. A line in the input file may start with a time (see option
-time) and any number of y values may follow. Multiple sets can also be read when they are seperated
by & (option -n), in this case only one y value is read from each line. All lines starting with # and @ are
skipped. All analyses can also be done for the derivative of a set (option-d).

All options, except for-av and-power assume that the points are equidistant in time.

g analyze always shows the average and standard deviation of each set. For each set it also shows the
relative deviation of the third and forth cumulant from those of a Gaussian distribution with the same
standard deviation.

Option-ac produces the autocorrelation function(s).

Option-cc plots the resemblance of set i with a cosine of i/2 periods. The formula is:
2 (int0-T y(t) cos(pi t/i) dt)2 / int0-T y(t) y(t) dt
This is useful for principal components obtained from covariance analysis, since the principal components
of random diffusion are pure cosines.

Option-msd produces the mean square displacement(s).

Option-dist produces distribution plot(s).

Option -av produces the average over the sets. Error bars can be added with the option-errbar . The
errorbars can represent the standard deviation, the error (assuming the points are independent) or the interval
containing 90% of the points, by discarding 5% of the points at the top and the bottom.

Option -ee produces error estimates using block averaging. A set is divided in a number of blocks and
averages are calculated for each block. The error for the total average is calculated from the variance
between averages of the m blocks Bi as follows: error2 = Sum (Bi -)2 / (m*(m-1)). These errors are
plotted as a function of the block size. Also an analytical block average curve is plotted, assuming that the
autocorrelation is a sum of two exponentials. The analytical curve for the block average BA is:
BA(t) = sigma sqrt(2/T (a (tau1 ((exp(-t/tau1) - 1) tau1/t + 1)) +
(1-a) (tau2 ((exp(-t/tau2) - 1) tau2/t + 1)))),

E.19. ganalyzed 213

where T is the total time. a, tau1 and tau2 are obtained by fitting BA(t) to the calculated block average.
When the actual block average is very close to the analytical curve, the error is sigma*sqrt(2/T (a tau1 +
(1-a) tau2)).

Option-filter prints the RMS high-frequency fluctuation of each set and over all sets with respect to a
filtered average. The filter is proportional to cos(pi t/len) where t goes from -len/2 to len/2. len is supplied
with the option-filter . This filter reduces oscillations with period len/2 and len by a factor of 0.79 and
0.33 respectively.

Option-power fits the data to b t̂a, which is accomplished by fitting to a t + b on log-log scale. All points
after the first zero or negative value are ignored.

Files
-f graph.xvg Input xvgr/xmgr file

-ac autocorr.xvg Output, Opt. xvgr/xmgr file
-msd msd.xvg Output, Opt. xvgr/xmgr file

-cc coscont.xvg Output, Opt. xvgr/xmgr file
-dist distr.xvg Output, Opt. xvgr/xmgr file

-av average.xvg Output, Opt. xvgr/xmgr file
-ee errest.xvg Output, Opt. xvgr/xmgr file

-g fitlog.log Output, Opt. Log file

Other options
-h bool no Print help info and quit

-nice int 19 Set the nicelevel
-w bool no View output xvg, xpm, eps and pdb files

-time bool yes Expect a time in the input
-b real -1 First time to read from set
-e real -1 Last time to read from set
-n int 1 Read # sets seperated by &
-d bool no Use the derivative

-bw real 0.1 Binwidth for the distribution
-errbar enum none Error bars for -av:none , stddev , error or 90
-filter real 0 Print the high-frequency fluctuation after filtering with a cosine filter of

length #
-power bool no Fit data to: b t̂a
-subav bool yes Subtract the average before autocorrelating

-oneacf bool no Calculate one ACF over all sets
-acflen int -1 Length of the ACF, default is half the number of frames

-normalize bool yes Normalize ACF
-P enum 0 Order of Legendre polynomial for ACF (0 indicates none):0, 1, 2 or 3

-fitfn enum none Fit function:none , exp , aexp , exp exp , vac , exp5 , exp7 or exp9
-ncskip int 0 Skip N points in the output file of correlation functions

-beginfit real 0 Time where to begin the exponential fit of the correlation function
-endfit real -1 Time where to end the exponential fit of the correlation function, -1 is till

the end

E.19 g analyze d

g analyze reads an ascii file and analyzes data sets. A line in the input file may start with a time (see option
-time) and any number of y values may follow. Multiple sets can also be read when they are seperated
by & (option -n), in this case only one y value is read from each line. All lines starting with # and @ are
skipped. All analyses can also be done for the derivative of a set (option-d).

214 Appendix E. Manual Pages

All options, except for-av and-power assume that the points are equidistant in time.

g analyze always shows the average and standard deviation of each set. For each set it also shows the
relative deviation of the third and forth cumulant from those of a Gaussian distribution with the same
standard deviation.

Option-ac produces the autocorrelation function(s).

Option-cc plots the resemblance of set i with a cosine of i/2 periods. The formula is:
2 (int0-T y(t) cos(pi t/i) dt)2 / int0-T y(t) y(t) dt
This is useful for principal components obtained from covariance analysis, since the principal components
of random diffusion are pure cosines.

Option-msd produces the mean square displacement(s).

Option-dist produces distribution plot(s).

Option -av produces the average over the sets. Error bars can be added with the option-errbar . The
errorbars can represent the standard deviation, the error (assuming the points are independent) or the interval
containing 90% of the points, by discarding 5% of the points at the top and the bottom.

Option -ee produces error estimates using block averaging. A set is divided in a number of blocks and
averages are calculated for each block. The error for the total average is calculated from the variance
between averages of the m blocks Bi as follows: error2 = Sum (Bi -)2 / (m*(m-1)). These errors are
plotted as a function of the block size. Also an analytical block average curve is plotted, assuming that the
autocorrelation is a sum of two exponentials. The analytical curve for the block average BA is:
BA(t) = sigma sqrt(2/T (a (tau1 ((exp(-t/tau1) - 1) tau1/t + 1)) +
(1-a) (tau2 ((exp(-t/tau2) - 1) tau2/t + 1)))),
where T is the total time. a, tau1 and tau2 are obtained by fitting BA(t) to the calculated block average.
When the actual block average is very close to the analytical curve, the error is sigma*sqrt(2/T (a tau1 +
(1-a) tau2)).

Option-filter prints the RMS high-frequency fluctuation of each set and over all sets with respect to a
filtered average. The filter is proportional to cos(pi t/len) where t goes from -len/2 to len/2. len is supplied
with the option-filter . This filter reduces oscillations with period len/2 and len by a factor of 0.79 and
0.33 respectively.

Option-power fits the data to b t̂a, which is accomplished by fitting to a t + b on log-log scale. All points
after the first zero or negative value are ignored.

Files
-f graph.xvg Input xvgr/xmgr file

-ac autocorr.xvg Output, Opt. xvgr/xmgr file
-msd msd.xvg Output, Opt. xvgr/xmgr file

-cc coscont.xvg Output, Opt. xvgr/xmgr file
-dist distr.xvg Output, Opt. xvgr/xmgr file

-av average.xvg Output, Opt. xvgr/xmgr file
-ee errest.xvg Output, Opt. xvgr/xmgr file

-g fitlog.log Output, Opt. Log file

Other options
-h bool no Print help info and quit

-nice int 19 Set the nicelevel
-w bool no View output xvg, xpm, eps and pdb files

-time bool yes Expect a time in the input
-b real -1 First time to read from set
-e real -1 Last time to read from set
-n int 1 Read # sets seperated by &
-d bool no Use the derivative

E.20. gangle 215

-bw real 0.1 Binwidth for the distribution
-errbar enum none Error bars for -av:none , stddev , error or 90
-filter real 0 Print the high-frequency fluctuation after filtering with a cosine filter of

length #
-power bool no Fit data to: b t̂a
-subav bool yes Subtract the average before autocorrelating

-oneacf bool no Calculate one ACF over all sets
-acflen int -1 Length of the ACF, default is half the number of frames

-normalize bool yes Normalize ACF
-P enum 0 Order of Legendre polynomial for ACF (0 indicates none):0, 1, 2 or 3

-fitfn enum none Fit function:none , exp , aexp , exp exp , vac , exp5 , exp7 or exp9
-ncskip int 0 Skip N points in the output file of correlation functions

-beginfit real 0 Time where to begin the exponential fit of the correlation function
-endfit real -1 Time where to end the exponential fit of the correlation function, -1 is till

the end

E.20 g angle

g angle computes the angle distribution for a number of angles or dihedrals. This way you can check
whether your simulation is correct. With option -ov you can plot the average angle of a group of angles as
a function of time. With the -all option the first graph is the average, the rest are the individual angles.

With the -of option gangle also calculates the fraction of trans dihedrals (only for dihedrals) as function of
time, but this is probably only fun for a selected few.

With option -oc a dihedral correlation function is calculated.

It should be noted that the indexfile should contain atom-triples for angles or atom-quadruplets for dihedrals.
If this is not the case, the program will crash.

Files
-f traj.xtc Input Generic trajectory: xtc trr trj gro g96 pdb
-s topol.tpr Input Generic run input: tpr tpb tpa xml
-n angle.ndx Input Index file

-od angdist.xvg Output xvgr/xmgr file
-ov angaver.xvg Output, Opt. xvgr/xmgr file
-of dihfrac.xvg Output, Opt. xvgr/xmgr file
-ot dihtrans.xvg Output, Opt. xvgr/xmgr file
-oh trhisto.xvg Output, Opt. xvgr/xmgr file
-oc dihcorr.xvg Output, Opt. xvgr/xmgr file

Other options
-h bool no Print help info and quit

-nice int 19 Set the nicelevel
-b time -1 First frame (ps) to read from trajectory
-e time -1 Last frame (ps) to read from trajectory

-dt time -1 Only use frame when t MOD dt = first time (ps)
-w bool no View output xvg, xpm, eps and pdb files

-type enum angle Type of angle to analyse: angle , dihedral , improper or
ryckaert-bellemans

-all bool no Plot all angles separately in the averages file, in the order of appearance
in the index file.

-binwidth real 1 binwidth (degrees) for calculating the distribution

216 Appendix E. Manual Pages

-chandler bool no Use Chandler correlation function (N[trans] = 1, N[gauche] = 0) rather
than cosine correlation function. Trans is defined as phi< -60 or phi>
60.

-avercorr bool no Average the correlation functions for the individual angles/dihedrals
-acflen int -1 Length of the ACF, default is half the number of frames

-normalize bool yes Normalize ACF
-P enum 0 Order of Legendre polynomial for ACF (0 indicates none):0, 1, 2 or 3

-fitfn enum none Fit function:none , exp , aexp , exp exp , vac , exp5 , exp7 or exp9
-ncskip int 0 Skip N points in the output file of correlation functions

-beginfit real 0 Time where to begin the exponential fit of the correlation function
-endfit real -1 Time where to end the exponential fit of the correlation function, -1 is till

the end

• Counting transitions only works for dihedrals with multiplicity 3

E.21 g angle d

g angle computes the angle distribution for a number of angles or dihedrals. This way you can check
whether your simulation is correct. With option -ov you can plot the average angle of a group of angles as
a function of time. With the -all option the first graph is the average, the rest are the individual angles.

With the -of option gangle also calculates the fraction of trans dihedrals (only for dihedrals) as function of
time, but this is probably only fun for a selected few.

With option -oc a dihedral correlation function is calculated.

It should be noted that the indexfile should contain atom-triples for angles or atom-quadruplets for dihedrals.
If this is not the case, the program will crash.

Files
-f traj.xtc Input Generic trajectory: xtc trr trj gro g96 pdb
-s topol.tpr Input Generic run input: tpr tpb tpa xml
-n angle.ndx Input Index file

-od angdist.xvg Output xvgr/xmgr file
-ov angaver.xvg Output, Opt. xvgr/xmgr file
-of dihfrac.xvg Output, Opt. xvgr/xmgr file
-ot dihtrans.xvg Output, Opt. xvgr/xmgr file
-oh trhisto.xvg Output, Opt. xvgr/xmgr file
-oc dihcorr.xvg Output, Opt. xvgr/xmgr file

Other options
-h bool no Print help info and quit

-nice int 19 Set the nicelevel
-b time -1 First frame (ps) to read from trajectory
-e time -1 Last frame (ps) to read from trajectory

-dt time -1 Only use frame when t MOD dt = first time (ps)
-w bool no View output xvg, xpm, eps and pdb files

-type enum angle Type of angle to analyse: angle , dihedral , improper or
ryckaert-bellemans

-all bool no Plot all angles separately in the averages file, in the order of appearance
in the index file.

-binwidth real 1 binwidth (degrees) for calculating the distribution
-chandler bool no Use Chandler correlation function (N[trans] = 1, N[gauche] = 0) rather

than cosine correlation function. Trans is defined as phi< -60 or phi>
60.

E.22. gbond 217

-avercorr bool no Average the correlation functions for the individual angles/dihedrals
-acflen int -1 Length of the ACF, default is half the number of frames

-normalize bool yes Normalize ACF
-P enum 0 Order of Legendre polynomial for ACF (0 indicates none):0, 1, 2 or 3

-fitfn enum none Fit function:none , exp , aexp , exp exp , vac , exp5 , exp7 or exp9
-ncskip int 0 Skip N points in the output file of correlation functions

-beginfit real 0 Time where to begin the exponential fit of the correlation function
-endfit real -1 Time where to end the exponential fit of the correlation function, -1 is till

the end

• Counting transitions only works for dihedrals with multiplicity 3

E.22 g bond

g bond makes a distribution of bond lengths. If all is well a gaussian distribution should be made when
using a harmonic potential. bonds are read from a single group in the index file in order i1-j1 i2-j2 thru
in-jn.

-tol gives the half-width of the distribution as a fraction of the bondlength (-blen). That means, for a
bond of 0.2 a tol of 0.1 gives a distribution from 0.18 to 0.22.

Option-d plots all the distances as a function of time. This requires a structure file for the atom and residue
names in the output. If however the option-averdist is given (as well or separately) the average bond
length is plotted instead.
Files

-f traj.xtc Input Generic trajectory: xtc trr trj gro g96 pdb
-n index.ndx Input Index file
-s topol.tpr Input, Opt. Structure+mass(db): tpr tpb tpa gro g96 pdb xml
-o bonds.xvg Output xvgr/xmgr file
-l bonds.log Output, Opt. Log file
-d distance.xvg Output, Opt. xvgr/xmgr file

Other options
-h bool no Print help info and quit

-nice int 19 Set the nicelevel
-b time -1 First frame (ps) to read from trajectory
-e time -1 Last frame (ps) to read from trajectory

-dt time -1 Only use frame when t MOD dt = first time (ps)
-w bool no View output xvg, xpm, eps and pdb files

-blen real -1 Bond length. By default length of first bond
-tol real 0.1 Half width of distribution as fraction of blen

-aver bool yes Average bond length distributions
-averdist bool yes Average distances (turns on -d)

• It should be possible to get bond information from the topology.

E.23 g bond d

g bond makes a distribution of bond lengths. If all is well a gaussian distribution should be made when
using a harmonic potential. bonds are read from a single group in the index file in order i1-j1 i2-j2 thru
in-jn.

218 Appendix E. Manual Pages

-tol gives the half-width of the distribution as a fraction of the bondlength (-blen). That means, for a
bond of 0.2 a tol of 0.1 gives a distribution from 0.18 to 0.22.

Option-d plots all the distances as a function of time. This requires a structure file for the atom and residue
names in the output. If however the option-averdist is given (as well or separately) the average bond
length is plotted instead.

Files
-f traj.xtc Input Generic trajectory: xtc trr trj gro g96 pdb
-n index.ndx Input Index file
-s topol.tpr Input, Opt. Structure+mass(db): tpr tpb tpa gro g96 pdb xml
-o bonds.xvg Output xvgr/xmgr file
-l bonds.log Output, Opt. Log file
-d distance.xvg Output, Opt. xvgr/xmgr file

Other options
-h bool no Print help info and quit

-nice int 19 Set the nicelevel
-b time -1 First frame (ps) to read from trajectory
-e time -1 Last frame (ps) to read from trajectory

-dt time -1 Only use frame when t MOD dt = first time (ps)
-w bool no View output xvg, xpm, eps and pdb files

-blen real -1 Bond length. By default length of first bond
-tol real 0.1 Half width of distribution as fraction of blen

-aver bool yes Average bond length distributions
-averdist bool yes Average distances (turns on -d)

• It should be possible to get bond information from the topology.

E.24 g bundle

g bundle analyzes bundles of axes. The axes can be for instance helix axes. The program reads two index
groups and divides both of them in-na parts. The centers of mass of these parts define the tops and bottoms
of the axes. Several quantities are written to file: the axis length, the distance and the z-shift of the axis
mid-points with respect to the average center of all axes, the total tilt, the radial tilt and the lateral tilt with
respect to the average axis.

With options-ok , -okr and-okl the total, radial and lateral kinks of the axes are plotted. An extra index
group of kink atoms is required, which is also divided into-na parts. The kink angle is defined as the angle
between the kink-top and the bottom-kink vectors.

With option -oa the top, mid (or kink when-ok is set) and bottom points of each axis are written to a
pdb file each frame. The residue numbers correspond to the axis numbers. When viewing this file with
rasmol , use the command line option-nmrpdb , and typeset axis true to display the reference
axis.

Files
-f traj.xtc Input Generic trajectory: xtc trr trj gro g96 pdb
-s topol.tpr Input Structure+mass(db): tpr tpb tpa gro g96 pdb xml
-n index.ndx Input, Opt. Index file

-ol bun len.xvg Output xvgr/xmgr file
-od bun dist.xvg Output xvgr/xmgr file
-oz bun z.xvg Output xvgr/xmgr file

E.25. gbundled 219

-ot bun tilt.xvg Output xvgr/xmgr file
-otr bun tiltr.xvg Output xvgr/xmgr file
-otl bun tiltl.xvg Output xvgr/xmgr file

-ok bun kink.xvg Output, Opt. xvgr/xmgr file
-okr bun kinkr.xvg Output, Opt. xvgr/xmgr file
-okl bun kinkl.xvg Output, Opt. xvgr/xmgr file

-oa axes.pdb Output, Opt. Protein data bank file

Other options
-h bool no Print help info and quit

-nice int 19 Set the nicelevel
-b time -1 First frame (ps) to read from trajectory
-e time -1 Last frame (ps) to read from trajectory

-dt time -1 Only use frame when t MOD dt = first time (ps)
-tu enum ps Time unit: ps , fs , ns , us , ms, s , mor h
-na int 0 Number of axes

-z bool no Use the Z-axis as reference iso the average axis

E.25 g bundle d

g bundle analyzes bundles of axes. The axes can be for instance helix axes. The program reads two index
groups and divides both of them in-na parts. The centers of mass of these parts define the tops and bottoms
of the axes. Several quantities are written to file: the axis length, the distance and the z-shift of the axis
mid-points with respect to the average center of all axes, the total tilt, the radial tilt and the lateral tilt with
respect to the average axis.

With options-ok , -okr and-okl the total, radial and lateral kinks of the axes are plotted. An extra index
group of kink atoms is required, which is also divided into-na parts. The kink angle is defined as the angle
between the kink-top and the bottom-kink vectors.

With option -oa the top, mid (or kink when-ok is set) and bottom points of each axis are written to a
pdb file each frame. The residue numbers correspond to the axis numbers. When viewing this file with
rasmol , use the command line option-nmrpdb , and typeset axis true to display the reference
axis.

Files
-f traj.xtc Input Generic trajectory: xtc trr trj gro g96 pdb
-s topol.tpr Input Structure+mass(db): tpr tpb tpa gro g96 pdb xml
-n index.ndx Input, Opt. Index file

-ol bun len.xvg Output xvgr/xmgr file
-od bun dist.xvg Output xvgr/xmgr file
-oz bun z.xvg Output xvgr/xmgr file
-ot bun tilt.xvg Output xvgr/xmgr file

-otr bun tiltr.xvg Output xvgr/xmgr file
-otl bun tiltl.xvg Output xvgr/xmgr file

-ok bun kink.xvg Output, Opt. xvgr/xmgr file
-okr bun kinkr.xvg Output, Opt. xvgr/xmgr file
-okl bun kinkl.xvg Output, Opt. xvgr/xmgr file

-oa axes.pdb Output, Opt. Protein data bank file

Other options
-h bool no Print help info and quit

220 Appendix E. Manual Pages

-nice int 19 Set the nicelevel
-b time -1 First frame (ps) to read from trajectory
-e time -1 Last frame (ps) to read from trajectory

-dt time -1 Only use frame when t MOD dt = first time (ps)
-tu enum ps Time unit: ps , fs , ns , us , ms, s , mor h
-na int 0 Number of axes

-z bool no Use the Z-axis as reference iso the average axis

E.26 g chi

g chi computes phi, psi, omega and chi dihedrals for all your amino acid backbone and sidechains. It
can compute dihedral angle as a function of time, and as histogram distributions. The distributions (histo-
(dihedral)(RESIDUE).xvg) are cumulative over all residues of each type.

If option -corr is given, the program will calculate dihedral autocorrelation functions. The function used
is C(t) = < cos(chi(tau)) cos(chi(tau+t))>. The use of cosines rather than angles themselves, resolves
the problem of periodicity. (Van der Spoel & Berendsen (1997),Biophys. J. 72, 2032-2041). Separate
files for each dihedral of each residue (corr(dihedral)(RESIDUE)(nresnr).xvg) are output, as well as a file
containing the information for all residues (argument of-corr).

With option-all , the angles themselves as a function of time for each residue are printed to separate files
(dihedral)(RESIDUE)(nresnr).xvg. These can be in radians or degrees.

A log file (argument-g) is also written. This contains
(a) information about the number of residues of each type.
(b) The NMR 3J coupling constants from the Karplus equation.
(c) a table for each residue of the number of transitions between rotamers per nanosecond, and the order
parameter S2 of each dihedral.
(d) a table for each residue of the rotamer occupancy.
All rotamers are taken as 3-fold, except for omegas and chi-dihedrals to planar groups (i.e. chi2 of aromatics
asp and asn, chi3 of glu and gln, and chi4 of arg), which are 2-fold. ”rotamer 0” means that the dihedral
was not in the core region of each rotamer. The width of the core region can be set with-core rotamer

The S2 order parameters are also output to an xvg file (argument-o) and optionally as a pdb file with the
S2 values as B-factor (argument-p). The total number of rotamer transitions per timestep (argument-ot),
the number of transitions per rotamer (argument-rt), and the 3J couplings (argument-jc), can also be
written to .xvg files.

If -chi prod is set (and maxchi> 0), cumulative rotamers, e.g. 1+9(chi1-1)+3(chi2-1)+(chi3-1) (if
the residue has three 3-fold dihedrals and maxchi>= 3) are calculated. As before, if any dihedral is not
in the core region, the rotamer is taken to be 0. The occupancies of these cumulative rotamers (starting
with rotamer 0) are written to the file that is the argument of-cp , and if the-all flag is given, the
rotamers as functions of time are written to chiproduct(RESIDUE)(nresnr).xvg and their occupancies to
histo-chiproduct(RESIDUE)(nresnr).xvg.

The option-r generates a contour plot of the average omega angle as a function of the phi and psi angles,
that is, in a Ramachandran plot the average omega angle is plotted using color coding.

Files
-s conf.gro Input Generic structure: gro g96 pdb tpr tpb tpa xml
-f traj.xtc Input Generic trajectory: xtc trr trj gro g96 pdb
-o order.xvg Output xvgr/xmgr file
-p order.pdb Output, Opt. Protein data bank file

-ss ssdump.dat Input, Opt. Generic data file
-jc Jcoupling.xvg Output xvgr/xmgr file

E.26. gchi 221

-corr dihcorr.xvg Output, Opt. xvgr/xmgr file
-g chi.log Output Log file

-ot dihtrans.xvg Output, Opt. xvgr/xmgr file
-oh trhisto.xvg Output, Opt. xvgr/xmgr file
-rt restrans.xvg Output, Opt. xvgr/xmgr file
-cpchiprodhisto.xvg Output, Opt. xvgr/xmgr file

Other options
-h bool no Print help info and quit

-nice int 19 Set the nicelevel
-b time -1 First frame (ps) to read from trajectory
-e time -1 Last frame (ps) to read from trajectory

-dt time -1 Only use frame when t MOD dt = first time (ps)
-w bool no View output xvg, xpm, eps and pdb files

-r0 int 1 starting residue
-phi bool no Output for Phi dihedral angles
-psi bool no Output for Psi dihedral angles

-omega bool no Output for Omega dihedrals (peptide bonds)
-rama bool no Generate Phi/Psi and Chi1/Chi2 ramachandran plots
-viol bool no Write a file that gives 0 or 1 for violated Ramachandran angles

-all bool no Output separate files for every dihedral.
-rad bool no in angle vs time files, use radians rather than degrees.

-shift bool no Compute chemical shifts from Phi/Psi angles
-binwidth int 1 bin width for histograms (degrees)

-core rotamer real 0.5 only the central -corerotamer*(360/multiplicity) belongs to each rotamer
(the rest is assigned to rotamer 0)

-maxchi enum 0 calculate first ndih Chi dihedrals:0, 1, 2, 3, 4, 5 or 6
-normhisto bool yes Normalize histograms

-ramomega bool no compute average omega as a function of phi/psi and plot it in an xpm plot
-bfact real -1 B-factor value for pdb file for atoms with no calculated dihedral order

parameter
-chi prod bool no compute a single cumulative rotamer for each residue

-HChi bool no Include dihedrals to sidechain hydrogens
-bmax real 0 Maximum B-factor on any of the atoms that make up a dihedral, for the

dihedral angle to be considere in the statistics. Applies to database work
where a number of X-Ray structures is analyzed. -bmax<= 0 means no
limit.

-acflen int -1 Length of the ACF, default is half the number of frames
-normalize bool yes Normalize ACF

-P enum 0 Order of Legendre polynomial for ACF (0 indicates none):0, 1, 2 or 3
-fitfn enum none Fit function:none , exp , aexp , exp exp , vac , exp5 , exp7 or exp9

-ncskip int 0 Skip N points in the output file of correlation functions
-beginfit real 0 Time where to begin the exponential fit of the correlation function

-endfit real -1 Time where to end the exponential fit of the correlation function, -1 is till
the end

• Produces MANY output files (up to about 4 times the number of residues in the protein, twice that if
autocorrelation functions are calculated). Typically several hundred files are output.

• Phi and psi dihedrals are calculated in a non-standard way, using H-N-CA-C for phi instead of C(-)-
N-CA-C, and N-CA-C-O for psi instead of N-CA-C-N(+). This causes (usually small) discrepancies
with the output of other tools like grama.

• -r0 option does not work properly

222 Appendix E. Manual Pages

• Rotamers with multiplicity 2 are printed in chi.log as if they had multiplicity 3, with the 3rd (g(+))
always having probability 0

E.27 g chi d

g chi computes phi, psi, omega and chi dihedrals for all your amino acid backbone and sidechains. It
can compute dihedral angle as a function of time, and as histogram distributions. The distributions (histo-
(dihedral)(RESIDUE).xvg) are cumulative over all residues of each type.

If option -corr is given, the program will calculate dihedral autocorrelation functions. The function used
is C(t) = < cos(chi(tau)) cos(chi(tau+t))>. The use of cosines rather than angles themselves, resolves
the problem of periodicity. (Van der Spoel & Berendsen (1997),Biophys. J. 72, 2032-2041). Separate
files for each dihedral of each residue (corr(dihedral)(RESIDUE)(nresnr).xvg) are output, as well as a file
containing the information for all residues (argument of-corr).

With option-all , the angles themselves as a function of time for each residue are printed to separate files
(dihedral)(RESIDUE)(nresnr).xvg. These can be in radians or degrees.

A log file (argument-g) is also written. This contains
(a) information about the number of residues of each type.
(b) The NMR 3J coupling constants from the Karplus equation.
(c) a table for each residue of the number of transitions between rotamers per nanosecond, and the order
parameter S2 of each dihedral.
(d) a table for each residue of the rotamer occupancy.
All rotamers are taken as 3-fold, except for omegas and chi-dihedrals to planar groups (i.e. chi2 of aromatics
asp and asn, chi3 of glu and gln, and chi4 of arg), which are 2-fold. ”rotamer 0” means that the dihedral
was not in the core region of each rotamer. The width of the core region can be set with-core rotamer

The S2 order parameters are also output to an xvg file (argument-o) and optionally as a pdb file with the
S2 values as B-factor (argument-p). The total number of rotamer transitions per timestep (argument-ot),
the number of transitions per rotamer (argument-rt), and the 3J couplings (argument-jc), can also be
written to .xvg files.

If -chi prod is set (and maxchi> 0), cumulative rotamers, e.g. 1+9(chi1-1)+3(chi2-1)+(chi3-1) (if
the residue has three 3-fold dihedrals and maxchi>= 3) are calculated. As before, if any dihedral is not
in the core region, the rotamer is taken to be 0. The occupancies of these cumulative rotamers (starting
with rotamer 0) are written to the file that is the argument of-cp , and if the-all flag is given, the
rotamers as functions of time are written to chiproduct(RESIDUE)(nresnr).xvg and their occupancies to
histo-chiproduct(RESIDUE)(nresnr).xvg.

The option-r generates a contour plot of the average omega angle as a function of the phi and psi angles,
that is, in a Ramachandran plot the average omega angle is plotted using color coding.

Files
-s conf.gro Input Generic structure: gro g96 pdb tpr tpb tpa xml
-f traj.xtc Input Generic trajectory: xtc trr trj gro g96 pdb
-o order.xvg Output xvgr/xmgr file
-p order.pdb Output, Opt. Protein data bank file

-ss ssdump.dat Input, Opt. Generic data file
-jc Jcoupling.xvg Output xvgr/xmgr file

-corr dihcorr.xvg Output, Opt. xvgr/xmgr file
-g chi.log Output Log file

-ot dihtrans.xvg Output, Opt. xvgr/xmgr file
-oh trhisto.xvg Output, Opt. xvgr/xmgr file
-rt restrans.xvg Output, Opt. xvgr/xmgr file

E.27. gchi d 223

-cpchiprodhisto.xvg Output, Opt. xvgr/xmgr file

Other options
-h bool no Print help info and quit

-nice int 19 Set the nicelevel
-b time -1 First frame (ps) to read from trajectory
-e time -1 Last frame (ps) to read from trajectory

-dt time -1 Only use frame when t MOD dt = first time (ps)
-w bool no View output xvg, xpm, eps and pdb files

-r0 int 1 starting residue
-phi bool no Output for Phi dihedral angles
-psi bool no Output for Psi dihedral angles

-omega bool no Output for Omega dihedrals (peptide bonds)
-rama bool no Generate Phi/Psi and Chi1/Chi2 ramachandran plots
-viol bool no Write a file that gives 0 or 1 for violated Ramachandran angles

-all bool no Output separate files for every dihedral.
-rad bool no in angle vs time files, use radians rather than degrees.

-shift bool no Compute chemical shifts from Phi/Psi angles
-binwidth int 1 bin width for histograms (degrees)

-core rotamer real 0.5 only the central -corerotamer*(360/multiplicity) belongs to each rotamer
(the rest is assigned to rotamer 0)

-maxchi enum 0 calculate first ndih Chi dihedrals:0, 1, 2, 3, 4, 5 or 6
-normhisto bool yes Normalize histograms

-ramomega bool no compute average omega as a function of phi/psi and plot it in an xpm plot
-bfact real -1 B-factor value for pdb file for atoms with no calculated dihedral order

parameter
-chi prod bool no compute a single cumulative rotamer for each residue

-HChi bool no Include dihedrals to sidechain hydrogens
-bmax real 0 Maximum B-factor on any of the atoms that make up a dihedral, for the

dihedral angle to be considere in the statistics. Applies to database work
where a number of X-Ray structures is analyzed. -bmax<= 0 means no
limit.

-acflen int -1 Length of the ACF, default is half the number of frames
-normalize bool yes Normalize ACF

-P enum 0 Order of Legendre polynomial for ACF (0 indicates none):0, 1, 2 or 3
-fitfn enum none Fit function:none , exp , aexp , exp exp , vac , exp5 , exp7 or exp9

-ncskip int 0 Skip N points in the output file of correlation functions
-beginfit real 0 Time where to begin the exponential fit of the correlation function

-endfit real -1 Time where to end the exponential fit of the correlation function, -1 is till
the end

• Produces MANY output files (up to about 4 times the number of residues in the protein, twice that if
autocorrelation functions are calculated). Typically several hundred files are output.

• Phi and psi dihedrals are calculated in a non-standard way, using H-N-CA-C for phi instead of C(-)-
N-CA-C, and N-CA-C-O for psi instead of N-CA-C-N(+). This causes (usually small) discrepancies
with the output of other tools like grama.

• -r0 option does not work properly

• Rotamers with multiplicity 2 are printed in chi.log as if they had multiplicity 3, with the 3rd (g(+))
always having probability 0

224 Appendix E. Manual Pages

E.28 g cluster

g cluster can cluster structures with several different methods. Distances between structures can be deter-
mined from a trajectory or read from an XPM matrix file with the-dm option. RMS deviation after fitting
or RMS deviation of atom-pair distances can be used to define the distance between structures.

full linkage: add a structure to a cluster when its distance to any element of the cluster is less thancutoff .

Jarvis Patrick: add a structure to a cluster when this structure and a structure in the cluster have each other
as neighbors and they have a leastP neighbors in common. The neighbors of a structure are the M closest
structures or all structures withincutoff .

Monte Carlo: reorder the RMSD matrix using Monte Carlo.

diagonalization: diagonalize the RMSD matrix.

gromos: use algorithm as described in Dauraet al. (Angew. Chem. Int. Ed.1999, 38, pp 236-240). Count
number of neighbors using cut-off, take structure with largest number of neighbors with all its neighbors as
cluster and eleminate it from the pool of clusters. Repeat for remaining structures in pool.

When the clustering algorithm assigns each structure to exactly one cluster (full linkage, Jarvis Patrick and
gromos) and a trajectory file is supplied, the structure with the smallest average distance to the others or
the average structure or all structures for each cluster will be written to a trajectory file. When writing all
structures, separate numbered files are made for each cluster.

Two output files are always written:
-o writes the RMSD values in the upper left half of the matrix and a graphical depiction of the clusters in
the lower right half (depends on-max and-keepfree).
-g writes information on the options used and a detailed list of all clusters and their members.

Additionally, a number of optional output files can be written:
-dist writes the RMSD distribution.
-ev writes the eigenvectors of the RMSD matrix diagonalization.
-sz writes the cluster sizes.
-tr writes a matrix of the number transitions between cluster pairs.
-ntr writes the total number of transitions to or from each cluster.
-clid writes the cluster number as a function of time.
-cl writes average (with option-av) or central structure of each cluster or writes numbered files with
cluster members for a selected set of clusters (with option-wcl , depends on-nst and-rmsmin).

Files
-f traj.xtc Input, Opt. Generic trajectory: xtc trr trj gro g96 pdb
-s topol.tpr Input, Opt. Structure+mass(db): tpr tpb tpa gro g96 pdb xml
-n index.ndx Input, Opt. Index file

-dm rmsd.xpm Input, Opt. X PixMap compatible matrix file
-o rmsd-clust.xpm Output X PixMap compatible matrix file
-g cluster.log Output Log file

-dist rmsd-dist.xvg Output, Opt. xvgr/xmgr file
-ev rmsd-eig.xvg Output, Opt. xvgr/xmgr file
-sz clust-size.xvg Output, Opt. xvgr/xmgr file
-trclust-trans.xpm Output, Opt. X PixMap compatible matrix file

-ntrclust-trans.xvg Output, Opt. xvgr/xmgr file
-clid clust-id.xvg Output, Opt. xvgr/xmgr file

-cl clusters.pdb Output, Opt. Generic trajectory: xtc trr trj gro g96 pdb

Other options
-h bool no Print help info and quit

E.29. gclusterd 225

-nice int 19 Set the nicelevel
-b time -1 First frame (ps) to read from trajectory
-e time -1 Last frame (ps) to read from trajectory

-dt time -1 Only use frame when t MOD dt = first time (ps)
-tu enum ps Time unit: ps , fs , ns , us , ms, s , mor h

-w bool no View output xvg, xpm, eps and pdb files
-dista bool no Use RMSD of distances instead of RMS deviation

-nlevels int 40 Discretize RMSD matrix in # levels
-keepfree int -4 if >0 # levels not to use when coloring clusters; if<0 nlevels/-keepfree+1

levels will not be used
-cutoff real 0.1 RMSD cut-off (nm) for two structures to be neighbor

-fit bool yes Use least squares fitting before RMSD calculation
-max real -1 Maximum level in RMSD matrix

-skip int 1 Only analyze every nr-th frame
-av bool no Write average iso middle structure for each cluster

-wcl int 0 Write all structures for first # clusters to numbered files
-nst int 1 Only write all structures if more than # per cluster

-rmsmin real 0 minimum rms difference with rest of cluster for writing structures
-method enumlinkage Method for cluster determination:linkage , jarvis-patrick ,

monte-carlo , diagonalization or gromos
-minstruct int 1 Minimum number of structures in cluster for coloring in the xpm file

-binary bool no Treat the RMSD matrix as consisting of 0 and 1, where the cut-off is
given by -cutoff

-M int 10 Number of nearest neighbors considered for Jarvis-Patrick algorithm, 0
is use cutoff

-P int 3 Number of identical nearest neighbors required to form a cluster
-seed int 1993 Random number seed for Monte Carlo clustering algorithm

-niter int 10000 Number of iterations for MC
-kT real 0.001 Boltzmann weighting factor for Monte Carlo optimization (zero turns off

uphill steps)

E.29 g cluster d

g cluster can cluster structures with several different methods. Distances between structures can be deter-
mined from a trajectory or read from an XPM matrix file with the-dm option. RMS deviation after fitting
or RMS deviation of atom-pair distances can be used to define the distance between structures.

full linkage: add a structure to a cluster when its distance to any element of the cluster is less thancutoff .

Jarvis Patrick: add a structure to a cluster when this structure and a structure in the cluster have each other
as neighbors and they have a leastP neighbors in common. The neighbors of a structure are the M closest
structures or all structures withincutoff .

Monte Carlo: reorder the RMSD matrix using Monte Carlo.

diagonalization: diagonalize the RMSD matrix.

gromos: use algorithm as described in Dauraet al. (Angew. Chem. Int. Ed.1999, 38, pp 236-240). Count
number of neighbors using cut-off, take structure with largest number of neighbors with all its neighbors as
cluster and eleminate it from the pool of clusters. Repeat for remaining structures in pool.

When the clustering algorithm assigns each structure to exactly one cluster (full linkage, Jarvis Patrick and
gromos) and a trajectory file is supplied, the structure with the smallest average distance to the others or
the average structure or all structures for each cluster will be written to a trajectory file. When writing all
structures, separate numbered files are made for each cluster.

226 Appendix E. Manual Pages

Two output files are always written:
-o writes the RMSD values in the upper left half of the matrix and a graphical depiction of the clusters in
the lower right half (depends on-max and-keepfree).
-g writes information on the options used and a detailed list of all clusters and their members.

Additionally, a number of optional output files can be written:
-dist writes the RMSD distribution.
-ev writes the eigenvectors of the RMSD matrix diagonalization.
-sz writes the cluster sizes.
-tr writes a matrix of the number transitions between cluster pairs.
-ntr writes the total number of transitions to or from each cluster.
-clid writes the cluster number as a function of time.
-cl writes average (with option-av) or central structure of each cluster or writes numbered files with
cluster members for a selected set of clusters (with option-wcl , depends on-nst and-rmsmin).

Files
-f traj.xtc Input, Opt. Generic trajectory: xtc trr trj gro g96 pdb
-s topol.tpr Input, Opt. Structure+mass(db): tpr tpb tpa gro g96 pdb xml
-n index.ndx Input, Opt. Index file

-dm rmsd.xpm Input, Opt. X PixMap compatible matrix file
-o rmsd-clust.xpm Output X PixMap compatible matrix file
-g cluster.log Output Log file

-dist rmsd-dist.xvg Output, Opt. xvgr/xmgr file
-ev rmsd-eig.xvg Output, Opt. xvgr/xmgr file
-sz clust-size.xvg Output, Opt. xvgr/xmgr file
-trclust-trans.xpm Output, Opt. X PixMap compatible matrix file

-ntrclust-trans.xvg Output, Opt. xvgr/xmgr file
-clid clust-id.xvg Output, Opt. xvgr/xmgr file

-cl clusters.pdb Output, Opt. Generic trajectory: xtc trr trj gro g96 pdb

Other options
-h bool no Print help info and quit

-nice int 19 Set the nicelevel
-b time -1 First frame (ps) to read from trajectory
-e time -1 Last frame (ps) to read from trajectory

-dt time -1 Only use frame when t MOD dt = first time (ps)
-tu enum ps Time unit: ps , fs , ns , us , ms, s , mor h

-w bool no View output xvg, xpm, eps and pdb files
-dista bool no Use RMSD of distances instead of RMS deviation

-nlevels int 40 Discretize RMSD matrix in # levels
-keepfree int -4 if >0 # levels not to use when coloring clusters; if<0 nlevels/-keepfree+1

levels will not be used
-cutoff real 0.1 RMSD cut-off (nm) for two structures to be neighbor

-fit bool yes Use least squares fitting before RMSD calculation
-max real -1 Maximum level in RMSD matrix

-skip int 1 Only analyze every nr-th frame
-av bool no Write average iso middle structure for each cluster

-wcl int 0 Write all structures for first # clusters to numbered files
-nst int 1 Only write all structures if more than # per cluster

-rmsmin real 0 minimum rms difference with rest of cluster for writing structures
-method enumlinkage Method for cluster determination:linkage , jarvis-patrick ,

monte-carlo , diagonalization or gromos
-minstruct int 1 Minimum number of structures in cluster for coloring in the xpm file

E.30. gclustsize 227

-binary bool no Treat the RMSD matrix as consisting of 0 and 1, where the cut-off is
given by -cutoff

-M int 10 Number of nearest neighbors considered for Jarvis-Patrick algorithm, 0
is use cutoff

-P int 3 Number of identical nearest neighbors required to form a cluster
-seed int 1993 Random number seed for Monte Carlo clustering algorithm

-niter int 10000 Number of iterations for MC
-kT real 0.001 Boltzmann weighting factor for Monte Carlo optimization (zero turns off

uphill steps)

E.30 g clustsize

This program computes the size distributions of molecular/atomic clusters in the gas phase. The output is
given in the form of a XPM file. The total number of clusters is written to a XVG file.

When the-mol option is given clusters will be made out of molecules rather than atoms, which allows clus-
tering of large molecules. In this case an index file would still contain atom numbers or your calculcation
will die with a SEGV.
Files

-f traj.xtc Input Generic trajectory: xtc trr trj gro g96 pdb
-s topol.tpr Input, Opt. Portable xdr run input file
-n index.ndx Input, Opt. Index file
-o csize.xpm Output X PixMap compatible matrix file

-ow csizew.xpm Output X PixMap compatible matrix file
-nc nclust.xvg Output xvgr/xmgr file
-mc maxclust.xvg Output xvgr/xmgr file
-ac avclust.xvg Output xvgr/xmgr file
-hchisto-clust.xvg Output xvgr/xmgr file

Other options
-h bool no Print help info and quit

-nice int 19 Set the nicelevel
-b time -1 First frame (ps) to read from trajectory
-e time -1 Last frame (ps) to read from trajectory

-dt time -1 Only use frame when t MOD dt = first time (ps)
-tu enum ps Time unit: ps , fs , ns , us , ms, s , mor h

-w bool no View output xvg, xpm, eps and pdb files
-cut real 0.35 Largest distance (nm) to be considered in a cluster
-mol bool no Cluster molecules rather than atoms (needs tpr file)

-nskip int 0 Number of frames to skip between writing
-nlevels int 20 Number of levels of grey in xpm output

-rgblo vector 1 1 0 RGB values for the color of the lowest occupied cluster size
-rgbhi vector 0 0 1 RGB values for the color of the highest occupied cluster size

E.31 g clustsize d

This program computes the size distributions of molecular/atomic clusters in the gas phase. The output is
given in the form of a XPM file. The total number of clusters is written to a XVG file.

When the-mol option is given clusters will be made out of molecules rather than atoms, which allows clus-
tering of large molecules. In this case an index file would still contain atom numbers or your calculcation
will die with a SEGV.

228 Appendix E. Manual Pages

Files
-f traj.xtc Input Generic trajectory: xtc trr trj gro g96 pdb
-s topol.tpr Input, Opt. Portable xdr run input file
-n index.ndx Input, Opt. Index file
-o csize.xpm Output X PixMap compatible matrix file

-ow csizew.xpm Output X PixMap compatible matrix file
-nc nclust.xvg Output xvgr/xmgr file
-mc maxclust.xvg Output xvgr/xmgr file
-ac avclust.xvg Output xvgr/xmgr file
-hchisto-clust.xvg Output xvgr/xmgr file

Other options
-h bool no Print help info and quit

-nice int 19 Set the nicelevel
-b time -1 First frame (ps) to read from trajectory
-e time -1 Last frame (ps) to read from trajectory

-dt time -1 Only use frame when t MOD dt = first time (ps)
-tu enum ps Time unit: ps , fs , ns , us , ms, s , mor h

-w bool no View output xvg, xpm, eps and pdb files
-cut real 0.35 Largest distance (nm) to be considered in a cluster
-mol bool no Cluster molecules rather than atoms (needs tpr file)

-nskip int 0 Number of frames to skip between writing
-nlevels int 20 Number of levels of grey in xpm output

-rgblo vector 1 1 0 RGB values for the color of the lowest occupied cluster size
-rgbhi vector 0 0 1 RGB values for the color of the highest occupied cluster size

E.32 g confrms

g confrms computes the root mean square deviation (RMSD) of two structures after LSQ fitting the second
structure on the first one. The two structures do NOT need to have the same number of atoms, only the
two index groups used for the fit need to be identical. With-name only matching atom names from the
selected groups will be used for the fit and RMSD calculation. This can be useful when comparing mutants
of a protein.

The superimposed structures are written to file. In a.pdb file the two structures will be written as separate
models (userasmol -nmrpdb). Also in a.pdb file, B-factors calculated from the atomic MSD values
can be written with-bfac .

Files
-f1 conf1.gro Input Structure+mass(db): tpr tpb tpa gro g96 pdb xml
-f2 conf2.gro Input Generic structure: gro g96 pdb tpr tpb tpa xml

-o fit.pdb Output Generic structure: gro g96 pdb xml
-n1 fit1.ndx Input, Opt. Index file
-n2 fit2.ndx Input, Opt. Index file
-no match.ndx Output, Opt. Index file

Other options
-h bool no Print help info and quit

-nice int 19 Set the nicelevel
-w bool no View output xvg, xpm, eps and pdb files

-one bool no Only write the fitted structure to file
-pbc bool no Try to make molecules whole again

E.33. gconfrmsd 229

-fit bool yes Do least squares superposition of the target structure to the reference
-name bool no Only compare matching atom names
-bfac bool no Output B-factors from atomic MSD values

E.33 g confrms d

g confrms computes the root mean square deviation (RMSD) of two structures after LSQ fitting the second
structure on the first one. The two structures do NOT need to have the same number of atoms, only the
two index groups used for the fit need to be identical. With-name only matching atom names from the
selected groups will be used for the fit and RMSD calculation. This can be useful when comparing mutants
of a protein.

The superimposed structures are written to file. In a.pdb file the two structures will be written as separate
models (userasmol -nmrpdb). Also in a.pdb file, B-factors calculated from the atomic MSD values
can be written with-bfac .
Files

-f1 conf1.gro Input Structure+mass(db): tpr tpb tpa gro g96 pdb xml
-f2 conf2.gro Input Generic structure: gro g96 pdb tpr tpb tpa xml

-o fit.pdb Output Generic structure: gro g96 pdb xml
-n1 fit1.ndx Input, Opt. Index file
-n2 fit2.ndx Input, Opt. Index file
-no match.ndx Output, Opt. Index file

Other options
-h bool no Print help info and quit

-nice int 19 Set the nicelevel
-w bool no View output xvg, xpm, eps and pdb files

-one bool no Only write the fitted structure to file
-pbc bool no Try to make molecules whole again
-fit bool yes Do least squares superposition of the target structure to the reference

-name bool no Only compare matching atom names
-bfac bool no Output B-factors from atomic MSD values

E.34 g covar

g covar calculates and diagonalizes the (mass-weighted) covariance matrix. All structures are fitted to
the structure in the structure file. When this is not a run input file periodicity will not be taken into account.
When the fit and analysis groups are identical and the analysis is non mass-weighted, the fit will also be
non mass-weighted.

The eigenvectors are written to a trajectory file (-v). When the same atoms are used for the fit and the
covariance analysis, the reference structure for the fit is written first with t=-1. The average (or reference
when-ref is used) structure is written with t=0, the eigenvectors are written as frames with the eigenvector
number as timestamp.

The eigenvectors can be analyzed withg anaeig .

Option -ascii writes the whole covariance matrix to an ASCII file. The order of the elements is: x1x1,
x1y1, x1z1, x1x2, ...

Option-xpm writes the whole covariance matrix to an xpm file.

Option -xpma writes the atomic covariance matrix to an xpm file, i.e. for each atom pair the sum of the
xx, yy and zz covariances is written.

230 Appendix E. Manual Pages

Files
-f traj.xtc Input Generic trajectory: xtc trr trj gro g96 pdb
-s topol.tpr Input Structure+mass(db): tpr tpb tpa gro g96 pdb xml
-n index.ndx Input, Opt. Index file
-o eigenval.xvg Output xvgr/xmgr file
-v eigenvec.trr Output Full precision trajectory: trr trj

-av average.pdb Output Generic structure: gro g96 pdb xml
-l covar.log Output Log file

-ascii covar.dat Output, Opt. Generic data file
-xpm covar.xpm Output, Opt. X PixMap compatible matrix file

-xpma covara.xpm Output, Opt. X PixMap compatible matrix file

Other options
-h bool no Print help info and quit

-nice int 19 Set the nicelevel
-b time -1 First frame (ps) to read from trajectory
-e time -1 Last frame (ps) to read from trajectory

-dt time -1 Only use frame when t MOD dt = first time (ps)
-tu enum ps Time unit: ps , fs , ns , us , ms, s , mor h

-fit bool yes Fit to a reference structure
-ref bool no Use the deviation from the conformation in the structure file instead of

from the average
-mwa bool no Mass-weighted covariance analysis

-last int -1 Last eigenvector to write away (-1 is till the last)

E.35 g covar d

g covar calculates and diagonalizes the (mass-weighted) covariance matrix. All structures are fitted to
the structure in the structure file. When this is not a run input file periodicity will not be taken into account.
When the fit and analysis groups are identical and the analysis is non mass-weighted, the fit will also be
non mass-weighted.

The eigenvectors are written to a trajectory file (-v). When the same atoms are used for the fit and the
covariance analysis, the reference structure for the fit is written first with t=-1. The average (or reference
when-ref is used) structure is written with t=0, the eigenvectors are written as frames with the eigenvector
number as timestamp.

The eigenvectors can be analyzed withg anaeig .

Option -ascii writes the whole covariance matrix to an ASCII file. The order of the elements is: x1x1,
x1y1, x1z1, x1x2, ...

Option-xpm writes the whole covariance matrix to an xpm file.

Option -xpma writes the atomic covariance matrix to an xpm file, i.e. for each atom pair the sum of the
xx, yy and zz covariances is written.

Files
-f traj.xtc Input Generic trajectory: xtc trr trj gro g96 pdb
-s topol.tpr Input Structure+mass(db): tpr tpb tpa gro g96 pdb xml
-n index.ndx Input, Opt. Index file
-o eigenval.xvg Output xvgr/xmgr file
-v eigenvec.trr Output Full precision trajectory: trr trj

-av average.pdb Output Generic structure: gro g96 pdb xml

E.36. gdensity 231

-l covar.log Output Log file
-ascii covar.dat Output, Opt. Generic data file

-xpm covar.xpm Output, Opt. X PixMap compatible matrix file
-xpma covara.xpm Output, Opt. X PixMap compatible matrix file

Other options
-h bool no Print help info and quit

-nice int 19 Set the nicelevel
-b time -1 First frame (ps) to read from trajectory
-e time -1 Last frame (ps) to read from trajectory

-dt time -1 Only use frame when t MOD dt = first time (ps)
-tu enum ps Time unit: ps , fs , ns , us , ms, s , mor h

-fit bool yes Fit to a reference structure
-ref bool no Use the deviation from the conformation in the structure file instead of

from the average
-mwa bool no Mass-weighted covariance analysis

-last int -1 Last eigenvector to write away (-1 is till the last)

E.36 g density

Compute partial densities across the box, using an index file. Densities in kg/m3, number densities or
electron densities can be calculated. For electron densities, a file describing the number of electrons for
each type of atom should be provided using-ei . It should look like:
2
atomname = nrelectrons
atomname = nrelectrons
The first line contains the number of lines to read from the file. There should be one line for each unique
atom name in your system. The number of electrons for each atom is modified by its atomic partial charge.

Files
-f traj.xtc Input Generic trajectory: xtc trr trj gro g96 pdb
-n index.ndx Input, Opt. Index file
-s topol.tpr Input Generic run input: tpr tpb tpa xml

-ei electrons.dat Input, Opt. Generic data file
-o density.xvg Output xvgr/xmgr file

Other options
-h bool no Print help info and quit

-nice int 19 Set the nicelevel
-b time -1 First frame (ps) to read from trajectory
-e time -1 Last frame (ps) to read from trajectory

-dt time -1 Only use frame when t MOD dt = first time (ps)
-w bool no View output xvg, xpm, eps and pdb files
-d string Z Take the normal on the membrane in direction X, Y or Z.

-sl int 10 Divide the box in #nr slices.
-number bool no Calculate number density instead of mass density. Hydrogens are not

counted!
-ed bool no Calculate electron density instead of mass density

-count bool no Only count atoms in slices, no densities. Hydrogens are not counted

232 Appendix E. Manual Pages

• When calculating electron densities, atomnames are used instead of types. This is bad.

• When calculating number densities, atoms with names that start with H are not counted. This may
be surprising if you use hydrogens with names like OP3.

E.37 g density d

Compute partial densities across the box, using an index file. Densities in kg/m3, number densities or
electron densities can be calculated. For electron densities, a file describing the number of electrons for
each type of atom should be provided using-ei . It should look like:
2
atomname = nrelectrons
atomname = nrelectrons
The first line contains the number of lines to read from the file. There should be one line for each unique
atom name in your system. The number of electrons for each atom is modified by its atomic partial charge.

Files
-f traj.xtc Input Generic trajectory: xtc trr trj gro g96 pdb
-n index.ndx Input, Opt. Index file
-s topol.tpr Input Generic run input: tpr tpb tpa xml

-ei electrons.dat Input, Opt. Generic data file
-o density.xvg Output xvgr/xmgr file

Other options
-h bool no Print help info and quit

-nice int 19 Set the nicelevel
-b time -1 First frame (ps) to read from trajectory
-e time -1 Last frame (ps) to read from trajectory

-dt time -1 Only use frame when t MOD dt = first time (ps)
-w bool no View output xvg, xpm, eps and pdb files
-d string Z Take the normal on the membrane in direction X, Y or Z.

-sl int 10 Divide the box in #nr slices.
-number bool no Calculate number density instead of mass density. Hydrogens are not

counted!
-ed bool no Calculate electron density instead of mass density

-count bool no Only count atoms in slices, no densities. Hydrogens are not counted

• When calculating electron densities, atomnames are used instead of types. This is bad.

• When calculating number densities, atoms with names that start with H are not counted. This may
be surprising if you use hydrogens with names like OP3.

E.38 g dielectric

dielectric calculates frequency dependent dielectric constants from the autocorrelation function of the total
dipole moment in your simulation. This ACF can be generated by gdipoles. For an estimate of the error
you can run gstatistics on the ACF, and use the output thus generated for this program. The functional
forms of the available functions are:

E.39. gdielectric d 233

One parmeter : y = Exp[-a1 x] Two parmeters : y = a2 Exp[-a1 x] Three parmeter: y = a2 Exp[-a1 x] + (1 -
a2) Exp[-a3 x] Startvalues for the fit procedure can be given on the commandline. It is also possible to fix
parameters at their start value, use -fix with the number of the parameter you want to fix.

Three output files are generated, the first contains the ACF, an exponential fit to it with 1, 2 or 3 parameters,
and the numerical derivative of the combination data/fit. The second file contains the real and imaginary
parts of the frequency-dependent dielectric constant, the last gives a plot known as the Cole-Cole plot, in
which the imaginary component is plotted as a function of the real component. For a pure exponential
relaxation (Debye relaxation) the latter plot should be one half of a circle

Files
-f Mtot.xvg Input xvgr/xmgr file
-d deriv.xvg Output xvgr/xmgr file
-o epsw.xvg Output xvgr/xmgr file
-c cole.xvg Output xvgr/xmgr file

Other options
-h bool no Print help info and quit

-nice int 19 Set the nicelevel
-b time -1 First frame (ps) to read from trajectory
-e time -1 Last frame (ps) to read from trajectory

-dt time -1 Only use frame when t MOD dt = first time (ps)
-w bool no View output xvg, xpm, eps and pdb files

-fft bool no use fast fourier transform for correlation function
-x1 bool yes use first column as X axis rather than first data set

-eint real 5 Time were to end the integration of the data and start to use the fit
-bfit real 5 Begin time of fit
-efit real 500 End time of fit
-tail real 500 Length of function including data and tail from fit

-A real 0.5 Start value for fit parameter A
-tau1 real 10 Start value for fit parameter tau1
-tau2 real 1 Start value for fit parameter tau2
-eps0 real 80 Epsilon 0 of your liquid

-epsRF real 78.5 Epsilon of the reaction field used in your simulation. A value of 0 means
infinity.

-fix int 0 Fix parameters at their start values, A (2), tau1 (1), or tau2 (4)
-ffn enum none Fit function:none , exp , aexp , exp exp , vac , exp5 , exp7 or exp9

-nsmooth int 3 Number of points for smoothing

E.39 g dielectric d

dielectric calculates frequency dependent dielectric constants from the autocorrelation function of the total
dipole moment in your simulation. This ACF can be generated by gdipoles. For an estimate of the error
you can run gstatistics on the ACF, and use the output thus generated for this program. The functional
forms of the available functions are:

One parmeter : y = Exp[-a1 x] Two parmeters : y = a2 Exp[-a1 x] Three parmeter: y = a2 Exp[-a1 x] + (1 -
a2) Exp[-a3 x] Startvalues for the fit procedure can be given on the commandline. It is also possible to fix
parameters at their start value, use -fix with the number of the parameter you want to fix.

Three output files are generated, the first contains the ACF, an exponential fit to it with 1, 2 or 3 parameters,
and the numerical derivative of the combination data/fit. The second file contains the real and imaginary
parts of the frequency-dependent dielectric constant, the last gives a plot known as the Cole-Cole plot, in

234 Appendix E. Manual Pages

which the imaginary component is plotted as a function of the real component. For a pure exponential
relaxation (Debye relaxation) the latter plot should be one half of a circle

Files
-f Mtot.xvg Input xvgr/xmgr file
-d deriv.xvg Output xvgr/xmgr file
-o epsw.xvg Output xvgr/xmgr file
-c cole.xvg Output xvgr/xmgr file

Other options
-h bool no Print help info and quit

-nice int 19 Set the nicelevel
-b time -1 First frame (ps) to read from trajectory
-e time -1 Last frame (ps) to read from trajectory

-dt time -1 Only use frame when t MOD dt = first time (ps)
-w bool no View output xvg, xpm, eps and pdb files

-fft bool no use fast fourier transform for correlation function
-x1 bool yes use first column as X axis rather than first data set

-eint real 5 Time were to end the integration of the data and start to use the fit
-bfit real 5 Begin time of fit
-efit real 500 End time of fit
-tail real 500 Length of function including data and tail from fit

-A real 0.5 Start value for fit parameter A
-tau1 real 10 Start value for fit parameter tau1
-tau2 real 1 Start value for fit parameter tau2
-eps0 real 80 Epsilon 0 of your liquid

-epsRF real 78.5 Epsilon of the reaction field used in your simulation. A value of 0 means
infinity.

-fix int 0 Fix parameters at their start values, A (2), tau1 (1), or tau2 (4)
-ffn enum none Fit function:none , exp , aexp , exp exp , vac , exp5 , exp7 or exp9

-nsmooth int 3 Number of points for smoothing

E.40 g dih

g dih can do two things. The default is to analyze dihedral transitions by merely computing all the dihedral
angles defined in your topology for the whole trajectory. When a dihedral flips over to another minimum
an angle/time plot is made.

The opther option is to discretize the dihedral space into a number of bins, and group each conformation
in dihedral space in the appropriate bin. The output is then given as a number of dihedral conformations
sorted according to occupancy.

Files
-f traj.xtc Input Generic trajectory: xtc trr trj gro g96 pdb
-s topol.tpr Input Generic run input: tpr tpb tpa xml
-o hello.out Output Generic output file

Other options
-h bool no Print help info and quit

-nice int 19 Set the nicelevel
-b time -1 First frame (ps) to read from trajectory
-e time -1 Last frame (ps) to read from trajectory

-dt time -1 Only use frame when t MOD dt = first time (ps)

E.41. gdih d 235

-w bool no View output xvg, xpm, eps and pdb files
-sa bool no Perform cluster analysis in dihedral space instead of analysing dihedral

transitions.
-mult int -1 mulitiplicity for dihedral angles (by default read from topology)

• should not ask for number of frames

E.41 g dih d

g dih can do two things. The default is to analyze dihedral transitions by merely computing all the dihedral
angles defined in your topology for the whole trajectory. When a dihedral flips over to another minimum
an angle/time plot is made.

The opther option is to discretize the dihedral space into a number of bins, and group each conformation
in dihedral space in the appropriate bin. The output is then given as a number of dihedral conformations
sorted according to occupancy.

Files
-f traj.xtc Input Generic trajectory: xtc trr trj gro g96 pdb
-s topol.tpr Input Generic run input: tpr tpb tpa xml
-o hello.out Output Generic output file

Other options
-h bool no Print help info and quit

-nice int 19 Set the nicelevel
-b time -1 First frame (ps) to read from trajectory
-e time -1 Last frame (ps) to read from trajectory

-dt time -1 Only use frame when t MOD dt = first time (ps)
-w bool no View output xvg, xpm, eps and pdb files

-sa bool no Perform cluster analysis in dihedral space instead of analysing dihedral
transitions.

-mult int -1 mulitiplicity for dihedral angles (by default read from topology)

• should not ask for number of frames

E.42 g dipoles

g dipoles computes the total dipole plus fluctuations of a simulation system. From this you can compute
e.g. the dielectric constant for low dielectric media

The file Mtot.xvg contains the total dipole moment of a frame, the components as well as the norm of
the vector. The file aver.xvg contains< orMuor2 > and< orMuor >2 during the simulation. The file
dipdist.xvg contains the distribution of dipole moments during the simulation The mumax is used as the
highest value in the distribution graph.

Furthermore the dipole autocorrelation function will be computed, when option -c is used. It can be aver-
aged over all molecules, or (with option -avercorr) it can be computed as the autocorrelation of the total
dipole moment of the simulation box.

At the moment the dielectric constant is calculated only correct if a rectangular or cubic simulation box is
used.

236 Appendix E. Manual Pages

Option -g produces a plot of the distance dependent Kirkwood G-factor, as well as the average cosine of
the angle between the dipoles as a function of the distance. The plot also includes gOO and hOO according
to Nymand & Linse, JCP 112 (2000) pp 6386-6395. In the same plot we also include the energy per scale
computed by taking the inner product of the dipoles divided by the distance to the third power.

EXAMPLES

g dipoles -P1 -n mols -o dipsqr -mu 2.273 -mumax 5.0 -nofft

This will calculate the autocorrelation function of the molecular dipoles using a first order Legendre poly-
nomial of the angle of the dipole vector and itself a time t later. For this calculation 1001 frames will be
used. Further the dielectric constant will be calculated using an epsilonRF of infinity (default), tempera-
ture of 300 K (default) and an average dipole moment of the molecule of 2.273 (SPC). For the distribution
function a maximum of 5.0 will be used.

Files
-enx ener.edr Input, Opt. Generic energy: edr ene

-f traj.xtc Input Generic trajectory: xtc trr trj gro g96 pdb
-s topol.tpr Input Generic run input: tpr tpb tpa xml
-n index.ndx Input, Opt. Index file
-o Mtot.xvg Output xvgr/xmgr file

-eps epsilon.xvg Output xvgr/xmgr file
-a aver.xvg Output xvgr/xmgr file
-d dipdist.xvg Output xvgr/xmgr file
-c dipcorr.xvg Output, Opt. xvgr/xmgr file
-g gkr.xvg Output, Opt. xvgr/xmgr file
-q quadrupole.xvg Output, Opt. xvgr/xmgr file

Other options
-h bool no Print help info and quit

-nice int 19 Set the nicelevel
-b time -1 First frame (ps) to read from trajectory
-e time -1 Last frame (ps) to read from trajectory

-dt time -1 Only use frame when t MOD dt = first time (ps)
-w bool no View output xvg, xpm, eps and pdb files

-mu real -1 dipole of a single molecule (in Debye)
-mumax real 5 max dipole in Debye (for histrogram)

-epsilonRF real 0 epsilon of the reaction field used during the simulation, needed for
dieclectric constant calculation. WARNING: 0.0 means infinity (default)

-skip int 0 Skip steps in the output (but not in the computations)
-temp real 300 average temperature of the simulation (needed for dielectric constant cal-

culation)
-avercorr bool no calculate AC function of average dipole moment of the simulation box

rather than average of AC function per molecule
-gkratom int 0 Use the n-th atom of a molecule (starting from 1) to calculate the dis-

tance between molecules rather than the center of charge (when 0) in the
calculation of distance dependent Kirkwood factors

-acflen int -1 Length of the ACF, default is half the number of frames
-normalize bool yes Normalize ACF

-P enum 0 Order of Legendre polynomial for ACF (0 indicates none):0, 1, 2 or 3
-fitfn enum none Fit function:none , exp , aexp , exp exp , vac , exp5 , exp7 or exp9

-ncskip int 0 Skip N points in the output file of correlation functions
-beginfit real 0 Time where to begin the exponential fit of the correlation function

-endfit real -1 Time where to end the exponential fit of the correlation function, -1 is till
the end

E.43. gdipolesd 237

E.43 g dipoles d

g dipoles computes the total dipole plus fluctuations of a simulation system. From this you can compute
e.g. the dielectric constant for low dielectric media

The file Mtot.xvg contains the total dipole moment of a frame, the components as well as the norm of
the vector. The file aver.xvg contains< orMuor2 > and< orMuor >2 during the simulation. The file
dipdist.xvg contains the distribution of dipole moments during the simulation The mumax is used as the
highest value in the distribution graph.

Furthermore the dipole autocorrelation function will be computed, when option -c is used. It can be aver-
aged over all molecules, or (with option -avercorr) it can be computed as the autocorrelation of the total
dipole moment of the simulation box.

At the moment the dielectric constant is calculated only correct if a rectangular or cubic simulation box is
used.

Option -g produces a plot of the distance dependent Kirkwood G-factor, as well as the average cosine of
the angle between the dipoles as a function of the distance. The plot also includes gOO and hOO according
to Nymand & Linse, JCP 112 (2000) pp 6386-6395. In the same plot we also include the energy per scale
computed by taking the inner product of the dipoles divided by the distance to the third power.

EXAMPLES

g dipoles -P1 -n mols -o dipsqr -mu 2.273 -mumax 5.0 -nofft

This will calculate the autocorrelation function of the molecular dipoles using a first order Legendre poly-
nomial of the angle of the dipole vector and itself a time t later. For this calculation 1001 frames will be
used. Further the dielectric constant will be calculated using an epsilonRF of infinity (default), tempera-
ture of 300 K (default) and an average dipole moment of the molecule of 2.273 (SPC). For the distribution
function a maximum of 5.0 will be used.

Files
-enx ener.edr Input, Opt. Generic energy: edr ene

-f traj.xtc Input Generic trajectory: xtc trr trj gro g96 pdb
-s topol.tpr Input Generic run input: tpr tpb tpa xml
-n index.ndx Input, Opt. Index file
-o Mtot.xvg Output xvgr/xmgr file

-eps epsilon.xvg Output xvgr/xmgr file
-a aver.xvg Output xvgr/xmgr file
-d dipdist.xvg Output xvgr/xmgr file
-c dipcorr.xvg Output, Opt. xvgr/xmgr file
-g gkr.xvg Output, Opt. xvgr/xmgr file
-q quadrupole.xvg Output, Opt. xvgr/xmgr file

Other options
-h bool no Print help info and quit

-nice int 19 Set the nicelevel
-b time -1 First frame (ps) to read from trajectory
-e time -1 Last frame (ps) to read from trajectory

-dt time -1 Only use frame when t MOD dt = first time (ps)
-w bool no View output xvg, xpm, eps and pdb files

-mu real -1 dipole of a single molecule (in Debye)
-mumax real 5 max dipole in Debye (for histrogram)

-epsilonRF real 0 epsilon of the reaction field used during the simulation, needed for
dieclectric constant calculation. WARNING: 0.0 means infinity (default)

-skip int 0 Skip steps in the output (but not in the computations)

238 Appendix E. Manual Pages

-temp real 300 average temperature of the simulation (needed for dielectric constant cal-
culation)

-avercorr bool no calculate AC function of average dipole moment of the simulation box
rather than average of AC function per molecule

-gkratom int 0 Use the n-th atom of a molecule (starting from 1) to calculate the dis-
tance between molecules rather than the center of charge (when 0) in the
calculation of distance dependent Kirkwood factors

-acflen int -1 Length of the ACF, default is half the number of frames
-normalize bool yes Normalize ACF

-P enum 0 Order of Legendre polynomial for ACF (0 indicates none):0, 1, 2 or 3
-fitfn enum none Fit function:none , exp , aexp , exp exp , vac , exp5 , exp7 or exp9

-ncskip int 0 Skip N points in the output file of correlation functions
-beginfit real 0 Time where to begin the exponential fit of the correlation function

-endfit real -1 Time where to end the exponential fit of the correlation function, -1 is till
the end

E.44 g disre

g disre computes violations of distance restraints. If necessary all protons can be added to a protein
molecule using the protonate program.

The program allways computes the instantaneous violations rather than time-averaged, because this analysis
is done from a trajectory file afterwards it does not make sense to use time averaging. However, the time
averaged values per restraint are given in the log file.

An index file may be used to select specific restraints for printing.

When the optional-q flag is given a pdb file coloured by the amount of average violations.
Files

-s topol.tpr Input Generic run input: tpr tpb tpa xml
-f traj.xtc Input Generic trajectory: xtc trr trj gro g96 pdb

-ds drsum.xvg Output xvgr/xmgr file
-da draver.xvg Output xvgr/xmgr file
-dn drnum.xvg Output xvgr/xmgr file
-dm drmax.xvg Output xvgr/xmgr file
-dr restr.xvg Output xvgr/xmgr file

-l disres.log Output Log file
-n viol.ndx Input, Opt. Index file
-q viol.pdb Output, Opt. Protein data bank file

Other options
-h bool no Print help info and quit

-nice int 19 Set the nicelevel
-b time -1 First frame (ps) to read from trajectory
-e time -1 Last frame (ps) to read from trajectory

-dt time -1 Only use frame when t MOD dt = first time (ps)
-w bool no View output xvg, xpm, eps and pdb files

-ntop int 0 Number of large violations that are stored in the log file every step

E.45 g disre d

g disre computes violations of distance restraints. If necessary all protons can be added to a protein
molecule using the protonate program.

E.46. gdist 239

The program allways computes the instantaneous violations rather than time-averaged, because this analysis
is done from a trajectory file afterwards it does not make sense to use time averaging. However, the time
averaged values per restraint are given in the log file.

An index file may be used to select specific restraints for printing.

When the optional-q flag is given a pdb file coloured by the amount of average violations.

Files
-s topol.tpr Input Generic run input: tpr tpb tpa xml
-f traj.xtc Input Generic trajectory: xtc trr trj gro g96 pdb

-ds drsum.xvg Output xvgr/xmgr file
-da draver.xvg Output xvgr/xmgr file
-dn drnum.xvg Output xvgr/xmgr file
-dm drmax.xvg Output xvgr/xmgr file
-dr restr.xvg Output xvgr/xmgr file

-l disres.log Output Log file
-n viol.ndx Input, Opt. Index file
-q viol.pdb Output, Opt. Protein data bank file

Other options
-h bool no Print help info and quit

-nice int 19 Set the nicelevel
-b time -1 First frame (ps) to read from trajectory
-e time -1 Last frame (ps) to read from trajectory

-dt time -1 Only use frame when t MOD dt = first time (ps)
-w bool no View output xvg, xpm, eps and pdb files

-ntop int 0 Number of large violations that are stored in the log file every step

E.46 g dist

g dist can calculate the distance between the centers of mass of two groups of atoms as a function of time.
The total distance and its x, y and z components are plotted.

Or when-dist is set, print all the atoms in group 2 that are closer than a certain distance to the center of
mass of group 1.

Other programs that calculate distances areg mindist andg bond .

Files
-f traj.xtc Input Generic trajectory: xtc trr trj gro g96 pdb
-s topol.tpr Input Generic run input: tpr tpb tpa xml
-n index.ndx Input, Opt. Index file
-o dist.xvg Output, Opt. xvgr/xmgr file

Other options
-h bool no Print help info and quit

-nice int 19 Set the nicelevel
-b time -1 First frame (ps) to read from trajectory
-e time -1 Last frame (ps) to read from trajectory

-dt time -1 Only use frame when t MOD dt = first time (ps)
-dist real 0 Print all atoms in group 2 closer than dist to the center of mass of group

1

240 Appendix E. Manual Pages

E.47 g dist d

g dist can calculate the distance between the centers of mass of two groups of atoms as a function of time.
The total distance and its x, y and z components are plotted.

Or when-dist is set, print all the atoms in group 2 that are closer than a certain distance to the center of
mass of group 1.

Other programs that calculate distances areg mindist andg bond .
Files

-f traj.xtc Input Generic trajectory: xtc trr trj gro g96 pdb
-s topol.tpr Input Generic run input: tpr tpb tpa xml
-n index.ndx Input, Opt. Index file
-o dist.xvg Output, Opt. xvgr/xmgr file

Other options
-h bool no Print help info and quit

-nice int 19 Set the nicelevel
-b time -1 First frame (ps) to read from trajectory
-e time -1 Last frame (ps) to read from trajectory

-dt time -1 Only use frame when t MOD dt = first time (ps)
-dist real 0 Print all atoms in group 2 closer than dist to the center of mass of group

1

E.48 g dyndom

g dyndom reads a pdb file output from DynDom http://md.chem.rug.nl/ steve/DynDom/dyndom.home.html
It reads the coordinates, and the coordinates of the rotation axis furthermore it reads an index file containing
the domains. Furthermore it takes the first and last atom of the arrow file as command line arguments (head
and tail) and finally it takes the translation vector (given in DynDom info file) and the angle of rotation (also
as command line arguments). If the angle determined by DynDom is given, one should be able to recover
the second structure used for generating the DynDom output. Because of limited numerical accuracy this
should be verified by computing an all-atom RMSD (usingg confrms) rather than by file comparison
(using diff).

The purpose of this program is to interpolate and extrapolate the rotation as found by DynDom. As a result
unphysical structures with long or short bonds, or overlapping atoms may be produced. Visual inspection,
and energy minimization may be necessary to validate the structure.
Files

-f dyndom.pdb Input Protein data bank file
-o rotated.xtc Output Generic trajectory: xtc trr trj gro g96 pdb
-n domains.ndx Input Index file

Other options
-h bool no Print help info and quit

-nice int 0 Set the nicelevel
-firstangle real 0 Angle of rotation about rotation vector

-lastangle real 0 Angle of rotation about rotation vector
-nframe int 11 Number of steps on the pathway

-maxangle real 0 DymDom dtermined angle of rotation about rotation vector
-trans real 0 Translation (Aangstroem) along rotation vector (see DynDom info file)

-head vector 0 0 0 First atom of the arrow vector
-tail vector 0 0 0 Last atom of the arrow vector

E.49. gdyndomd 241

E.49 g dyndom d

g dyndom reads a pdb file output from DynDom http://md.chem.rug.nl/ steve/DynDom/dyndom.home.html
It reads the coordinates, and the coordinates of the rotation axis furthermore it reads an index file containing
the domains. Furthermore it takes the first and last atom of the arrow file as command line arguments (head
and tail) and finally it takes the translation vector (given in DynDom info file) and the angle of rotation (also
as command line arguments). If the angle determined by DynDom is given, one should be able to recover
the second structure used for generating the DynDom output. Because of limited numerical accuracy this
should be verified by computing an all-atom RMSD (usingg confrms) rather than by file comparison
(using diff).

The purpose of this program is to interpolate and extrapolate the rotation as found by DynDom. As a result
unphysical structures with long or short bonds, or overlapping atoms may be produced. Visual inspection,
and energy minimization may be necessary to validate the structure.

Files
-f dyndom.pdb Input Protein data bank file
-o rotated.xtc Output Generic trajectory: xtc trr trj gro g96 pdb
-n domains.ndx Input Index file

Other options
-h bool no Print help info and quit

-nice int 0 Set the nicelevel
-firstangle real 0 Angle of rotation about rotation vector

-lastangle real 0 Angle of rotation about rotation vector
-nframe int 11 Number of steps on the pathway

-maxangle real 0 DymDom dtermined angle of rotation about rotation vector
-trans real 0 Translation (Aangstroem) along rotation vector (see DynDom info file)

-head vector 0 0 0 First atom of the arrow vector
-tail vector 0 0 0 Last atom of the arrow vector

E.50 g enemat

g enemat extracts an energy matrix from the energy file (-f). With -groups a file must be supplied with
on each line a group of atoms to be used. For these groups matrix of interaction energies will be extracted
from the energy file by looking for energy groups with names corresponding to pairs of groups of atoms.
E.g. if your-groups file contains:
2
Protein
SOL
then energy groups with names like ’Coul-SR:Protein-SOL’ and ’LJ:Protein-SOL’ are expected in the en-
ergy file (althoughg enemat is most useful if many groups are analyzed simultaneously). Matrices
for different energy types are written out separately, as controlled by the-[no]coul , -[no]coulr ,
-[no]coul14 , -[no]lj , -[no]lj14 , -[no]bham and-[no]free options. Finally, the total in-
teraction energy energy per group can be calculated (-etot).

An approximation of the free energy can be calculated using: E(free) = E0 + kT log(<exp((E-E0)/kT)>
), where ’<>’ stands for time-average. A file with reference free energies can be supplied to calculate the
free energy difference with some reference state. Group names (e.g. residue names) in the reference file
should correspond to the group names as used in the-groups file, but a appended number (e.g. residue
number) in the-groups will be ignored in the comparison.

Files

242 Appendix E. Manual Pages

-f ener.edr Input, Opt. Generic energy: edr ene
-groups groups.dat Input Generic data file

-eref eref.dat Input, Opt. Generic data file
-emat emat.xpm Output X PixMap compatible matrix file
-etot energy.xvg Output xvgr/xmgr file

Other options
-h bool no Print help info and quit

-nice int 19 Set the nicelevel
-b time -1 First frame (ps) to read from trajectory
-e time -1 Last frame (ps) to read from trajectory

-dt time -1 Only use frame when t MOD dt = first time (ps)
-w bool no View output xvg, xpm, eps and pdb files

-sum bool no Sum the energy terms selected rather than display them all
-skip int 0 Skip number of frames between data points
-mean bool yes with -groups extracts matrix of mean energies in stead of matrix for each

timestep
-nlevels int 20 number of levels for matrix colors

-max real 1e+20 max value for energies
-min real -1e+20 min value for energies

-coul bool yes extract Coulomb SR energies
-coulr bool no extract Coulomb LR energies

-coul14 bool no extract Coulomb 1-4 energies
-lj bool yes extract Lennard-Jones SR energies

-lj14 bool no extract Lennard-Jones 1-4 energies
-bham bool no extract Buckingham energies
-free bool yes calculate free energy
-temp real 300 reference temperature for free energy calculation

E.51 g enemat d

g enemat extracts an energy matrix from the energy file (-f). With -groups a file must be supplied with
on each line a group of atoms to be used. For these groups matrix of interaction energies will be extracted
from the energy file by looking for energy groups with names corresponding to pairs of groups of atoms.
E.g. if your-groups file contains:
2
Protein
SOL
then energy groups with names like ’Coul-SR:Protein-SOL’ and ’LJ:Protein-SOL’ are expected in the en-
ergy file (althoughg enemat is most useful if many groups are analyzed simultaneously). Matrices
for different energy types are written out separately, as controlled by the-[no]coul , -[no]coulr ,
-[no]coul14 , -[no]lj , -[no]lj14 , -[no]bham and-[no]free options. Finally, the total in-
teraction energy energy per group can be calculated (-etot).

An approximation of the free energy can be calculated using: E(free) = E0 + kT log(<exp((E-E0)/kT)>
), where ’<>’ stands for time-average. A file with reference free energies can be supplied to calculate the
free energy difference with some reference state. Group names (e.g. residue names) in the reference file
should correspond to the group names as used in the-groups file, but a appended number (e.g. residue
number) in the-groups will be ignored in the comparison.

Files
-f ener.edr Input, Opt. Generic energy: edr ene

E.52. genergy 243

-groups groups.dat Input Generic data file
-eref eref.dat Input, Opt. Generic data file
-emat emat.xpm Output X PixMap compatible matrix file
-etot energy.xvg Output xvgr/xmgr file

Other options
-h bool no Print help info and quit

-nice int 19 Set the nicelevel
-b time -1 First frame (ps) to read from trajectory
-e time -1 Last frame (ps) to read from trajectory

-dt time -1 Only use frame when t MOD dt = first time (ps)
-w bool no View output xvg, xpm, eps and pdb files

-sum bool no Sum the energy terms selected rather than display them all
-skip int 0 Skip number of frames between data points
-mean bool yes with -groups extracts matrix of mean energies in stead of matrix for each

timestep
-nlevels int 20 number of levels for matrix colors

-max real 1e+20 max value for energies
-min real -1e+20 min value for energies

-coul bool yes extract Coulomb SR energies
-coulr bool no extract Coulomb LR energies

-coul14 bool no extract Coulomb 1-4 energies
-lj bool yes extract Lennard-Jones SR energies

-lj14 bool no extract Lennard-Jones 1-4 energies
-bham bool no extract Buckingham energies
-free bool yes calculate free energy
-temp real 300 reference temperature for free energy calculation

E.52 g energy

g energy extracts energy components or distance restraint data from an energy file. The user is prompted to
interactively select the energy terms she wants.

Average and RMSD are calculated with full precision from the simulation (see printed manual). Drift is
calculated by performing a LSQ fit of the data to a straight line. Total drift is drift multiplied by total time.

When the-viol option is set, the time averaged violations are plotted and the running time-averaged and
instantaneous sum of violations are recalculated. Additionally running time-averaged and instantaneous
distances between selected pairs can be plotted with the-pairs option.

Options-ora , -ort , -oda , -odr and-odt are used for analyzing orientation restraint data. The first
two options plot the orientation, the last three the deviations of the orientations from the experimental
values. The options that end on an ’a’ plot the average over time as a function of restraint. The options
that end on a ’t’ prompt the user for restraint label numbers and plot the data as a function of time. Option
-odr plots the RMS deviation as a function of restraint. When the run used time or ensemble averaged
orientation restraints, option-orinst can be used to analyse the instantaneous, not ensemble-averaged
orientations and deviations instead of the time and ensemble averages.

With -fee an estimate is calculated for the free-energy difference with an ideal gas state:
Delta A = A(N,V,T) - A idgas(N,V,T) = kT ln< ê(Upot/kT)>
Delta G = G(N,p,T) - Gidgas(N,p,T) = kT ln< ê(Upot/kT)>
where k is Boltzmann’s constant, T is set by-fetemp andthe average is over the ensemble (or time in a
trajectory). Note that this is in principle only correct when averaging over the whole (Boltzmann) ensemble

244 Appendix E. Manual Pages

and using the potential energy. This also allows for an entropy estimate using:
Delta S(N,V,T) = S(N,V,T) - Sidgas(N,V,T) = (<Upot> - Delta A)/T
Delta S(N,p,T) = S(N,p,T) - Sidgas(N,p,T) = (<Upot> + pV - Delta G)/T

When a second energy file is specified (-f2), a free energy difference is calculated dF = -kT ln< e -̂(EB-
EA)/kT >A , where EA and EB are the energies from the first and second energy files, and the average is
over the ensemble A.NOTE that the energies must both be calculated from the same trajectory.

Files
-f ener.edr Input Generic energy: edr ene

-f2 ener.edr Input, Opt. Generic energy: edr ene
-s topol.tpr Input, Opt. Generic run input: tpr tpb tpa xml
-o energy.xvg Output xvgr/xmgr file

-viol violaver.xvg Output, Opt. xvgr/xmgr file
-pairs pairs.xvg Output, Opt. xvgr/xmgr file

-ora orienta.xvg Output, Opt. xvgr/xmgr file
-ort orientt.xvg Output, Opt. xvgr/xmgr file
-oda orideva.xvg Output, Opt. xvgr/xmgr file
-odr oridevr.xvg Output, Opt. xvgr/xmgr file
-odt oridevt.xvg Output, Opt. xvgr/xmgr file

-corr enecorr.xvg Output, Opt. xvgr/xmgr file
-vis visco.xvg Output, Opt. xvgr/xmgr file

-ravg runavgdf.xvg Output, Opt. xvgr/xmgr file

Other options
-h bool no Print help info and quit

-nice int 19 Set the nicelevel
-b time -1 First frame (ps) to read from trajectory
-e time -1 Last frame (ps) to read from trajectory
-w bool no View output xvg, xpm, eps and pdb files

-fee bool no Do a free energy estimate
-fetemp real 300 Reference temperature for free energy calculation

-zero real 0 Subtract a zero-point energy
-sum bool no Sum the energy terms selected rather than display them all

-dp bool no Print energies in high precision
-mutot bool no Compute the total dipole moment from the components

-skip int 0 Skip number of frames between data points
-aver bool no Print also the X1,t and sigma1,t, only if only 1 energy is requested
-nmol int 1 Number of molecules in your sample: the energies are divided by this

number
-ndf int 3 Number of degrees of freedom per molecule. Necessary for calculating

the heat capacity
-fluc bool no Calculate autocorrelation of energy fluctuations rather than energy itself

-orinst bool no Analyse instantaneous orientation data
-acflen int -1 Length of the ACF, default is half the number of frames

-normalize bool yes Normalize ACF
-P enum 0 Order of Legendre polynomial for ACF (0 indicates none):0, 1, 2 or 3

-fitfn enum none Fit function:none , exp , aexp , exp exp , vac , exp5 , exp7 or exp9
-ncskip int 0 Skip N points in the output file of correlation functions

-beginfit real 0 Time where to begin the exponential fit of the correlation function
-endfit real -1 Time where to end the exponential fit of the correlation function, -1 is till

the end

E.53. genergyd 245

E.53 g energy d

g energy extracts energy components or distance restraint data from an energy file. The user is prompted to
interactively select the energy terms she wants.

Average and RMSD are calculated with full precision from the simulation (see printed manual). Drift is
calculated by performing a LSQ fit of the data to a straight line. Total drift is drift multiplied by total time.

When the-viol option is set, the time averaged violations are plotted and the running time-averaged and
instantaneous sum of violations are recalculated. Additionally running time-averaged and instantaneous
distances between selected pairs can be plotted with the-pairs option.

Options-ora , -ort , -oda , -odr and-odt are used for analyzing orientation restraint data. The first
two options plot the orientation, the last three the deviations of the orientations from the experimental
values. The options that end on an ’a’ plot the average over time as a function of restraint. The options
that end on a ’t’ prompt the user for restraint label numbers and plot the data as a function of time. Option
-odr plots the RMS deviation as a function of restraint. When the run used time or ensemble averaged
orientation restraints, option-orinst can be used to analyse the instantaneous, not ensemble-averaged
orientations and deviations instead of the time and ensemble averages.

With -fee an estimate is calculated for the free-energy difference with an ideal gas state:
Delta A = A(N,V,T) - A idgas(N,V,T) = kT ln< ê(Upot/kT)>
Delta G = G(N,p,T) - Gidgas(N,p,T) = kT ln< ê(Upot/kT)>
where k is Boltzmann’s constant, T is set by-fetemp andthe average is over the ensemble (or time in a
trajectory). Note that this is in principle only correct when averaging over the whole (Boltzmann) ensemble
and using the potential energy. This also allows for an entropy estimate using:
Delta S(N,V,T) = S(N,V,T) - Sidgas(N,V,T) = (<Upot> - Delta A)/T
Delta S(N,p,T) = S(N,p,T) - Sidgas(N,p,T) = (<Upot> + pV - Delta G)/T

When a second energy file is specified (-f2), a free energy difference is calculated dF = -kT ln< e -̂(EB-
EA)/kT >A , where EA and EB are the energies from the first and second energy files, and the average is
over the ensemble A.NOTE that the energies must both be calculated from the same trajectory.

Files
-f ener.edr Input Generic energy: edr ene

-f2 ener.edr Input, Opt. Generic energy: edr ene
-s topol.tpr Input, Opt. Generic run input: tpr tpb tpa xml
-o energy.xvg Output xvgr/xmgr file

-viol violaver.xvg Output, Opt. xvgr/xmgr file
-pairs pairs.xvg Output, Opt. xvgr/xmgr file

-ora orienta.xvg Output, Opt. xvgr/xmgr file
-ort orientt.xvg Output, Opt. xvgr/xmgr file
-oda orideva.xvg Output, Opt. xvgr/xmgr file
-odr oridevr.xvg Output, Opt. xvgr/xmgr file
-odt oridevt.xvg Output, Opt. xvgr/xmgr file

-corr enecorr.xvg Output, Opt. xvgr/xmgr file
-vis visco.xvg Output, Opt. xvgr/xmgr file

-ravg runavgdf.xvg Output, Opt. xvgr/xmgr file

Other options
-h bool no Print help info and quit

-nice int 19 Set the nicelevel
-b time -1 First frame (ps) to read from trajectory
-e time -1 Last frame (ps) to read from trajectory
-w bool no View output xvg, xpm, eps and pdb files

-fee bool no Do a free energy estimate

246 Appendix E. Manual Pages

-fetemp real 300 Reference temperature for free energy calculation
-zero real 0 Subtract a zero-point energy

-sum bool no Sum the energy terms selected rather than display them all
-dp bool no Print energies in high precision

-mutot bool no Compute the total dipole moment from the components
-skip int 0 Skip number of frames between data points
-aver bool no Print also the X1,t and sigma1,t, only if only 1 energy is requested
-nmol int 1 Number of molecules in your sample: the energies are divided by this

number
-ndf int 3 Number of degrees of freedom per molecule. Necessary for calculating

the heat capacity
-fluc bool no Calculate autocorrelation of energy fluctuations rather than energy itself

-orinst bool no Analyse instantaneous orientation data
-acflen int -1 Length of the ACF, default is half the number of frames

-normalize bool yes Normalize ACF
-P enum 0 Order of Legendre polynomial for ACF (0 indicates none):0, 1, 2 or 3

-fitfn enum none Fit function:none , exp , aexp , exp exp , vac , exp5 , exp7 or exp9
-ncskip int 0 Skip N points in the output file of correlation functions

-beginfit real 0 Time where to begin the exponential fit of the correlation function
-endfit real -1 Time where to end the exponential fit of the correlation function, -1 is till

the end

E.54 g filter

g filter performs frequency filtering on a trajectory. The filter shape is cos(pi t/A) + 1 from -A to +A, where
A is given by the option-nf times the time step in the input trajectory. This filter reduces fluctuations with
period A by 85%, with period 2*A by 50% and with period 3*A by 17% for low-pass filtering. Both a
low-pass and high-pass filtered trajectory can be written.

Option -ol writes a low-pass filtered trajectory. A frame is written everynf input frames. This ratio of
filter length and output interval ensures a good suppression of aliasing of high-frequency motion, which
is useful for making smooth movies. Also averages of properties which are linear in the coordinates are
preserved, since all input frames are weighted equally in the output. When all frames are needed, use the
-all option.

Option-oh writes a high-pass filtered trajectory. The high-pass filtered coordinates are added to the coor-
dinates from the structure file. When using high-pass filtering use-fit or make sure you use a trajectory
which has been fitted on the coordinates in the structure file.

Files
-f traj.xtc Input Generic trajectory: xtc trr trj gro g96 pdb
-s topol.tpr Input, Opt. Structure+mass(db): tpr tpb tpa gro g96 pdb xml
-n index.ndx Input, Opt. Index file

-ol lowpass.xtc Output, Opt. Generic trajectory: xtc trr trj gro g96 pdb
-oh highpass.xtc Output, Opt. Generic trajectory: xtc trr trj gro g96 pdb

Other options
-h bool no Print help info and quit

-nice int 19 Set the nicelevel
-b time -1 First frame (ps) to read from trajectory
-e time -1 Last frame (ps) to read from trajectory

-dt time -1 Only use frame when t MOD dt = first time (ps)
-w bool no View output xvg, xpm, eps and pdb files

E.55. gfilter d 247

-nf int 10 Sets the filter length as well as the output interval for low-pass filtering
-all bool no Write all low-pass filtered frames

-nojump bool yes Remove jumps of atoms across the box
-fit bool no Fit all frames to a reference structure

E.55 g filter d

g filter performs frequency filtering on a trajectory. The filter shape is cos(pi t/A) + 1 from -A to +A, where
A is given by the option-nf times the time step in the input trajectory. This filter reduces fluctuations with
period A by 85%, with period 2*A by 50% and with period 3*A by 17% for low-pass filtering. Both a
low-pass and high-pass filtered trajectory can be written.

Option -ol writes a low-pass filtered trajectory. A frame is written everynf input frames. This ratio of
filter length and output interval ensures a good suppression of aliasing of high-frequency motion, which
is useful for making smooth movies. Also averages of properties which are linear in the coordinates are
preserved, since all input frames are weighted equally in the output. When all frames are needed, use the
-all option.

Option-oh writes a high-pass filtered trajectory. The high-pass filtered coordinates are added to the coor-
dinates from the structure file. When using high-pass filtering use-fit or make sure you use a trajectory
which has been fitted on the coordinates in the structure file.

Files
-f traj.xtc Input Generic trajectory: xtc trr trj gro g96 pdb
-s topol.tpr Input, Opt. Structure+mass(db): tpr tpb tpa gro g96 pdb xml
-n index.ndx Input, Opt. Index file

-ol lowpass.xtc Output, Opt. Generic trajectory: xtc trr trj gro g96 pdb
-oh highpass.xtc Output, Opt. Generic trajectory: xtc trr trj gro g96 pdb

Other options
-h bool no Print help info and quit

-nice int 19 Set the nicelevel
-b time -1 First frame (ps) to read from trajectory
-e time -1 Last frame (ps) to read from trajectory

-dt time -1 Only use frame when t MOD dt = first time (ps)
-w bool no View output xvg, xpm, eps and pdb files

-nf int 10 Sets the filter length as well as the output interval for low-pass filtering
-all bool no Write all low-pass filtered frames

-nojump bool yes Remove jumps of atoms across the box
-fit bool no Fit all frames to a reference structure

E.56 g gyrate

g gyrate computes the radius of gyration of a group of atoms and the radii of gyration about the x, y and z
axes,as a function of time. The atoms are explicitly mass weighted.

Files
-f traj.xtc Input Generic trajectory: xtc trr trj gro g96 pdb
-s topol.tpr Input Structure+mass(db): tpr tpb tpa gro g96 pdb xml
-o gyrate.xvg Output xvgr/xmgr file

-acf moi-acf.xvg Output, Opt. xvgr/xmgr file
-n index.ndx Input, Opt. Index file

248 Appendix E. Manual Pages

Other options
-h bool no Print help info and quit

-nice int 19 Set the nicelevel
-b time -1 First frame (ps) to read from trajectory
-e time -1 Last frame (ps) to read from trajectory

-dt time -1 Only use frame when t MOD dt = first time (ps)
-w bool no View output xvg, xpm, eps and pdb files
-q bool no Use absolute value of the charge of an atom as weighting factor instead

of mass
-p bool no Calculate the radii of gyration about the principal axes.

-moi bool no Calculate the moments of inertia (defined by the principal axes).
-acflen int -1 Length of the ACF, default is half the number of frames

-normalize bool yes Normalize ACF
-P enum 0 Order of Legendre polynomial for ACF (0 indicates none):0, 1, 2 or 3

-fitfn enum none Fit function:none , exp , aexp , exp exp , vac , exp5 , exp7 or exp9
-ncskip int 0 Skip N points in the output file of correlation functions

-beginfit real 0 Time where to begin the exponential fit of the correlation function
-endfit real -1 Time where to end the exponential fit of the correlation function, -1 is till

the end

E.57 g gyrate d

g gyrate computes the radius of gyration of a group of atoms and the radii of gyration about the x, y and z
axes,as a function of time. The atoms are explicitly mass weighted.

Files
-f traj.xtc Input Generic trajectory: xtc trr trj gro g96 pdb
-s topol.tpr Input Structure+mass(db): tpr tpb tpa gro g96 pdb xml
-o gyrate.xvg Output xvgr/xmgr file

-acf moi-acf.xvg Output, Opt. xvgr/xmgr file
-n index.ndx Input, Opt. Index file

Other options
-h bool no Print help info and quit

-nice int 19 Set the nicelevel
-b time -1 First frame (ps) to read from trajectory
-e time -1 Last frame (ps) to read from trajectory

-dt time -1 Only use frame when t MOD dt = first time (ps)
-w bool no View output xvg, xpm, eps and pdb files
-q bool no Use absolute value of the charge of an atom as weighting factor instead

of mass
-p bool no Calculate the radii of gyration about the principal axes.

-moi bool no Calculate the moments of inertia (defined by the principal axes).
-acflen int -1 Length of the ACF, default is half the number of frames

-normalize bool yes Normalize ACF
-P enum 0 Order of Legendre polynomial for ACF (0 indicates none):0, 1, 2 or 3

-fitfn enum none Fit function:none , exp , aexp , exp exp , vac , exp5 , exp7 or exp9
-ncskip int 0 Skip N points in the output file of correlation functions

-beginfit real 0 Time where to begin the exponential fit of the correlation function
-endfit real -1 Time where to end the exponential fit of the correlation function, -1 is till

the end

E.58. gh2order 249

E.58 g h2order

Compute the orientation of water molecules with respect to the normal of the box. The program determines
the average cosine of the angle between de dipole moment of water and an axis of the box. The box is
divided in slices and the average orientation per slice is printed. Each water molecule is assigned to a slice,
per time frame, based on the position of the oxygen. When -nm is used the angle between the water dipole
and the axis from the center of mass to the oxygen is calculated instead of the angle between the dipole and
a box axis.

Files
-f traj.xtc Input Generic trajectory: xtc trr trj gro g96 pdb
-n index.ndx Input Index file

-nm index.ndx Input, Opt. Index file
-s topol.tpr Input Generic run input: tpr tpb tpa xml
-o order.xvg Output xvgr/xmgr file

Other options
-h bool no Print help info and quit

-nice int 19 Set the nicelevel
-b time -1 First frame (ps) to read from trajectory
-e time -1 Last frame (ps) to read from trajectory

-dt time -1 Only use frame when t MOD dt = first time (ps)
-w bool no View output xvg, xpm, eps and pdb files
-d string Z Take the normal on the membrane in direction X, Y or Z.

-sl int 0 Calculate order parameter as function of boxlength, dividing the box in
#nr slices.

• The program assigns whole water molecules to a slice, based on the firstatom of three in the index
file group. It assumes an order O,H,H.Name is not important, but the order is. If this demand is not
met,assigning molecules to slices is different.

E.59 g h2order d

Compute the orientation of water molecules with respect to the normal of the box. The program determines
the average cosine of the angle between de dipole moment of water and an axis of the box. The box is
divided in slices and the average orientation per slice is printed. Each water molecule is assigned to a slice,
per time frame, based on the position of the oxygen. When -nm is used the angle between the water dipole
and the axis from the center of mass to the oxygen is calculated instead of the angle between the dipole and
a box axis.

Files
-f traj.xtc Input Generic trajectory: xtc trr trj gro g96 pdb
-n index.ndx Input Index file

-nm index.ndx Input, Opt. Index file
-s topol.tpr Input Generic run input: tpr tpb tpa xml
-o order.xvg Output xvgr/xmgr file

Other options
-h bool no Print help info and quit

-nice int 19 Set the nicelevel
-b time -1 First frame (ps) to read from trajectory
-e time -1 Last frame (ps) to read from trajectory

250 Appendix E. Manual Pages

-dt time -1 Only use frame when t MOD dt = first time (ps)
-w bool no View output xvg, xpm, eps and pdb files
-d string Z Take the normal on the membrane in direction X, Y or Z.

-sl int 0 Calculate order parameter as function of boxlength, dividing the box in
#nr slices.

• The program assigns whole water molecules to a slice, based on the firstatom of three in the index
file group. It assumes an order O,H,H.Name is not important, but the order is. If this demand is not
met,assigning molecules to slices is different.

E.60 g hbond

g hbond computes and analyzes hydrogen bonds. Hydrogen bonds are determined based on cutoffs for the
angle Donor - Hydrogen - Acceptor (zero is extended) and the distance Hydrogen - Acceptor. OH and NH
groups are regarded as donors, O is an acceptor always, N is an acceptor by default, but this can be switched
using-nitacc . Dummy hydrogen atoms are assumed to be connected to the first preceding non-hydrogen
atom.

You need to specify two groups for analysis, which must be either identical or non-overlapping. All hydro-
gen bonds between the two groups are analyzed.

If you set -shell, you will be asked for an additional index group which should contain exactly one atom. In
this case, only hydrogen bonds between atoms within the shell distance from the one atom are considered.

It is also possible to analyse specific hydrogen bonds with-sel . This index file must contain a group of
atom triplets Donor Hydrogen Acceptor, in the following way:

[selected]
20 21 24
25 26 29
1 3 6

Note that the triplets need not be on separate lines. Each atom triplet specifies a hydrogen bond to be
analyzed, note also that no check is made for the types of atoms.

-ins turns on computing solvent insertion into hydrogen bonds. In this case an additional group must be
selected, specifying the solvent molecules.

Output:
-num : number of hydrogen bonds as a function of time.
-ac : average over all autocorrelations of the existence functions (either 0 or 1) of all hydrogen bonds.
-dist : distance distribution of all hydrogen bonds.
-ang : angle distribution of all hydrogen bonds.
-hx : the number of n-n+i hydrogen bonds as a function of time where n and n+i stand for residue numbers
and i ranges from 0 to 6. This includes the n-n+3, n-n+4 and n-n+5 hydrogen bonds associated with helices
in proteins.
-hbn : all selected groups, donors, hydrogens and acceptors for selected groups, all hydrogen bonded atoms
from all groups and all solvent atoms involved in insertion.
-hbm : existence matrix for all hydrogen bonds over all frames, this also contains information on solvent
insertion into hydrogen bonds. Ordering is identical to that in-hbn index file.
-dan : write out the number of donors and acceptors analyzed for each timeframe. This is especially usefull
when using-shell .

Files
-f traj.xtc Input Generic trajectory: xtc trr trj gro g96 pdb

E.61. ghbondd 251

-s topol.tpr Input Generic run input: tpr tpb tpa xml
-n index.ndx Input, Opt. Index file
-g hbond.log Output, Opt. Log file

-sel select.ndx Input, Opt. Index file
-num hbnum.xvg Output xvgr/xmgr file

-ac hbac.xvg Output, Opt. xvgr/xmgr file
-dist hbdist.xvg Output, Opt. xvgr/xmgr file

-ang hbang.xvg Output, Opt. xvgr/xmgr file
-hx hbhelix.xvg Output, Opt. xvgr/xmgr file

-hbn hbond.ndx Output, Opt. Index file
-hbm hbmap.xpm Output, Opt. X PixMap compatible matrix file
-dan danum.xvg Output, Opt. xvgr/xmgr file

Other options
-h bool no Print help info and quit

-nice int 19 Set the nicelevel
-b time -1 First frame (ps) to read from trajectory
-e time -1 Last frame (ps) to read from trajectory

-dt time -1 Only use frame when t MOD dt = first time (ps)
-ins bool no Analyze solvent insertion

-a real 30 Cutoff angle (degrees, Donor - Hydrogen - Acceptor)
-r real 0.35 Cutoff radius (nm, X - Acceptor, see next option)

-da bool yes Use distance Donor-Acceptor (if TRUE) or Hydrogen-Acceptor (FALSE)
-abin real 1 Binwidth angle distribution (degrees)
-rbin real 0.005 Binwidth distance distribution (nm)

-nitacc bool yes Regard nitrogen atoms as acceptors
-contact bool no Do not look for hydrogen bonds, but merely for contacts within the cut-

off distance
-shell real -1 when> 0, only calculate hydrogen bonds within # nm shell around one

particle
-dump bool no Dump all hydrogen bond ACFs (maximum 1000) in a single xvg file for

debugging
-max hb real 0 Theoretical maximum number of hydrogen bonds used for normalizing

HB autocorrelation function. Can be useful in case the program estimates
it wrongly

-merge bool yes H-bonds between the same donor and accepter, but with different hydro-
gen are treated as a single H-bond. Mainly important for the ACF.

E.61 g hbond d

g hbond computes and analyzes hydrogen bonds. Hydrogen bonds are determined based on cutoffs for the
angle Donor - Hydrogen - Acceptor (zero is extended) and the distance Hydrogen - Acceptor. OH and NH
groups are regarded as donors, O is an acceptor always, N is an acceptor by default, but this can be switched
using-nitacc . Dummy hydrogen atoms are assumed to be connected to the first preceding non-hydrogen
atom.

You need to specify two groups for analysis, which must be either identical or non-overlapping. All hydro-
gen bonds between the two groups are analyzed.

If you set -shell, you will be asked for an additional index group which should contain exactly one atom. In
this case, only hydrogen bonds between atoms within the shell distance from the one atom are considered.

It is also possible to analyse specific hydrogen bonds with-sel . This index file must contain a group of
atom triplets Donor Hydrogen Acceptor, in the following way:

252 Appendix E. Manual Pages

[selected]
20 21 24
25 26 29
1 3 6

Note that the triplets need not be on separate lines. Each atom triplet specifies a hydrogen bond to be
analyzed, note also that no check is made for the types of atoms.

-ins turns on computing solvent insertion into hydrogen bonds. In this case an additional group must be
selected, specifying the solvent molecules.

Output:
-num : number of hydrogen bonds as a function of time.
-ac : average over all autocorrelations of the existence functions (either 0 or 1) of all hydrogen bonds.
-dist : distance distribution of all hydrogen bonds.
-ang : angle distribution of all hydrogen bonds.
-hx : the number of n-n+i hydrogen bonds as a function of time where n and n+i stand for residue numbers
and i ranges from 0 to 6. This includes the n-n+3, n-n+4 and n-n+5 hydrogen bonds associated with helices
in proteins.
-hbn : all selected groups, donors, hydrogens and acceptors for selected groups, all hydrogen bonded atoms
from all groups and all solvent atoms involved in insertion.
-hbm : existence matrix for all hydrogen bonds over all frames, this also contains information on solvent
insertion into hydrogen bonds. Ordering is identical to that in-hbn index file.
-dan : write out the number of donors and acceptors analyzed for each timeframe. This is especially usefull
when using-shell .

Files
-f traj.xtc Input Generic trajectory: xtc trr trj gro g96 pdb
-s topol.tpr Input Generic run input: tpr tpb tpa xml
-n index.ndx Input, Opt. Index file
-g hbond.log Output, Opt. Log file

-sel select.ndx Input, Opt. Index file
-num hbnum.xvg Output xvgr/xmgr file

-ac hbac.xvg Output, Opt. xvgr/xmgr file
-dist hbdist.xvg Output, Opt. xvgr/xmgr file

-ang hbang.xvg Output, Opt. xvgr/xmgr file
-hx hbhelix.xvg Output, Opt. xvgr/xmgr file

-hbn hbond.ndx Output, Opt. Index file
-hbm hbmap.xpm Output, Opt. X PixMap compatible matrix file
-dan danum.xvg Output, Opt. xvgr/xmgr file

Other options
-h bool no Print help info and quit

-nice int 19 Set the nicelevel
-b time -1 First frame (ps) to read from trajectory
-e time -1 Last frame (ps) to read from trajectory

-dt time -1 Only use frame when t MOD dt = first time (ps)
-ins bool no Analyze solvent insertion

-a real 30 Cutoff angle (degrees, Donor - Hydrogen - Acceptor)
-r real 0.35 Cutoff radius (nm, X - Acceptor, see next option)

-da bool yes Use distance Donor-Acceptor (if TRUE) or Hydrogen-Acceptor (FALSE)
-abin real 1 Binwidth angle distribution (degrees)
-rbin real 0.005 Binwidth distance distribution (nm)

-nitacc bool yes Regard nitrogen atoms as acceptors

E.62. ghelix 253

-contact bool no Do not look for hydrogen bonds, but merely for contacts within the cut-
off distance

-shell real -1 when> 0, only calculate hydrogen bonds within # nm shell around one
particle

-dump bool no Dump all hydrogen bond ACFs (maximum 1000) in a single xvg file for
debugging

-max hb real 0 Theoretical maximum number of hydrogen bonds used for normalizing
HB autocorrelation function. Can be useful in case the program estimates
it wrongly

-merge bool yes H-bonds between the same donor and accepter, but with different hydro-
gen are treated as a single H-bond. Mainly important for the ACF.

E.62 g helix

g helix computes all kind of helix properties. First, the peptide is checked to find the longest helical part.
This is determined by Hydrogen bonds and Phi/Psi angles. That bit is fitted to an ideal helix around the
Z-axis and centered around the origin. Then the following properties are computed:

1. Helix radius (file radius.xvg). This is merely the RMS deviation in two dimensions for all Calpha atoms.
it is calced as sqrt((SUM i(x2(i)+y2(i)))/N), where N is the number of backbone atoms. For an ideal helix
the radius is 0.23 nm
2. Twist (file twist.xvg). The average helical angle per residue is calculated. For alpha helix it is 100
degrees, for 3-10 helices it will be smaller, for 5-helices it will be larger.
3. Rise per residue (file rise.xvg). The helical rise per residue is plotted as the difference in Z-coordinate
between Ca atoms. For an ideal helix this is 0.15 nm
4. Total helix length (file len-ahx.xvg). The total length of the helix in nm. This is simply the average rise
(see above) times the number of helical residues (see below).
5. Number of helical residues (file n-ahx.xvg). The title says it all.
6. Helix Dipole, backbone only (file dip-ahx.xvg).
7. RMS deviation from ideal helix, calculated for the Calpha atoms only (file rms-ahx.xvg).
8. Average Calpha-Calpha dihedral angle (file phi-ahx.xvg).
9. Average Phi and Psi angles (file phipsi.xvg).
10. Ellipticity at 222 nm according toHirst and Brooks

Files
-s topol.tpr Input Generic run input: tpr tpb tpa xml
-n index.ndx Input Index file
-f traj.xtc Input Generic trajectory: xtc trr trj gro g96 pdb

-to gtraj.g87 Output, Opt. Gromos-87 ASCII trajectory format
-cz zconf.gro Output Generic structure: gro g96 pdb xml
-co waver.gro Output Generic structure: gro g96 pdb xml

Other options
-h bool no Print help info and quit

-nice int 19 Set the nicelevel
-b time -1 First frame (ps) to read from trajectory
-e time -1 Last frame (ps) to read from trajectory

-dt time -1 Only use frame when t MOD dt = first time (ps)
-w bool no View output xvg, xpm, eps and pdb files

-r0 int 1 The first residue number in the sequence
-q bool no Check at every step which part of the sequence is helical
-F bool yes Toggle fit to a perfect helix

254 Appendix E. Manual Pages

-db bool no Print debug info
-ev bool no Write a new ’trajectory’ file for ED

-ahxstart int 0 First residue in helix
-ahxend int 0 Last residue in helix

E.63 g helix d

g helix computes all kind of helix properties. First, the peptide is checked to find the longest helical part.
This is determined by Hydrogen bonds and Phi/Psi angles. That bit is fitted to an ideal helix around the
Z-axis and centered around the origin. Then the following properties are computed:

1. Helix radius (file radius.xvg). This is merely the RMS deviation in two dimensions for all Calpha atoms.
it is calced as sqrt((SUM i(x2(i)+y2(i)))/N), where N is the number of backbone atoms. For an ideal helix
the radius is 0.23 nm
2. Twist (file twist.xvg). The average helical angle per residue is calculated. For alpha helix it is 100
degrees, for 3-10 helices it will be smaller, for 5-helices it will be larger.
3. Rise per residue (file rise.xvg). The helical rise per residue is plotted as the difference in Z-coordinate
between Ca atoms. For an ideal helix this is 0.15 nm
4. Total helix length (file len-ahx.xvg). The total length of the helix in nm. This is simply the average rise
(see above) times the number of helical residues (see below).
5. Number of helical residues (file n-ahx.xvg). The title says it all.
6. Helix Dipole, backbone only (file dip-ahx.xvg).
7. RMS deviation from ideal helix, calculated for the Calpha atoms only (file rms-ahx.xvg).
8. Average Calpha-Calpha dihedral angle (file phi-ahx.xvg).
9. Average Phi and Psi angles (file phipsi.xvg).
10. Ellipticity at 222 nm according toHirst and Brooks

Files
-s topol.tpr Input Generic run input: tpr tpb tpa xml
-n index.ndx Input Index file
-f traj.xtc Input Generic trajectory: xtc trr trj gro g96 pdb

-to gtraj.g87 Output, Opt. Gromos-87 ASCII trajectory format
-cz zconf.gro Output Generic structure: gro g96 pdb xml
-co waver.gro Output Generic structure: gro g96 pdb xml

Other options
-h bool no Print help info and quit

-nice int 19 Set the nicelevel
-b time -1 First frame (ps) to read from trajectory
-e time -1 Last frame (ps) to read from trajectory

-dt time -1 Only use frame when t MOD dt = first time (ps)
-w bool no View output xvg, xpm, eps and pdb files

-r0 int 1 The first residue number in the sequence
-q bool no Check at every step which part of the sequence is helical
-F bool yes Toggle fit to a perfect helix

-db bool no Print debug info
-ev bool no Write a new ’trajectory’ file for ED

-ahxstart int 0 First residue in helix
-ahxend int 0 Last residue in helix

E.64. glie 255

E.64 g lie

g lie computes a free energy estimate based on an energy analysis from. One needs an energy file with the
following components: Coul (A-B) LJ-SR (A-B) etc.

Files
-f ener.edr Input Generic energy: edr ene
-o lie.xvg Output xvgr/xmgr file

Other options
-h bool no Print help info and quit

-nice int 19 Set the nicelevel
-b time -1 First frame (ps) to read from trajectory
-e time -1 Last frame (ps) to read from trajectory

-dt time -1 Only use frame when t MOD dt = first time (ps)
-w bool no View output xvg, xpm, eps and pdb files

-Elj real 0 Lennard-Jones interaction between ligand and solvent
-Eqq real 0 Coulomb interaction between ligand and solvent
-Clj real 0.181 Factor in the LIE equation for Lennard-Jones component of energy
-Cqq real 0.5 Factor in the LIE equation for Coulomb component of energy

-ligand string none Name of the ligand in the energy file

E.65 g lie d

g lie computes a free energy estimate based on an energy analysis from. One needs an energy file with the
following components: Coul (A-B) LJ-SR (A-B) etc.

Files
-f ener.edr Input Generic energy: edr ene
-o lie.xvg Output xvgr/xmgr file

Other options
-h bool no Print help info and quit

-nice int 19 Set the nicelevel
-b time -1 First frame (ps) to read from trajectory
-e time -1 Last frame (ps) to read from trajectory

-dt time -1 Only use frame when t MOD dt = first time (ps)
-w bool no View output xvg, xpm, eps and pdb files

-Elj real 0 Lennard-Jones interaction between ligand and solvent
-Eqq real 0 Coulomb interaction between ligand and solvent
-Clj real 0.181 Factor in the LIE equation for Lennard-Jones component of energy
-Cqq real 0.5 Factor in the LIE equation for Coulomb component of energy

-ligand string none Name of the ligand in the energy file

E.66 g mdmat

g mdmat makes distance matrices consisting of the smallest distance between residue pairs. With -frames
these distance matrices can be stored as a function of time, to be able to see differences in tertiary structure
as a funcion of time. If you choose your options unwise, this may generate a large output file. Default
only an averaged matrix over the whole trajectory is output. Also a count of the number of different atomic
contacts between residues over the whole trajectory can be made. The output can be processed with xpm2ps
to make a PostScript (tm) plot.

256 Appendix E. Manual Pages

Files
-f traj.xtc Input Generic trajectory: xtc trr trj gro g96 pdb
-s topol.tpr Input Structure+mass(db): tpr tpb tpa gro g96 pdb xml
-n index.ndx Input, Opt. Index file

-mean dm.xpm Output X PixMap compatible matrix file
-frames dmf.xpm Output, Opt. X PixMap compatible matrix file

-no num.xvg Output, Opt. xvgr/xmgr file

Other options
-h bool no Print help info and quit

-nice int 19 Set the nicelevel
-b time -1 First frame (ps) to read from trajectory
-e time -1 Last frame (ps) to read from trajectory

-dt time -1 Only use frame when t MOD dt = first time (ps)
-t real 1.5 trunc distance

-nlevels int 40 Discretize distance in # levels

E.67 g mdmat d

g mdmat makes distance matrices consisting of the smallest distance between residue pairs. With -frames
these distance matrices can be stored as a function of time, to be able to see differences in tertiary structure
as a funcion of time. If you choose your options unwise, this may generate a large output file. Default
only an averaged matrix over the whole trajectory is output. Also a count of the number of different atomic
contacts between residues over the whole trajectory can be made. The output can be processed with xpm2ps
to make a PostScript (tm) plot.

Files
-f traj.xtc Input Generic trajectory: xtc trr trj gro g96 pdb
-s topol.tpr Input Structure+mass(db): tpr tpb tpa gro g96 pdb xml
-n index.ndx Input, Opt. Index file

-mean dm.xpm Output X PixMap compatible matrix file
-frames dmf.xpm Output, Opt. X PixMap compatible matrix file

-no num.xvg Output, Opt. xvgr/xmgr file

Other options
-h bool no Print help info and quit

-nice int 19 Set the nicelevel
-b time -1 First frame (ps) to read from trajectory
-e time -1 Last frame (ps) to read from trajectory

-dt time -1 Only use frame when t MOD dt = first time (ps)
-t real 1.5 trunc distance

-nlevels int 40 Discretize distance in # levels

E.68 g mindist

g mindist computes the distance between one group and a number of other groups. Both the minimum
distance and the number of contacts within a given distance are written to two separate output files. With
-or , minimum distances to each residue in the first group are determined and plotted as a function of
reisdue number.

E.69. gmindist d 257

With option -pi the minimum distance of a group to its periodic image is plotted. This is useful for
checking if a protein has seen its periodic image during a simulation. Only one shift in each direction is
considered, giving a total of 26 shifts. It also plots the maximum distance within the group and the lengths
of the three box vectors.

Other programs that calculate distances areg dist andg bond .

Files
-f traj.xtc Input Generic trajectory: xtc trr trj gro g96 pdb
-s topol.tpr Input, Opt. Structure+mass(db): tpr tpb tpa gro g96 pdb xml
-n index.ndx Input, Opt. Index file

-od mindist.xvg Output xvgr/xmgr file
-on numcont.xvg Output, Opt. xvgr/xmgr file

-o atm-pair.out Output, Opt. Generic output file
-ox mindist.xtc Output, Opt. Generic trajectory: xtc trr trj gro g96 pdb
-or mindistres.xvg Output, Opt. xvgr/xmgr file

Other options
-h bool no Print help info and quit

-nice int 19 Set the nicelevel
-b time -1 First frame (ps) to read from trajectory
-e time -1 Last frame (ps) to read from trajectory

-dt time -1 Only use frame when t MOD dt = first time (ps)
-tu enum ps Time unit: ps , fs , ns , us , ms, s , mor h

-w bool no View output xvg, xpm, eps and pdb files
-matrix bool no Calculate half a matrix of group-group distances

-max bool no Calculate *maximum* distance instead of minimum
-d real 0.6 Distance for contacts

-pi bool no Calculate minimum distance with periodic images
-split bool no Split graph where time is zero

E.69 g mindist d

g mindist computes the distance between one group and a number of other groups. Both the minimum
distance and the number of contacts within a given distance are written to two separate output files. With
-or , minimum distances to each residue in the first group are determined and plotted as a function of
reisdue number.

With option -pi the minimum distance of a group to its periodic image is plotted. This is useful for
checking if a protein has seen its periodic image during a simulation. Only one shift in each direction is
considered, giving a total of 26 shifts. It also plots the maximum distance within the group and the lengths
of the three box vectors.

Other programs that calculate distances areg dist andg bond .

Files
-f traj.xtc Input Generic trajectory: xtc trr trj gro g96 pdb
-s topol.tpr Input, Opt. Structure+mass(db): tpr tpb tpa gro g96 pdb xml
-n index.ndx Input, Opt. Index file

-od mindist.xvg Output xvgr/xmgr file
-on numcont.xvg Output, Opt. xvgr/xmgr file

-o atm-pair.out Output, Opt. Generic output file
-ox mindist.xtc Output, Opt. Generic trajectory: xtc trr trj gro g96 pdb
-or mindistres.xvg Output, Opt. xvgr/xmgr file

258 Appendix E. Manual Pages

Other options
-h bool no Print help info and quit

-nice int 19 Set the nicelevel
-b time -1 First frame (ps) to read from trajectory
-e time -1 Last frame (ps) to read from trajectory

-dt time -1 Only use frame when t MOD dt = first time (ps)
-tu enum ps Time unit: ps , fs , ns , us , ms, s , mor h

-w bool no View output xvg, xpm, eps and pdb files
-matrix bool no Calculate half a matrix of group-group distances

-max bool no Calculate *maximum* distance instead of minimum
-d real 0.6 Distance for contacts

-pi bool no Calculate minimum distance with periodic images
-split bool no Split graph where time is zero

E.70 g morph

g morph does a linear interpolation of conformations in order to create intermediates. Of course these are
completely unphysical, but that you may try to justify yourself. Output is in the form of a generic trajectory.
The number of intermediates can be controlled with the -ninterm flag. The first and last flag correspond to
the way of interpolating: 0 corresponds to input structure 1 while 1 corresponds to input strucutre 2. If you
specify first< 0 or last> 1 extrapolation will be on the path from input structure x1 to x2. In general the
coordinates of the intermediate x(i) out of N total intermidates correspond to:

x(i) = x1 + (first+(i/(N-1))*(last-first))*(x2-x1)

Finally the RMSD with respect to both input structures can be computed if explicitly selected (-or option).
In that case an index file may be read to select what group RMS is computed from.

Files
-f1 conf1.gro Input Generic structure: gro g96 pdb tpr tpb tpa xml
-f2 conf2.gro Input Generic structure: gro g96 pdb tpr tpb tpa xml

-o interm.xtc Output Generic trajectory: xtc trr trj gro g96 pdb
-or rms-interm.xvg Output, Opt. xvgr/xmgr file

-n index.ndx Input, Opt. Index file

Other options
-h bool no Print help info and quit

-nice int 0 Set the nicelevel
-w bool no View output xvg, xpm, eps and pdb files

-ninterm int 11 Number of intermediates
-first real 0 Corresponds to first generated structure (0 is input x0, see above)

-last real 1 Corresponds to last generated structure (1 is input x1, see above)
-fit bool yes Do a least squares fit of the second to the first structure before interpolat-

ing

E.71 g morph d

g morph does a linear interpolation of conformations in order to create intermediates. Of course these are
completely unphysical, but that you may try to justify yourself. Output is in the form of a generic trajectory.
The number of intermediates can be controlled with the -ninterm flag. The first and last flag correspond to

E.72. gmsd 259

the way of interpolating: 0 corresponds to input structure 1 while 1 corresponds to input strucutre 2. If you
specify first< 0 or last> 1 extrapolation will be on the path from input structure x1 to x2. In general the
coordinates of the intermediate x(i) out of N total intermidates correspond to:

x(i) = x1 + (first+(i/(N-1))*(last-first))*(x2-x1)

Finally the RMSD with respect to both input structures can be computed if explicitly selected (-or option).
In that case an index file may be read to select what group RMS is computed from.

Files
-f1 conf1.gro Input Generic structure: gro g96 pdb tpr tpb tpa xml
-f2 conf2.gro Input Generic structure: gro g96 pdb tpr tpb tpa xml

-o interm.xtc Output Generic trajectory: xtc trr trj gro g96 pdb
-or rms-interm.xvg Output, Opt. xvgr/xmgr file

-n index.ndx Input, Opt. Index file

Other options
-h bool no Print help info and quit

-nice int 0 Set the nicelevel
-w bool no View output xvg, xpm, eps and pdb files

-ninterm int 11 Number of intermediates
-first real 0 Corresponds to first generated structure (0 is input x0, see above)

-last real 1 Corresponds to last generated structure (1 is input x1, see above)
-fit bool yes Do a least squares fit of the second to the first structure before interpolat-

ing

E.72 g msd

g msd computes the mean square displacement (MSD) of atoms from their initial positions. This provides
an easy way to compute the diffusion constant using the Einstein relation. The diffusion constant is calcu-
lated by least squares fitting a straight line through the MSD from-beginfit to -endfit . An error
estimate given, which is the difference of the diffusion coefficients obtained from fits over the two halfs of
the fit interval.

Option -mol plots the MSD for molecules, this implies-mw, i.e. for each inidividual molecule an diffu-
sion constant is computed. When using an index file, it should contain molecule numbers instead of atom
numbers. Using this option one also gets an accurate error estimate based on the statistics between individ-
ual molecules. Since one usually is interested in self-diffusion at infinite dilution this is probably the most
useful number.

Files
-f traj.xtc Input Generic trajectory: xtc trr trj gro g96 pdb
-s topol.tpr Input Structure+mass(db): tpr tpb tpa gro g96 pdb xml
-n index.ndx Input, Opt. Index file
-o msd.xvg Output xvgr/xmgr file

-mol diff mol.xvg Output, Opt. xvgr/xmgr file

Other options
-h bool no Print help info and quit

-nice int 19 Set the nicelevel
-b time -1 First frame (ps) to read from trajectory
-e time -1 Last frame (ps) to read from trajectory

-dt time -1 Only use frame when t MOD dt = first time (ps)

260 Appendix E. Manual Pages

-tu enum ps Time unit: ps , fs , ns , us , ms, s , mor h
-w bool no View output xvg, xpm, eps and pdb files

-type enum no Compute diffusion coefficient in one direction:no , x , y or z
-lateral enum no Calculate the lateral diffusion in a plane perpendicular to:no , x , y or z

-ngroup int 1 Number of groups to calculate MSD for
-mw bool yes Mass weighted MSD

-trestart time 0 Time between restarting points in trajectory (ps)
-beginfit time 0 Start time for fitting the MSD (ps)

-endfit time -1 End time for fitting the MSD (ps), -1 is till end

E.73 g msd d

g msd computes the mean square displacement (MSD) of atoms from their initial positions. This provides
an easy way to compute the diffusion constant using the Einstein relation. The diffusion constant is calcu-
lated by least squares fitting a straight line through the MSD from-beginfit to -endfit . An error
estimate given, which is the difference of the diffusion coefficients obtained from fits over the two halfs of
the fit interval.

Option -mol plots the MSD for molecules, this implies-mw, i.e. for each inidividual molecule an diffu-
sion constant is computed. When using an index file, it should contain molecule numbers instead of atom
numbers. Using this option one also gets an accurate error estimate based on the statistics between individ-
ual molecules. Since one usually is interested in self-diffusion at infinite dilution this is probably the most
useful number.

Files
-f traj.xtc Input Generic trajectory: xtc trr trj gro g96 pdb
-s topol.tpr Input Structure+mass(db): tpr tpb tpa gro g96 pdb xml
-n index.ndx Input, Opt. Index file
-o msd.xvg Output xvgr/xmgr file

-mol diff mol.xvg Output, Opt. xvgr/xmgr file

Other options
-h bool no Print help info and quit

-nice int 19 Set the nicelevel
-b time -1 First frame (ps) to read from trajectory
-e time -1 Last frame (ps) to read from trajectory

-dt time -1 Only use frame when t MOD dt = first time (ps)
-tu enum ps Time unit: ps , fs , ns , us , ms, s , mor h

-w bool no View output xvg, xpm, eps and pdb files
-type enum no Compute diffusion coefficient in one direction:no , x , y or z

-lateral enum no Calculate the lateral diffusion in a plane perpendicular to:no , x , y or z
-ngroup int 1 Number of groups to calculate MSD for

-mw bool yes Mass weighted MSD
-trestart time 0 Time between restarting points in trajectory (ps)
-beginfit time 0 Start time for fitting the MSD (ps)

-endfit time -1 End time for fitting the MSD (ps), -1 is till end

E.74 g nmeig

g nmeig calculates the eigenvectors/values of a (Hessian) matrix, which can be calculated withmdrun . The
eigenvectors are written to a trajectory file (-v). The structure is written first with t=0. The eigenvectors

E.75. gnmeigd 261

are written as frames with the eigenvector number as timestamp. The eigenvectors can be analyzed with
g anaeig . An ensemble of structures can be generated from the eigenvectors withg nmens.

Files
-f hessian.mtx Input Hessian matrix
-s topol.tpr Input Structure+mass(db): tpr tpb tpa gro g96 pdb xml
-o eigenval.xvg Output xvgr/xmgr file
-v eigenvec.trr Output Full precision trajectory: trr trj

Other options
-h bool no Print help info and quit

-nice int 19 Set the nicelevel
-m bool yes Divide elements of Hessian by product of sqrt(mass) of involved atoms

prior to diagonalization. This should be used for ’Normal Modes’ analy-
sis

-first int 1 First eigenvector to write away
-last int 100 Last eigenvector to write away

E.75 g nmeig d

g nmeig calculates the eigenvectors/values of a (Hessian) matrix, which can be calculated withmdrun . The
eigenvectors are written to a trajectory file (-v). The structure is written first with t=0. The eigenvectors
are written as frames with the eigenvector number as timestamp. The eigenvectors can be analyzed with
g anaeig . An ensemble of structures can be generated from the eigenvectors withg nmens.

Files
-f hessian.mtx Input Hessian matrix
-s topol.tpr Input Structure+mass(db): tpr tpb tpa gro g96 pdb xml
-o eigenval.xvg Output xvgr/xmgr file
-v eigenvec.trr Output Full precision trajectory: trr trj

Other options
-h bool no Print help info and quit

-nice int 19 Set the nicelevel
-m bool yes Divide elements of Hessian by product of sqrt(mass) of involved atoms

prior to diagonalization. This should be used for ’Normal Modes’ analy-
sis

-first int 1 First eigenvector to write away
-last int 100 Last eigenvector to write away

E.76 g nmens

g nmens generates an ensemble around an average structure in a subspace which is defined by a set of
normal modes (eigenvectors). The eigenvectors are assumed to be mass-weighted. The position along each
eigenvector is randomly taken from a Gaussian distribution with variance kT/eigenvalue.

By default the starting eigenvector is set to 7, since the first six normal modes are the translational and
rotational degrees of freedom.

Files
-v eigenvec.trr Input Full precision trajectory: trr trj
-e eigenval.xvg Input xvgr/xmgr file

262 Appendix E. Manual Pages

-s topol.tpr Input Structure+mass(db): tpr tpb tpa gro g96 pdb xml
-n index.ndx Input, Opt. Index file
-o ensemble.xtc Output Generic trajectory: xtc trr trj gro g96 pdb

Other options
-h bool no Print help info and quit

-nice int 19 Set the nicelevel
-temp real 300 Temperature in Kelvin
-seed int -1 Random seed, -1 generates a seed from time and pid

-num int 100 Number of structures to generate
-first int 7 First eigenvector to use (-1 is select)

-last int -1 Last eigenvector to use (-1 is till the last)

E.77 g nmens d

g nmens generates an ensemble around an average structure in a subspace which is defined by a set of
normal modes (eigenvectors). The eigenvectors are assumed to be mass-weighted. The position along each
eigenvector is randomly taken from a Gaussian distribution with variance kT/eigenvalue.

By default the starting eigenvector is set to 7, since the first six normal modes are the translational and
rotational degrees of freedom.

Files
-v eigenvec.trr Input Full precision trajectory: trr trj
-e eigenval.xvg Input xvgr/xmgr file
-s topol.tpr Input Structure+mass(db): tpr tpb tpa gro g96 pdb xml
-n index.ndx Input, Opt. Index file
-o ensemble.xtc Output Generic trajectory: xtc trr trj gro g96 pdb

Other options
-h bool no Print help info and quit

-nice int 19 Set the nicelevel
-temp real 300 Temperature in Kelvin
-seed int -1 Random seed, -1 generates a seed from time and pid

-num int 100 Number of structures to generate
-first int 7 First eigenvector to use (-1 is select)

-last int -1 Last eigenvector to use (-1 is till the last)

E.78 g order

Compute the order parameter per atom for carbon tails. For atom i the vector i-1, i+1 is used together with
an axis. The index file has to contain a group with all equivalent atoms in all tails for each atom the order
parameter has to be calculated for. The program can also give all diagonal elements of the order tensor and
even calculate the deuterium order parameter Scd (default). If the option -szonly is given, only one order
tensor component (specified by the -d option) is given and the order parameter per slice is calculated as
well. If -szonly is not selected, all diagonal elements and the deuterium order parameter is given.

Files
-f traj.xtc Input Generic trajectory: xtc trr trj gro g96 pdb
-n index.ndx Input Index file
-s topol.tpr Input Generic run input: tpr tpb tpa xml

E.79. gorder d 263

-o order.xvg Output xvgr/xmgr file
-od deuter.xvg Output xvgr/xmgr file
-os sliced.xvg Output xvgr/xmgr file

Other options
-h bool no Print help info and quit

-nice int 19 Set the nicelevel
-b time -1 First frame (ps) to read from trajectory
-e time -1 Last frame (ps) to read from trajectory

-dt time -1 Only use frame when t MOD dt = first time (ps)
-w bool no View output xvg, xpm, eps and pdb files
-d enum z Direction of the normal on the membrane:z , x or y

-sl int 1 Calculate order parameter as function of boxlength, dividing the box in
#nr slices.

-szonly bool no Only give Sz element of order tensor. (axis can be specified with -d)
-unsat bool no Calculate order parameters for unsaturated carbons. Note that this cannot

be mixed with normal order parameters.

E.79 g order d

Compute the order parameter per atom for carbon tails. For atom i the vector i-1, i+1 is used together with
an axis. The index file has to contain a group with all equivalent atoms in all tails for each atom the order
parameter has to be calculated for. The program can also give all diagonal elements of the order tensor and
even calculate the deuterium order parameter Scd (default). If the option -szonly is given, only one order
tensor component (specified by the -d option) is given and the order parameter per slice is calculated as
well. If -szonly is not selected, all diagonal elements and the deuterium order parameter is given.

Files
-f traj.xtc Input Generic trajectory: xtc trr trj gro g96 pdb
-n index.ndx Input Index file
-s topol.tpr Input Generic run input: tpr tpb tpa xml
-o order.xvg Output xvgr/xmgr file

-od deuter.xvg Output xvgr/xmgr file
-os sliced.xvg Output xvgr/xmgr file

Other options
-h bool no Print help info and quit

-nice int 19 Set the nicelevel
-b time -1 First frame (ps) to read from trajectory
-e time -1 Last frame (ps) to read from trajectory

-dt time -1 Only use frame when t MOD dt = first time (ps)
-w bool no View output xvg, xpm, eps and pdb files
-d enum z Direction of the normal on the membrane:z , x or y

-sl int 1 Calculate order parameter as function of boxlength, dividing the box in
#nr slices.

-szonly bool no Only give Sz element of order tensor. (axis can be specified with -d)
-unsat bool no Calculate order parameters for unsaturated carbons. Note that this cannot

be mixed with normal order parameters.

264 Appendix E. Manual Pages

E.80 g potential

Compute the electrostatical potential across the box. The potential iscalculated by first summing the charges
per slice and then integratingtwice of this charge distribution. Periodic boundaries are not taken into ac-
count. Reference of potential is taken to be the left side ofthe box. It’s also possible to calculate the
potential in sphericalcoordinates as function of r by calculating a charge distribution inspherical slices and
twice integrating them. epsilonr is taken as 1,2 is more appropriate in many cases

Files
-f traj.xtc Input Generic trajectory: xtc trr trj gro g96 pdb
-n index.ndx Input Index file
-s topol.tpr Input Generic run input: tpr tpb tpa xml
-o potential.xvg Output xvgr/xmgr file

-oc charge.xvg Output xvgr/xmgr file
-of field.xvg Output xvgr/xmgr file

Other options
-h bool no Print help info and quit

-nice int 19 Set the nicelevel
-b time -1 First frame (ps) to read from trajectory
-e time -1 Last frame (ps) to read from trajectory

-dt time -1 Only use frame when t MOD dt = first time (ps)
-w bool no View output xvg, xpm, eps and pdb files
-d string Z Take the normal on the membrane in direction X, Y or Z.

-sl int 10 Calculate potential as function of boxlength, dividing the box in #nr
slices.

-cb int 0 Discard first #nr slices of box for integration
-ce int 0 Discard last #nr slices of box for integration
-tz real 0 Translate all coordinates<distance> in the direction of the box

-spherical bool no Calculate spherical thingie

• Discarding slices for integration should not be necessary.

E.81 g potential d

Compute the electrostatical potential across the box. The potential iscalculated by first summing the charges
per slice and then integratingtwice of this charge distribution. Periodic boundaries are not taken into ac-
count. Reference of potential is taken to be the left side ofthe box. It’s also possible to calculate the
potential in sphericalcoordinates as function of r by calculating a charge distribution inspherical slices and
twice integrating them. epsilonr is taken as 1,2 is more appropriate in many cases

Files
-f traj.xtc Input Generic trajectory: xtc trr trj gro g96 pdb
-n index.ndx Input Index file
-s topol.tpr Input Generic run input: tpr tpb tpa xml
-o potential.xvg Output xvgr/xmgr file

-oc charge.xvg Output xvgr/xmgr file
-of field.xvg Output xvgr/xmgr file

Other options
-h bool no Print help info and quit

-nice int 19 Set the nicelevel

E.82. grama 265

-b time -1 First frame (ps) to read from trajectory
-e time -1 Last frame (ps) to read from trajectory

-dt time -1 Only use frame when t MOD dt = first time (ps)
-w bool no View output xvg, xpm, eps and pdb files
-d string Z Take the normal on the membrane in direction X, Y or Z.

-sl int 10 Calculate potential as function of boxlength, dividing the box in #nr
slices.

-cb int 0 Discard first #nr slices of box for integration
-ce int 0 Discard last #nr slices of box for integration
-tz real 0 Translate all coordinates<distance> in the direction of the box

-spherical bool no Calculate spherical thingie

• Discarding slices for integration should not be necessary.

E.82 g rama

g rama selects the Phi/Psi dihedral combinations from your topology file and computes these as a function
of time. Using simple Unix tools such asgrepyou can select out specific residues.

Files
-f traj.xtc Input Generic trajectory: xtc trr trj gro g96 pdb
-s topol.tpr Input Generic run input: tpr tpb tpa xml
-o rama.xvg Output xvgr/xmgr file

Other options
-h bool no Print help info and quit

-nice int 19 Set the nicelevel
-b time -1 First frame (ps) to read from trajectory
-e time -1 Last frame (ps) to read from trajectory

-dt time -1 Only use frame when t MOD dt = first time (ps)
-w bool no View output xvg, xpm, eps and pdb files

E.83 g rama d

g rama selects the Phi/Psi dihedral combinations from your topology file and computes these as a function
of time. Using simple Unix tools such asgrepyou can select out specific residues.

Files
-f traj.xtc Input Generic trajectory: xtc trr trj gro g96 pdb
-s topol.tpr Input Generic run input: tpr tpb tpa xml
-o rama.xvg Output xvgr/xmgr file

Other options
-h bool no Print help info and quit

-nice int 19 Set the nicelevel
-b time -1 First frame (ps) to read from trajectory
-e time -1 Last frame (ps) to read from trajectory

-dt time -1 Only use frame when t MOD dt = first time (ps)
-w bool no View output xvg, xpm, eps and pdb files

266 Appendix E. Manual Pages

E.84 g rdf

The structure of liquids can be studied by either neutron or X-ray scattering. The most common way to
describe liquid structure is by a radial distribution function. However, this is not easy to obtain from a
scattering experiment.

g rdf calculates radial distribution functions in different ways. The normal method is around a (set of)
particle(s), the other method is around the center of mass of a set of particles.

If a run input file is supplied (-s), exclusions defined in that file are taken into account when calculating
the rdf. The option-cut is meant as an alternative way to avoid intramolecular peaks in the rdf plot. It is
however better to supply a run input file with a higher number of exclusions. For eg. benzene a topology
with nrexcl set to 5 would eliminate all intramolecular contributions to the rdf. Note that all atoms in the
selected groups are used, also the ones that don’t have Lennard-Jones interactions.

Option-cn produces the cumulative number rdf.

To bridge the gap between theory and experiment structure factors can be computed (option-sq). The
algorithm uses FFT, the gridspacing of which is determined by option-grid .

Files
-f traj.xtc Input Generic trajectory: xtc trr trj gro g96 pdb
-s topol.tpr Input, Opt. Structure+mass(db): tpr tpb tpa gro g96 pdb xml
-n index.ndx Input, Opt. Index file
-o rdf.xvg Output, Opt. xvgr/xmgr file

-sq sq.xvg Output, Opt. xvgr/xmgr file
-cn rdf cn.xvg Output, Opt. xvgr/xmgr file
-hq hq.xvg Output, Opt. xvgr/xmgr file

Other options
-h bool no Print help info and quit

-nice int 19 Set the nicelevel
-b time -1 First frame (ps) to read from trajectory
-e time -1 Last frame (ps) to read from trajectory

-dt time -1 Only use frame when t MOD dt = first time (ps)
-w bool no View output xvg, xpm, eps and pdb files

-bin real 0.001 Binwidth (nm)
-com bool no RDF with respect to the center of mass of first group
-cut real 0 Shortest distance (nm) to be considered

-fade real 0 From this distance onwards the RDF is tranformed by g’(r) = 1 + [g(r)-1]
exp(-(r/fade-1)2 to make it go to 1 smoothly. If fade is 0.0 nothing is
done.

-nlevel int 20 Number of different colors in the diffraction image
-startq real 0 Starting q (1/nm)

-endq real 60 Ending q (1/nm)
-energy real 12 Energy of the incoming X-ray (keV)

E.85 g rdf d

The structure of liquids can be studied by either neutron or X-ray scattering. The most common way to
describe liquid structure is by a radial distribution function. However, this is not easy to obtain from a
scattering experiment.

g rdf calculates radial distribution functions in different ways. The normal method is around a (set of)
particle(s), the other method is around the center of mass of a set of particles.

E.86. grms 267

If a run input file is supplied (-s), exclusions defined in that file are taken into account when calculating
the rdf. The option-cut is meant as an alternative way to avoid intramolecular peaks in the rdf plot. It is
however better to supply a run input file with a higher number of exclusions. For eg. benzene a topology
with nrexcl set to 5 would eliminate all intramolecular contributions to the rdf. Note that all atoms in the
selected groups are used, also the ones that don’t have Lennard-Jones interactions.

Option-cn produces the cumulative number rdf.

To bridge the gap between theory and experiment structure factors can be computed (option-sq). The
algorithm uses FFT, the gridspacing of which is determined by option-grid .

Files
-f traj.xtc Input Generic trajectory: xtc trr trj gro g96 pdb
-s topol.tpr Input, Opt. Structure+mass(db): tpr tpb tpa gro g96 pdb xml
-n index.ndx Input, Opt. Index file
-o rdf.xvg Output, Opt. xvgr/xmgr file

-sq sq.xvg Output, Opt. xvgr/xmgr file
-cn rdf cn.xvg Output, Opt. xvgr/xmgr file
-hq hq.xvg Output, Opt. xvgr/xmgr file

Other options
-h bool no Print help info and quit

-nice int 19 Set the nicelevel
-b time -1 First frame (ps) to read from trajectory
-e time -1 Last frame (ps) to read from trajectory

-dt time -1 Only use frame when t MOD dt = first time (ps)
-w bool no View output xvg, xpm, eps and pdb files

-bin real 0.001 Binwidth (nm)
-com bool no RDF with respect to the center of mass of first group
-cut real 0 Shortest distance (nm) to be considered

-fade real 0 From this distance onwards the RDF is tranformed by g’(r) = 1 + [g(r)-1]
exp(-(r/fade-1)2 to make it go to 1 smoothly. If fade is 0.0 nothing is
done.

-nlevel int 20 Number of different colors in the diffraction image
-startq real 0 Starting q (1/nm)

-endq real 60 Ending q (1/nm)
-energy real 12 Energy of the incoming X-ray (keV)

E.86 g rms

g rms compares two structures by computing the root mean square deviation (RMSD), the size-independent
’rho’ similarity parameter (rho) or the scaled rho (rhosc), see Maiorov & Crippen, PROTEINS22, 273
(1995). This is selected by-what .

Each structure from a trajectory (-f) is compared to a reference structure. The reference structure is taken
from the structure file (-s).

With option-mir also a comparison with the mirror image of the reference structure is calculated. This is
useful as a reference for ’significant’ values, see Maiorov & Crippen, PROTEINS22, 273 (1995).

Option-prev produces the comparison with a previous frame the specified number of frames ago.

Option-m produces a matrix in.xpm format of comparison values of each structure in the trajectory with
respect to each other structure. This file can be visualized with for instancexv and can be converted to
postscript withxpm2ps .

268 Appendix E. Manual Pages

Option-fit controls the least-squares fitting of the structures on top of each other: complete fit (rotation
and translation), translation only, or no fitting at all.

With -f2 , the ’other structures’ are taken from a second trajectory, this generates a comparison matrix of
one trajectory versus the other.

Option-bin does a binary dump of the comparison matrix.

Option-bm produces a matrix of average bond angle deviations analogously to the-m option. Only bonds
between atoms in the comparison group are considered.

Files
-s topol.tpr Input Structure+mass(db): tpr tpb tpa gro g96 pdb xml
-f traj.xtc Input Generic trajectory: xtc trr trj gro g96 pdb

-f2 traj.xtc Input, Opt. Generic trajectory: xtc trr trj gro g96 pdb
-n index.ndx Input, Opt. Index file
-o rmsd.xvg Output xvgr/xmgr file

-mir rmsdmir.xvg Output, Opt. xvgr/xmgr file
-a avgrp.xvg Output, Opt. xvgr/xmgr file

-dist rmsd-dist.xvg Output, Opt. xvgr/xmgr file
-m rmsd.xpm Output, Opt. X PixMap compatible matrix file

-bin rmsd.dat Output, Opt. Generic data file
-bm bond.xpm Output, Opt. X PixMap compatible matrix file

Other options
-h bool no Print help info and quit

-nice int 19 Set the nicelevel
-b time -1 First frame (ps) to read from trajectory
-e time -1 Last frame (ps) to read from trajectory

-dt time -1 Only use frame when t MOD dt = first time (ps)
-tu enum ps Time unit: ps , fs , ns , us , ms, s , mor h

-w bool no View output xvg, xpm, eps and pdb files
-what enum rmsd Structural difference measure:rmsd , rho or rhosc

-pbc bool yes PBC check
-fit enum

rot+trans Fit to reference structure:rot+trans , translation or none
-prev int 0 Compare with previous frame

-split bool no Split graph where time is zero
-skip int 1 Only write every nr-th frame to matrix

-skip2 int 1 Only write every nr-th frame to matrix
-max real -1 Maximum level in comparison matrix
-min real -1 Minimum level in comparison matrix

-bmax real -1 Maximum level in bond angle matrix
-bmin real -1 Minimum level in bond angle matrix

-nlevels int 80 Number of levels in the matrices

E.87 g rms d

g rms compares two structures by computing the root mean square deviation (RMSD), the size-independent
’rho’ similarity parameter (rho) or the scaled rho (rhosc), see Maiorov & Crippen, PROTEINS22, 273
(1995). This is selected by-what .

Each structure from a trajectory (-f) is compared to a reference structure. The reference structure is taken
from the structure file (-s).

E.87. grms d 269

With option-mir also a comparison with the mirror image of the reference structure is calculated. This is
useful as a reference for ’significant’ values, see Maiorov & Crippen, PROTEINS22, 273 (1995).

Option-prev produces the comparison with a previous frame the specified number of frames ago.

Option-m produces a matrix in.xpm format of comparison values of each structure in the trajectory with
respect to each other structure. This file can be visualized with for instancexv and can be converted to
postscript withxpm2ps .

Option-fit controls the least-squares fitting of the structures on top of each other: complete fit (rotation
and translation), translation only, or no fitting at all.

With -f2 , the ’other structures’ are taken from a second trajectory, this generates a comparison matrix of
one trajectory versus the other.

Option-bin does a binary dump of the comparison matrix.

Option-bm produces a matrix of average bond angle deviations analogously to the-m option. Only bonds
between atoms in the comparison group are considered.

Files
-s topol.tpr Input Structure+mass(db): tpr tpb tpa gro g96 pdb xml
-f traj.xtc Input Generic trajectory: xtc trr trj gro g96 pdb

-f2 traj.xtc Input, Opt. Generic trajectory: xtc trr trj gro g96 pdb
-n index.ndx Input, Opt. Index file
-o rmsd.xvg Output xvgr/xmgr file

-mir rmsdmir.xvg Output, Opt. xvgr/xmgr file
-a avgrp.xvg Output, Opt. xvgr/xmgr file

-dist rmsd-dist.xvg Output, Opt. xvgr/xmgr file
-m rmsd.xpm Output, Opt. X PixMap compatible matrix file

-bin rmsd.dat Output, Opt. Generic data file
-bm bond.xpm Output, Opt. X PixMap compatible matrix file

Other options
-h bool no Print help info and quit

-nice int 19 Set the nicelevel
-b time -1 First frame (ps) to read from trajectory
-e time -1 Last frame (ps) to read from trajectory

-dt time -1 Only use frame when t MOD dt = first time (ps)
-tu enum ps Time unit: ps , fs , ns , us , ms, s , mor h

-w bool no View output xvg, xpm, eps and pdb files
-what enum rmsd Structural difference measure:rmsd , rho or rhosc

-pbc bool yes PBC check
-fit enum

rot+trans Fit to reference structure:rot+trans , translation or none
-prev int 0 Compare with previous frame

-split bool no Split graph where time is zero
-skip int 1 Only write every nr-th frame to matrix

-skip2 int 1 Only write every nr-th frame to matrix
-max real -1 Maximum level in comparison matrix
-min real -1 Minimum level in comparison matrix

-bmax real -1 Maximum level in bond angle matrix
-bmin real -1 Minimum level in bond angle matrix

-nlevels int 80 Number of levels in the matrices

270 Appendix E. Manual Pages

E.88 g rmsdist

g rmsdist computes the root mean square deviation of atom distances, which has the advantage that no fit
is needed like in standard RMS deviation as computed by grms. The reference structure is taken from the
structure file. The rmsd at time t is calculated as the rms of the differences in distance between atom-pairs
in the reference structure and the structure at time t.

g rmsdist can also produce matrices of the rms distances, rms distances scaled with the mean distance and
the mean distances and matrices with NMR averaged distances (1/r3 and 1/r6 averaging). Finally, lists of
atom pairs with 1/r3 and 1/r6 averaged distance below the maximum distance (-max , which will default to
0.6 in this case) can be generated, by default averaging over equivalent hydrogens (all triplets of hydrogens
named *[123]). Additionally a list of equivalent atoms can be supplied (-equiv), each line containing a
set of equivalent atoms specified as residue number and name and atom name; e.g.:

3 SER HB1 3 SER HB2

Residue and atom names must exactly match those in the structure file, including case. Specifying non-
sequential atoms is undefined.

Files
-f traj.xtc Input Generic trajectory: xtc trr trj gro g96 pdb
-s topol.tpr Input Structure+mass(db): tpr tpb tpa gro g96 pdb xml
-n index.ndx Input, Opt. Index file

-equiv equiv.dat Input, Opt. Generic data file
-o distrmsd.xvg Output xvgr/xmgr file

-rms rmsdist.xpm Output, Opt. X PixMap compatible matrix file
-scl rmsscale.xpm Output, Opt. X PixMap compatible matrix file

-mean rmsmean.xpm Output, Opt. X PixMap compatible matrix file
-nmr3 nmr3.xpm Output, Opt. X PixMap compatible matrix file
-nmr6 nmr6.xpm Output, Opt. X PixMap compatible matrix file

-noe noe.dat Output, Opt. Generic data file

Other options
-h bool no Print help info and quit

-nice int 19 Set the nicelevel
-b time -1 First frame (ps) to read from trajectory
-e time -1 Last frame (ps) to read from trajectory

-dt time -1 Only use frame when t MOD dt = first time (ps)
-w bool no View output xvg, xpm, eps and pdb files

-nlevels int 40 Discretize rms in # levels
-max real -1 Maximum level in matrices

-sumh bool yes average distance over equivalent hydrogens

E.89 g rmsdist d

g rmsdist computes the root mean square deviation of atom distances, which has the advantage that no fit
is needed like in standard RMS deviation as computed by grms. The reference structure is taken from the
structure file. The rmsd at time t is calculated as the rms of the differences in distance between atom-pairs
in the reference structure and the structure at time t.

g rmsdist can also produce matrices of the rms distances, rms distances scaled with the mean distance and
the mean distances and matrices with NMR averaged distances (1/r3 and 1/r6 averaging). Finally, lists of
atom pairs with 1/r3 and 1/r6 averaged distance below the maximum distance (-max , which will default to

E.90. grmsf 271

0.6 in this case) can be generated, by default averaging over equivalent hydrogens (all triplets of hydrogens
named *[123]). Additionally a list of equivalent atoms can be supplied (-equiv), each line containing a
set of equivalent atoms specified as residue number and name and atom name; e.g.:

3 SER HB1 3 SER HB2

Residue and atom names must exactly match those in the structure file, including case. Specifying non-
sequential atoms is undefined.

Files
-f traj.xtc Input Generic trajectory: xtc trr trj gro g96 pdb
-s topol.tpr Input Structure+mass(db): tpr tpb tpa gro g96 pdb xml
-n index.ndx Input, Opt. Index file

-equiv equiv.dat Input, Opt. Generic data file
-o distrmsd.xvg Output xvgr/xmgr file

-rms rmsdist.xpm Output, Opt. X PixMap compatible matrix file
-scl rmsscale.xpm Output, Opt. X PixMap compatible matrix file

-mean rmsmean.xpm Output, Opt. X PixMap compatible matrix file
-nmr3 nmr3.xpm Output, Opt. X PixMap compatible matrix file
-nmr6 nmr6.xpm Output, Opt. X PixMap compatible matrix file

-noe noe.dat Output, Opt. Generic data file

Other options
-h bool no Print help info and quit

-nice int 19 Set the nicelevel
-b time -1 First frame (ps) to read from trajectory
-e time -1 Last frame (ps) to read from trajectory

-dt time -1 Only use frame when t MOD dt = first time (ps)
-w bool no View output xvg, xpm, eps and pdb files

-nlevels int 40 Discretize rms in # levels
-max real -1 Maximum level in matrices

-sumh bool yes average distance over equivalent hydrogens

E.90 g rmsf

g rmsf computes the root mean square fluctuation (RMSF, i.e. standard deviation) of atomic positions after
first fitting to a reference frame.

With option-oq the RMSF values are converted to B-factor values, which are written to a pdb file with the
coordinates, of the structure file, or of a pdb file when-q is specified. Option-ox writes the B-factors to
a file with the average coordinates.

With the option-od the root mean square deviation with respect to the reference structure is calculated.

With the optionaniso g rmsf will compute anisotropic temperature factors and then it will also output
average coordinates and a pdb file with ANISOU records (corresonding to the-oq or -ox option). Please
note that the U values are orientation dependent, so before comparison with experimental data you should
verify that you fit to the experimental coordinates.

When a pdb input file is passed to the program and the-aniso flag is set a correlation plot of the Uij will
be created, if any anisotropic temperature factors are present in the pdb file.

With option -dir the average MSF (3x3) matrix is diagonalized. This shows the directions in which the
atoms fluctuate the most and the least.

Files

272 Appendix E. Manual Pages

-f traj.xtc Input Generic trajectory: xtc trr trj gro g96 pdb
-s topol.tpr Input Structure+mass(db): tpr tpb tpa gro g96 pdb xml
-n index.ndx Input, Opt. Index file
-q eiwit.pdb Input, Opt. Protein data bank file

-oq bfac.pdb Output, Opt. Protein data bank file
-ox xaver.pdb Output, Opt. Protein data bank file

-o rmsf.xvg Output xvgr/xmgr file
-od rmsdev.xvg Output, Opt. xvgr/xmgr file
-oc correl.xvg Output, Opt. xvgr/xmgr file

-dir rmsf.log Output, Opt. Log file

Other options
-h bool no Print help info and quit

-nice int 19 Set the nicelevel
-b time -1 First frame (ps) to read from trajectory
-e time -1 Last frame (ps) to read from trajectory

-dt time -1 Only use frame when t MOD dt = first time (ps)
-w bool no View output xvg, xpm, eps and pdb files

-res bool no Calculate averages for each residue
-aniso bool no Compute anisotropic termperature factors

E.91 g rmsf d

g rmsf computes the root mean square fluctuation (RMSF, i.e. standard deviation) of atomic positions after
first fitting to a reference frame.

With option-oq the RMSF values are converted to B-factor values, which are written to a pdb file with the
coordinates, of the structure file, or of a pdb file when-q is specified. Option-ox writes the B-factors to
a file with the average coordinates.

With the option-od the root mean square deviation with respect to the reference structure is calculated.

With the optionaniso g rmsf will compute anisotropic temperature factors and then it will also output
average coordinates and a pdb file with ANISOU records (corresonding to the-oq or -ox option). Please
note that the U values are orientation dependent, so before comparison with experimental data you should
verify that you fit to the experimental coordinates.

When a pdb input file is passed to the program and the-aniso flag is set a correlation plot of the Uij will
be created, if any anisotropic temperature factors are present in the pdb file.

With option -dir the average MSF (3x3) matrix is diagonalized. This shows the directions in which the
atoms fluctuate the most and the least.

Files
-f traj.xtc Input Generic trajectory: xtc trr trj gro g96 pdb
-s topol.tpr Input Structure+mass(db): tpr tpb tpa gro g96 pdb xml
-n index.ndx Input, Opt. Index file
-q eiwit.pdb Input, Opt. Protein data bank file

-oq bfac.pdb Output, Opt. Protein data bank file
-ox xaver.pdb Output, Opt. Protein data bank file

-o rmsf.xvg Output xvgr/xmgr file
-od rmsdev.xvg Output, Opt. xvgr/xmgr file
-oc correl.xvg Output, Opt. xvgr/xmgr file

-dir rmsf.log Output, Opt. Log file

E.92. grotacf 273

Other options
-h bool no Print help info and quit

-nice int 19 Set the nicelevel
-b time -1 First frame (ps) to read from trajectory
-e time -1 Last frame (ps) to read from trajectory

-dt time -1 Only use frame when t MOD dt = first time (ps)
-w bool no View output xvg, xpm, eps and pdb files

-res bool no Calculate averages for each residue
-aniso bool no Compute anisotropic termperature factors

E.92 g rotacf

g rotacf calculates the rotational correlation function for molecules. Three atoms (i,j,k) must be given in
the index file, defining two vectors ij and jk. The rotational acf is calculated as the autocorrelation function
of the vector n = ij x jk, i.e. the cross product of the two vectors. Since three atoms span a plane, the order
of the three atoms does not matter. Optionally, controlled by the -d switch, you can calculate the rotational
correlation function for linear molecules by specifying two atoms (i,j) in the index file.

EXAMPLES

g rotacf -P 1 -nparm 2 -fft -n index -o rotacf-x-P1 -fa expfit-x-P1 -beginfit 2.5 -endfit 20.0

This will calculate the rotational correlation function using a first order Legendre polynomial of the angle
of a vector defined by the index file. The correlation function will be fitted from 2.5 ps till 20.0 ps to a two
parameter exponential

Files
-f traj.xtc Input Generic trajectory: xtc trr trj gro g96 pdb
-s topol.tpr Input Generic run input: tpr tpb tpa xml
-n index.ndx Input Index file
-o rotacf.xvg Output xvgr/xmgr file

Other options
-h bool no Print help info and quit

-nice int 19 Set the nicelevel
-b time -1 First frame (ps) to read from trajectory
-e time -1 Last frame (ps) to read from trajectory

-dt time -1 Only use frame when t MOD dt = first time (ps)
-w bool no View output xvg, xpm, eps and pdb files
-d bool no Use index doublets (vectors) for correlation function instead of triplets

(planes)
-aver bool yes Average over molecules

-acflen int -1 Length of the ACF, default is half the number of frames
-normalize bool yes Normalize ACF

-P enum 0 Order of Legendre polynomial for ACF (0 indicates none):0, 1, 2 or 3
-fitfn enum none Fit function:none , exp , aexp , exp exp , vac , exp5 , exp7 or exp9

-ncskip int 0 Skip N points in the output file of correlation functions
-beginfit real 0 Time where to begin the exponential fit of the correlation function

-endfit real -1 Time where to end the exponential fit of the correlation function, -1 is till
the end

274 Appendix E. Manual Pages

E.93 g rotacf d

g rotacf calculates the rotational correlation function for molecules. Three atoms (i,j,k) must be given in
the index file, defining two vectors ij and jk. The rotational acf is calculated as the autocorrelation function
of the vector n = ij x jk, i.e. the cross product of the two vectors. Since three atoms span a plane, the order
of the three atoms does not matter. Optionally, controlled by the -d switch, you can calculate the rotational
correlation function for linear molecules by specifying two atoms (i,j) in the index file.

EXAMPLES

g rotacf -P 1 -nparm 2 -fft -n index -o rotacf-x-P1 -fa expfit-x-P1 -beginfit 2.5 -endfit 20.0

This will calculate the rotational correlation function using a first order Legendre polynomial of the angle
of a vector defined by the index file. The correlation function will be fitted from 2.5 ps till 20.0 ps to a two
parameter exponential

Files
-f traj.xtc Input Generic trajectory: xtc trr trj gro g96 pdb
-s topol.tpr Input Generic run input: tpr tpb tpa xml
-n index.ndx Input Index file
-o rotacf.xvg Output xvgr/xmgr file

Other options
-h bool no Print help info and quit

-nice int 19 Set the nicelevel
-b time -1 First frame (ps) to read from trajectory
-e time -1 Last frame (ps) to read from trajectory

-dt time -1 Only use frame when t MOD dt = first time (ps)
-w bool no View output xvg, xpm, eps and pdb files
-d bool no Use index doublets (vectors) for correlation function instead of triplets

(planes)
-aver bool yes Average over molecules

-acflen int -1 Length of the ACF, default is half the number of frames
-normalize bool yes Normalize ACF

-P enum 0 Order of Legendre polynomial for ACF (0 indicates none):0, 1, 2 or 3
-fitfn enum none Fit function:none , exp , aexp , exp exp , vac , exp5 , exp7 or exp9

-ncskip int 0 Skip N points in the output file of correlation functions
-beginfit real 0 Time where to begin the exponential fit of the correlation function

-endfit real -1 Time where to end the exponential fit of the correlation function, -1 is till
the end

E.94 g saltbr

g saltbr plots the difference between all combination of charged groups as a function of time. The groups
are combined in different ways.A minimum distance can be given, (eg. the cut-off), then groups that are
never closer than that distance will not be plotted.
Output will be in a number of fixed filenames, min-min.xvg,min-plus.xvg and plus-plus.xvg, or files for
every individual ion-pair if selected

Files
-f traj.xtc Input Generic trajectory: xtc trr trj gro g96 pdb
-s topol.tpr Input Generic run input: tpr tpb tpa xml

E.95. gsaltbr d 275

Other options
-h bool no Print help info and quit

-nice int 19 Set the nicelevel
-b time -1 First frame (ps) to read from trajectory
-e time -1 Last frame (ps) to read from trajectory

-dt time -1 Only use frame when t MOD dt = first time (ps)
-t real 1000 trunc distance

-sep bool no Use separate files for each interaction (may be MANY)

E.95 g saltbr d

g saltbr plots the difference between all combination of charged groups as a function of time. The groups
are combined in different ways.A minimum distance can be given, (eg. the cut-off), then groups that are
never closer than that distance will not be plotted.
Output will be in a number of fixed filenames, min-min.xvg,min-plus.xvg and plus-plus.xvg, or files for
every individual ion-pair if selected

Files
-f traj.xtc Input Generic trajectory: xtc trr trj gro g96 pdb
-s topol.tpr Input Generic run input: tpr tpb tpa xml

Other options
-h bool no Print help info and quit

-nice int 19 Set the nicelevel
-b time -1 First frame (ps) to read from trajectory
-e time -1 Last frame (ps) to read from trajectory

-dt time -1 Only use frame when t MOD dt = first time (ps)
-t real 1000 trunc distance

-sep bool no Use separate files for each interaction (may be MANY)

E.96 g sas

g sas computes hydrophobic, hydrophilic and total solvent accessible surface area. As a side effect the
Connolly surface can be generated as well in a pdb file where the nodes are represented as atoms and the
vertices connecting the nearest nodes as CONECT records. The area can be plotted per residue and atom
as well (options-or and-oa). In combination with the latter option anitp file can be generated (option
-i) which can be used to restrain surface atoms.

By default, periodic boundary conditions are taken into account, this can be turned off using the-pbc
option.

Files
-f traj.xtc Input Generic trajectory: xtc trr trj gro g96 pdb
-s topol.tpr Input Generic run input: tpr tpb tpa xml
-o area.xvg Output xvgr/xmgr file

-or resarea.xvg Output, Opt. xvgr/xmgr file
-oa atomarea.xvg Output, Opt. xvgr/xmgr file

-q connelly.pdb Output, Opt. Protein data bank file
-n index.ndx Input, Opt. Index file
-i surfat.itp Output, Opt. Include file for topology

276 Appendix E. Manual Pages

Other options
-h bool no Print help info and quit

-nice int 19 Set the nicelevel
-b time -1 First frame (ps) to read from trajectory
-e time -1 Last frame (ps) to read from trajectory

-dt time -1 Only use frame when t MOD dt = first time (ps)
-w bool no View output xvg, xpm, eps and pdb files

-solsize real 0.14 Radius of the solvent probe (nm)
-ndots int 24 Number of dots per sphere, more dots means more accuracy

-qmax real 0.2 The maximum charge (e, absolute value) of a hydrophobic atom
-f index bool no Determine from a group in the index file what are the hydrophobic atoms

rather than from the charge
-minarea real 0.5 The minimum area (nm2) to count an atom as a surface atom when writ-

ing a position restraint file (see help)
-pbc bool yes Take periodicity into account

-prot bool yes Output the protein to the connelly pdb file too
-dgs real 0 default value for solvation free energy per area (kJ/mol/nm2)

E.97 g sas d

g sas computes hydrophobic, hydrophilic and total solvent accessible surface area. As a side effect the
Connolly surface can be generated as well in a pdb file where the nodes are represented as atoms and the
vertices connecting the nearest nodes as CONECT records. The area can be plotted per residue and atom
as well (options-or and-oa). In combination with the latter option anitp file can be generated (option
-i) which can be used to restrain surface atoms.

By default, periodic boundary conditions are taken into account, this can be turned off using the-pbc
option.

Files
-f traj.xtc Input Generic trajectory: xtc trr trj gro g96 pdb
-s topol.tpr Input Generic run input: tpr tpb tpa xml
-o area.xvg Output xvgr/xmgr file

-or resarea.xvg Output, Opt. xvgr/xmgr file
-oa atomarea.xvg Output, Opt. xvgr/xmgr file

-q connelly.pdb Output, Opt. Protein data bank file
-n index.ndx Input, Opt. Index file
-i surfat.itp Output, Opt. Include file for topology

Other options
-h bool no Print help info and quit

-nice int 19 Set the nicelevel
-b time -1 First frame (ps) to read from trajectory
-e time -1 Last frame (ps) to read from trajectory

-dt time -1 Only use frame when t MOD dt = first time (ps)
-w bool no View output xvg, xpm, eps and pdb files

-solsize real 0.14 Radius of the solvent probe (nm)
-ndots int 24 Number of dots per sphere, more dots means more accuracy

-qmax real 0.2 The maximum charge (e, absolute value) of a hydrophobic atom
-f index bool no Determine from a group in the index file what are the hydrophobic atoms

rather than from the charge
-minarea real 0.5 The minimum area (nm2) to count an atom as a surface atom when writ-

ing a position restraint file (see help)

E.98. gsgangle 277

-pbc bool yes Take periodicity into account
-prot bool yes Output the protein to the connelly pdb file too

-dgs real 0 default value for solvation free energy per area (kJ/mol/nm2)

E.98 g sgangle

Compute the angle and distance between two groups. The groups are defined by a number of atoms given
in an index file and may be two or three atoms in size. The angles calculated depend on the order in which
the atoms are given. Giving for instance 5 6 will rotate the vector 5-6 with 180 degrees compared to giving
6 5.

If three atoms are given, the normal on the plane spanned by those three atoms will be calculated, using the
formula P1P2 x P1P3. The cos of the angle is calculated, using the inproduct of the two normalized vectors.

Here is what some of the file options do:
-oa: Angle between the two groups specified in the index file. If a group contains three atoms the normal
to the plane defined by those three atoms will be used. If a group contains two atoms, the vector defined by
those two atoms will be used.
-od: Distance between two groups. Distance is taken from the center of one group to the center of the other
group.
-od1: If one plane and one vector is given, the distances for each of the atoms from the center of the plane
is given seperately.
-od2: For two planes this option has no meaning.

Files
-f traj.xtc Input Generic trajectory: xtc trr trj gro g96 pdb
-n index.ndx Input Index file
-s topol.tpr Input Generic run input: tpr tpb tpa xml

-oa sg angle.xvg Output xvgr/xmgr file
-od sg dist.xvg Output xvgr/xmgr file

-od1 sg dist1.xvg Output xvgr/xmgr file
-od2 sg dist2.xvg Output xvgr/xmgr file

Other options
-h bool no Print help info and quit

-nice int 19 Set the nicelevel
-b time -1 First frame (ps) to read from trajectory
-e time -1 Last frame (ps) to read from trajectory

-dt time -1 Only use frame when t MOD dt = first time (ps)
-w bool no View output xvg, xpm, eps and pdb files

E.99 g sgangle d

Compute the angle and distance between two groups. The groups are defined by a number of atoms given
in an index file and may be two or three atoms in size. The angles calculated depend on the order in which
the atoms are given. Giving for instance 5 6 will rotate the vector 5-6 with 180 degrees compared to giving
6 5.

If three atoms are given, the normal on the plane spanned by those three atoms will be calculated, using the
formula P1P2 x P1P3. The cos of the angle is calculated, using the inproduct of the two normalized vectors.

278 Appendix E. Manual Pages

Here is what some of the file options do:
-oa: Angle between the two groups specified in the index file. If a group contains three atoms the normal
to the plane defined by those three atoms will be used. If a group contains two atoms, the vector defined by
those two atoms will be used.
-od: Distance between two groups. Distance is taken from the center of one group to the center of the other
group.
-od1: If one plane and one vector is given, the distances for each of the atoms from the center of the plane
is given seperately.
-od2: For two planes this option has no meaning.

Files
-f traj.xtc Input Generic trajectory: xtc trr trj gro g96 pdb
-n index.ndx Input Index file
-s topol.tpr Input Generic run input: tpr tpb tpa xml

-oa sg angle.xvg Output xvgr/xmgr file
-od sg dist.xvg Output xvgr/xmgr file

-od1 sg dist1.xvg Output xvgr/xmgr file
-od2 sg dist2.xvg Output xvgr/xmgr file

Other options
-h bool no Print help info and quit

-nice int 19 Set the nicelevel
-b time -1 First frame (ps) to read from trajectory
-e time -1 Last frame (ps) to read from trajectory

-dt time -1 Only use frame when t MOD dt = first time (ps)
-w bool no View output xvg, xpm, eps and pdb files

E.100 g sorient

g sorient analyzes solvent orientation around solutes. It calculates two angles between the vector from one
or more reference positions to the first atom of each solvent molecule:
theta1: the angle with the vector from the first atom of the solvent molecule to the midpoint between atoms
2 and 3.
theta2: the angle with the normal of the solvent plane, defined by the same three atoms.
The reference can be a set of atoms or the center of mass of a set of atoms. The group of solvent atoms
should consist of 3 atoms per solvent molecule. Only solvent molecules between-rmin and-rmax are
considered for-o and-no each frame.

-o : angle distribution of theta1.

-no : angle distribution of theta2.

-ro : <cos(theta1)> and<3cos2(theta2)-1> as a function of the distance.

-co : the sum over all solvent molecules within distance r of cos(theta1) and 3cos2(theta2)-1 as a function
of r.

Files
-f traj.xtc Input Generic trajectory: xtc trr trj gro g96 pdb
-s topol.tpr Input Structure+mass(db): tpr tpb tpa gro g96 pdb xml
-n index.ndx Input, Opt. Index file
-o sori.xvg Output xvgr/xmgr file

-no snor.xvg Output xvgr/xmgr file
-ro sord.xvg Output xvgr/xmgr file
-co scum.xvg Output xvgr/xmgr file

E.101. gsorientd 279

Other options
-h bool no Print help info and quit

-nice int 19 Set the nicelevel
-b time -1 First frame (ps) to read from trajectory
-e time -1 Last frame (ps) to read from trajectory

-dt time -1 Only use frame when t MOD dt = first time (ps)
-w bool no View output xvg, xpm, eps and pdb files

-com bool no Use the center of mass as the reference postion
-rmin real 0 Minimum distance
-rmax real 0.5 Maximum distance
-nbin int 20 Number of bins

-pbc bool no Check PBC for the center of mass calculation. Only necessary when your
reference group consists of several molecules.

E.101 g sorient d

g sorient analyzes solvent orientation around solutes. It calculates two angles between the vector from one
or more reference positions to the first atom of each solvent molecule:
theta1: the angle with the vector from the first atom of the solvent molecule to the midpoint between atoms
2 and 3.
theta2: the angle with the normal of the solvent plane, defined by the same three atoms.
The reference can be a set of atoms or the center of mass of a set of atoms. The group of solvent atoms
should consist of 3 atoms per solvent molecule. Only solvent molecules between-rmin and-rmax are
considered for-o and-no each frame.

-o : angle distribution of theta1.

-no : angle distribution of theta2.

-ro : <cos(theta1)> and<3cos2(theta2)-1> as a function of the distance.

-co : the sum over all solvent molecules within distance r of cos(theta1) and 3cos2(theta2)-1 as a function
of r.

Files
-f traj.xtc Input Generic trajectory: xtc trr trj gro g96 pdb
-s topol.tpr Input Structure+mass(db): tpr tpb tpa gro g96 pdb xml
-n index.ndx Input, Opt. Index file
-o sori.xvg Output xvgr/xmgr file

-no snor.xvg Output xvgr/xmgr file
-ro sord.xvg Output xvgr/xmgr file
-co scum.xvg Output xvgr/xmgr file

Other options
-h bool no Print help info and quit

-nice int 19 Set the nicelevel
-b time -1 First frame (ps) to read from trajectory
-e time -1 Last frame (ps) to read from trajectory

-dt time -1 Only use frame when t MOD dt = first time (ps)
-w bool no View output xvg, xpm, eps and pdb files

-com bool no Use the center of mass as the reference postion
-rmin real 0 Minimum distance
-rmax real 0.5 Maximum distance

280 Appendix E. Manual Pages

-nbin int 20 Number of bins
-pbc bool no Check PBC for the center of mass calculation. Only necessary when your

reference group consists of several molecules.

E.102 g tcaf

g tcaf computes tranverse current autocorrelations. These are used to estimate the shear viscosity eta. For
details see: Palmer, JCP 49 (1994) pp 359-366.

Transverse currents are calculated using the k-vectors (1,0,0) and (2,0,0) each also in the y- and z-direction,
(1,1,0) and (1,-1,0) each also in the 2 other plains (these vectors are not independent) and (1,1,1) and the 3
other box diagonals (also not independent). For each k-vector the sine and cosine are used, in combination
with the velocity in 2 perpendicular directions. This gives a total of 16*2*2=64 transverse currents. One
autocorrelation is calculated fitted for each k-vector, which gives 16 tcaf’s. Each of these tcaf’s is fitted to
f(t) = exp(-v)(cosh(Wv) + 1/W sinh(Wv)), v = -t/(2 tau), W = sqrt(1 - 4 tau eta/rho k2), which gives 16 tau’s
and eta’s. The fit weights decay with time as exp(-t/wt), the tcaf and fit are calculated up to time 5*wt. The
eta’s should be fitted to 1 - a eta(k) k2, from which one can estimate the shear viscosity at k=0.

When the box is cubic, one can use the option-oc , which averages the tcaf’s over all k-vectors with the
same length. This results in more accurate tcaf’s. Both the cubic tcaf’s and fits are written to-oc The cubic
eta estimates are also written to-ov .

With option-mol the transverse current is determined of molecules instead of atoms. In this case the index
group should consist of molecule numbers instead of atom numbers.

The k-dependent viscosities in the-ov file should be fitted to eta(k) = eta0 (1 - a k2) to obtain the viscosity
at infinite wavelength.

NOTE: make sure you write coordinates and velocities often enough. The initial, non-exponential, part of
the autocorrelation function is very important for obtaining a good fit.

Files
-f traj.trr Input Full precision trajectory: trr trj
-s topol.tpr Input, Opt. Structure+mass(db): tpr tpb tpa gro g96 pdb xml
-n index.ndx Input, Opt. Index file

-ot transcur.xvg Output, Opt. xvgr/xmgr file
-oa tcaf all.xvg Output xvgr/xmgr file

-o tcaf.xvg Output xvgr/xmgr file
-of tcaf fit.xvg Output xvgr/xmgr file
-oc tcaf cub.xvg Output, Opt. xvgr/xmgr file
-ov visc k.xvg Output xvgr/xmgr file

Other options
-h bool no Print help info and quit

-nice int 19 Set the nicelevel
-b time -1 First frame (ps) to read from trajectory
-e time -1 Last frame (ps) to read from trajectory

-dt time -1 Only use frame when t MOD dt = first time (ps)
-w bool no View output xvg, xpm, eps and pdb files

-mol bool no Calculate tcaf of molecules
-k34 bool no Also use k=(3,0,0) and k=(4,0,0)

-wt real 5 Exponential decay time for the TCAF fit weights

E.103. gtcaf d 281

E.103 g tcaf d

g tcaf computes tranverse current autocorrelations. These are used to estimate the shear viscosity eta. For
details see: Palmer, JCP 49 (1994) pp 359-366.

Transverse currents are calculated using the k-vectors (1,0,0) and (2,0,0) each also in the y- and z-direction,
(1,1,0) and (1,-1,0) each also in the 2 other plains (these vectors are not independent) and (1,1,1) and the 3
other box diagonals (also not independent). For each k-vector the sine and cosine are used, in combination
with the velocity in 2 perpendicular directions. This gives a total of 16*2*2=64 transverse currents. One
autocorrelation is calculated fitted for each k-vector, which gives 16 tcaf’s. Each of these tcaf’s is fitted to
f(t) = exp(-v)(cosh(Wv) + 1/W sinh(Wv)), v = -t/(2 tau), W = sqrt(1 - 4 tau eta/rho k2), which gives 16 tau’s
and eta’s. The fit weights decay with time as exp(-t/wt), the tcaf and fit are calculated up to time 5*wt. The
eta’s should be fitted to 1 - a eta(k) k2, from which one can estimate the shear viscosity at k=0.

When the box is cubic, one can use the option-oc , which averages the tcaf’s over all k-vectors with the
same length. This results in more accurate tcaf’s. Both the cubic tcaf’s and fits are written to-oc The cubic
eta estimates are also written to-ov .

With option-mol the transverse current is determined of molecules instead of atoms. In this case the index
group should consist of molecule numbers instead of atom numbers.

The k-dependent viscosities in the-ov file should be fitted to eta(k) = eta0 (1 - a k2) to obtain the viscosity
at infinite wavelength.

NOTE: make sure you write coordinates and velocities often enough. The initial, non-exponential, part of
the autocorrelation function is very important for obtaining a good fit.

Files
-f traj.trr Input Full precision trajectory: trr trj
-s topol.tpr Input, Opt. Structure+mass(db): tpr tpb tpa gro g96 pdb xml
-n index.ndx Input, Opt. Index file

-ot transcur.xvg Output, Opt. xvgr/xmgr file
-oa tcaf all.xvg Output xvgr/xmgr file

-o tcaf.xvg Output xvgr/xmgr file
-of tcaf fit.xvg Output xvgr/xmgr file
-oc tcaf cub.xvg Output, Opt. xvgr/xmgr file
-ov visc k.xvg Output xvgr/xmgr file

Other options
-h bool no Print help info and quit

-nice int 19 Set the nicelevel
-b time -1 First frame (ps) to read from trajectory
-e time -1 Last frame (ps) to read from trajectory

-dt time -1 Only use frame when t MOD dt = first time (ps)
-w bool no View output xvg, xpm, eps and pdb files

-mol bool no Calculate tcaf of molecules
-k34 bool no Also use k=(3,0,0) and k=(4,0,0)

-wt real 5 Exponential decay time for the TCAF fit weights

E.104 g traj

g traj plots coordinates, velocities, forces and/or the box. With-com the coordinates, velocities and forces
are calculated for the center of mass of each group. When-mol is set, the numbers in the index file are
interpreted as molecule numbers and the same procedure as with-com is used for each molecule.

282 Appendix E. Manual Pages

Option -ot plots the temperature of each group, provided velocities are present in the trajectory file. No
corrections are made for constrained degrees of freedom! This implies-com .

Options-ekt and-ekr plot the translational and rotational kinetic energy of each group, provided veloc-
ities are present in the trajectory file. This implies-com .

Options-cv and-cf write the average velocities and average forces as temperature factors to a pdb file
with the average coordinates. The temperature factors are scaled such that the maximum is 10. The scaling
can be changed with the option-scale . To get the velocities or forces of one frame set both-b and-e
to the time of desired frame. When averaging over frames you might need to use the-nojump option to
obtain the correct average coordinates.

Files
-f traj.xtc Input Generic trajectory: xtc trr trj gro g96 pdb
-s topol.tpr Input Structure+mass(db): tpr tpb tpa gro g96 pdb xml
-n index.ndx Input, Opt. Index file

-ox coord.xvg Output, Opt. xvgr/xmgr file
-ov veloc.xvg Output, Opt. xvgr/xmgr file
-of force.xvg Output, Opt. xvgr/xmgr file
-ob box.xvg Output, Opt. xvgr/xmgr file
-ot temp.xvg Output, Opt. xvgr/xmgr file

-ekt ektrans.xvg Output, Opt. xvgr/xmgr file
-ekr ekrot.xvg Output, Opt. xvgr/xmgr file

-cv veloc.pdb Output, Opt. Protein data bank file
-cf force.pdb Output, Opt. Protein data bank file

Other options
-h bool no Print help info and quit

-nice int 19 Set the nicelevel
-b time -1 First frame (ps) to read from trajectory
-e time -1 Last frame (ps) to read from trajectory

-dt time -1 Only use frame when t MOD dt = first time (ps)
-tu enum ps Time unit: ps , fs , ns , us , ms, s , mor h

-w bool no View output xvg, xpm, eps and pdb files
-com bool no Plot data for the com of each group
-mol bool no Index contains molecule numbers iso atom numbers

-nojump bool no Remove jumps of atoms across the box
-x bool yes Plot X-component
-y bool yes Plot Y-component
-z bool yes Plot Z-component

-len bool no Plot vector length
-scale real 0 Scale factor for pdb output, 0 is autoscale

E.105 g traj d

g traj plots coordinates, velocities, forces and/or the box. With-com the coordinates, velocities and forces
are calculated for the center of mass of each group. When-mol is set, the numbers in the index file are
interpreted as molecule numbers and the same procedure as with-com is used for each molecule.

Option -ot plots the temperature of each group, provided velocities are present in the trajectory file. No
corrections are made for constrained degrees of freedom! This implies-com .

Options-ekt and-ekr plot the translational and rotational kinetic energy of each group, provided veloc-
ities are present in the trajectory file. This implies-com .

E.106. gvelacc 283

Options-cv and-cf write the average velocities and average forces as temperature factors to a pdb file
with the average coordinates. The temperature factors are scaled such that the maximum is 10. The scaling
can be changed with the option-scale . To get the velocities or forces of one frame set both-b and-e
to the time of desired frame. When averaging over frames you might need to use the-nojump option to
obtain the correct average coordinates.

Files
-f traj.xtc Input Generic trajectory: xtc trr trj gro g96 pdb
-s topol.tpr Input Structure+mass(db): tpr tpb tpa gro g96 pdb xml
-n index.ndx Input, Opt. Index file

-ox coord.xvg Output, Opt. xvgr/xmgr file
-ov veloc.xvg Output, Opt. xvgr/xmgr file
-of force.xvg Output, Opt. xvgr/xmgr file
-ob box.xvg Output, Opt. xvgr/xmgr file
-ot temp.xvg Output, Opt. xvgr/xmgr file

-ekt ektrans.xvg Output, Opt. xvgr/xmgr file
-ekr ekrot.xvg Output, Opt. xvgr/xmgr file

-cv veloc.pdb Output, Opt. Protein data bank file
-cf force.pdb Output, Opt. Protein data bank file

Other options
-h bool no Print help info and quit

-nice int 19 Set the nicelevel
-b time -1 First frame (ps) to read from trajectory
-e time -1 Last frame (ps) to read from trajectory

-dt time -1 Only use frame when t MOD dt = first time (ps)
-tu enum ps Time unit: ps , fs , ns , us , ms, s , mor h

-w bool no View output xvg, xpm, eps and pdb files
-com bool no Plot data for the com of each group
-mol bool no Index contains molecule numbers iso atom numbers

-nojump bool no Remove jumps of atoms across the box
-x bool yes Plot X-component
-y bool yes Plot Y-component
-z bool yes Plot Z-component

-len bool no Plot vector length
-scale real 0 Scale factor for pdb output, 0 is autoscale

E.106 g velacc

g velacc computes the velocity autocorrelation function. When the-s option is used, the momentum
autocorrelation function is calculated.

With option-mol the momentum autocorrelation function of molecules is calculated. In this case the index
group should consist of molecule numbers instead of atom numbers.

Files
-f traj.trr Input Full precision trajectory: trr trj
-s topol.tpr Input, Opt. Structure+mass(db): tpr tpb tpa gro g96 pdb xml
-n index.ndx Input, Opt. Index file
-o vac.xvg Output xvgr/xmgr file

284 Appendix E. Manual Pages

Other options
-h bool no Print help info and quit

-nice int 19 Set the nicelevel
-b time -1 First frame (ps) to read from trajectory
-e time -1 Last frame (ps) to read from trajectory

-dt time -1 Only use frame when t MOD dt = first time (ps)
-w bool no View output xvg, xpm, eps and pdb files

-mol bool no Calculate vac of molecules
-acflen int -1 Length of the ACF, default is half the number of frames

-normalize bool yes Normalize ACF
-P enum 0 Order of Legendre polynomial for ACF (0 indicates none):0, 1, 2 or 3

-fitfn enum none Fit function:none , exp , aexp , exp exp , vac , exp5 , exp7 or exp9
-ncskip int 0 Skip N points in the output file of correlation functions

-beginfit real 0 Time where to begin the exponential fit of the correlation function
-endfit real -1 Time where to end the exponential fit of the correlation function, -1 is till

the end

E.107 g velacc d

g velacc computes the velocity autocorrelation function. When the-s option is used, the momentum
autocorrelation function is calculated.

With option-mol the momentum autocorrelation function of molecules is calculated. In this case the index
group should consist of molecule numbers instead of atom numbers.
Files

-f traj.trr Input Full precision trajectory: trr trj
-s topol.tpr Input, Opt. Structure+mass(db): tpr tpb tpa gro g96 pdb xml
-n index.ndx Input, Opt. Index file
-o vac.xvg Output xvgr/xmgr file

Other options
-h bool no Print help info and quit

-nice int 19 Set the nicelevel
-b time -1 First frame (ps) to read from trajectory
-e time -1 Last frame (ps) to read from trajectory

-dt time -1 Only use frame when t MOD dt = first time (ps)
-w bool no View output xvg, xpm, eps and pdb files

-mol bool no Calculate vac of molecules
-acflen int -1 Length of the ACF, default is half the number of frames

-normalize bool yes Normalize ACF
-P enum 0 Order of Legendre polynomial for ACF (0 indicates none):0, 1, 2 or 3

-fitfn enum none Fit function:none , exp , aexp , exp exp , vac , exp5 , exp7 or exp9
-ncskip int 0 Skip N points in the output file of correlation functions

-beginfit real 0 Time where to begin the exponential fit of the correlation function
-endfit real -1 Time where to end the exponential fit of the correlation function, -1 is till

the end

E.108 g wham

This is an analysis program that implements the Weighted Histogram Analysis Method (WHAM). It is
intended to analyze .pdo files generated by mdrun using umbrella sampling tocreate a potential of mean

E.109. gwhamd 285

force (PMF). The options are
-o name of the PMF output file
-hist name of the histograms output file
-min minimum coordinate to use
-max maximum coordinate to use

Note: the program will throw out any data that is outside of min - max. The program will output the true
min and max after completion, so you can use these values the next time. or you can use:
-noprof only calculate min and max
-bins number of bins to use in calculation

Files
-o profile.xvg Output xvgr/xmgr file

-hist histo.xvg Output xvgr/xmgr file

Other options
-h bool no Print help info and quit

-nice int 0 Set the nicelevel
-w bool no View output xvg, xpm, eps and pdb files

-min real 0 Minimum coordinate in profile
-max real 0 Maximum coordinate in profile

-bins int 100 Number of bins in profile
-prof bool yes Only calculate min and max
-temp real 298 Temperature
-flip bool no Combine halves of profile

-tol real 0.01 Tolerance

E.109 g wham d

This is an analysis program that implements the Weighted Histogram Analysis Method (WHAM). It is
intended to analyze .pdo files generated by mdrun using umbrella sampling tocreate a potential of mean
force (PMF). The options are
-o name of the PMF output file
-hist name of the histograms output file
-min minimum coordinate to use
-max maximum coordinate to use

Note: the program will throw out any data that is outside of min - max. The program will output the true
min and max after completion, so you can use these values the next time. or you can use:
-noprof only calculate min and max
-bins number of bins to use in calculation

Files
-o profile.xvg Output xvgr/xmgr file

-hist histo.xvg Output xvgr/xmgr file

Other options
-h bool no Print help info and quit

-nice int 0 Set the nicelevel
-w bool no View output xvg, xpm, eps and pdb files

-min real 0 Minimum coordinate in profile

286 Appendix E. Manual Pages

-max real
5.26499e-315 Maximum coordinate in profile

-bins int 100 Number of bins in profile
-prof bool yes Only calculate min and max
-temp real

3.78302e+17 Temperature
-flip bool no Combine halves of profile

-tol real 0.01 Tolerance

E.110 genbox

Genbox can do one of 3 things:

1) Generate a box of solvent. Specify -cs and -box. Or specify -cs and -cp with a structure file with a box,
but without atoms.

2) Solvate a solute configuration, eg. a protein, in a bath of solvent molecules. Specify-cp (solute) and
-cs (solvent). The box specified in the solute coordinate file (-cp) is used, unless-box is set, which
also centers the solute. The programeditconf has more sophisticated options to change the box and
center the solute. Solvent molecules are removed from the box where the distance between any atom of the
solute molecule(s) and any atom of the solvent molecule is less than the sum of the VanderWaals radii of
both atoms. A database (vdwradii.dat) of VanderWaals radii is read by the program, atoms not in the
database are assigned a default distance-vdw .

3) Insert a number (-nmol) of extra molecules (-ci) at random positions. The program iterates untilnmol
molecules have been inserted in the box. To test whether an insertion is successful the same VanderWaals
criterium is used as for removal of solvent molecules. When no appropriately sized holes (holes that can
hold an extra molecule) are available the program tries for-nmol * -try times before giving up. Increase
-try if you have several small holes to fill.

The default solvent is Simple Point Charge water (SPC), with coordinates from$GMXLIB/spc216.gro .
Other solvents are also supported, as well as mixed solvents. The only restriction to solvent types is that a
solvent molecule consists of exactly one residue. The residue information in the coordinate files is used, and
should therefore be more or less consistent. In practice this means that two subsequent solvent molecules
in the solvent coordinate file should have different residue number. The box of solute is built by stacking
the coordinates read from the coordinate file. This means that these coordinates should be equlibrated in
periodic boundary conditions to ensure a good alignment of molecules on the stacking interfaces.

The program can optionally rotate the solute molecule to align the longest molecule axis along a box edge.
This way the amount of solvent molecules necessary is reduced. It should be kept in mind that this only
works for short simulations, as eg. an alpha-helical peptide in solution can rotate over 90 degrees, within
500 ps. In general it is therefore better to make a more or less cubic box.

Setting -shell larger than zero will place a layer of water of the specified thickness (nm) around the solute.
Hint: it is a good idea to put the protein in the center of a box first (using editconf).

Finally, genbox will optionally remove lines from your topology file in which a number of solvent molecules
is already added, and adds a line with the total number of solvent molecules in your coordinate file.

Files
-cp protein.gro Input, Opt. Generic structure: gro g96 pdb tpr tpb tpa xml
-cs spc216.gro Input, Opt., Lib.Generic structure: gro g96 pdb tpr tpb tpa xml
-ci insert.gro Input, Opt. Generic structure: gro g96 pdb tpr tpb tpa xml

-o out.gro Output Generic structure: gro g96 pdb xml
-p topol.top In/Out, Opt. Topology file

E.111. genboxd 287

Other options
-h bool no Print help info and quit

-nice int 19 Set the nicelevel
-box vector 0 0 0 box size

-nmol int 0 no of extra molecules to insert
-try int 10 try inserting -nmol*-try times

-seed int 1997 random generator seed
-vdwd real 0.105 default vdwaals distance

-shell real 0 thickness of optional water layer around solute

• Molecules must be whole in the initial configurations.

• At the moment -ci only works when inserting one molecule.

E.111 genbox d

Genbox can do one of 3 things:

1) Generate a box of solvent. Specify -cs and -box. Or specify -cs and -cp with a structure file with a box,
but without atoms.

2) Solvate a solute configuration, eg. a protein, in a bath of solvent molecules. Specify-cp (solute) and
-cs (solvent). The box specified in the solute coordinate file (-cp) is used, unless-box is set, which
also centers the solute. The programeditconf has more sophisticated options to change the box and
center the solute. Solvent molecules are removed from the box where the distance between any atom of the
solute molecule(s) and any atom of the solvent molecule is less than the sum of the VanderWaals radii of
both atoms. A database (vdwradii.dat) of VanderWaals radii is read by the program, atoms not in the
database are assigned a default distance-vdw .

3) Insert a number (-nmol) of extra molecules (-ci) at random positions. The program iterates untilnmol
molecules have been inserted in the box. To test whether an insertion is successful the same VanderWaals
criterium is used as for removal of solvent molecules. When no appropriately sized holes (holes that can
hold an extra molecule) are available the program tries for-nmol * -try times before giving up. Increase
-try if you have several small holes to fill.

The default solvent is Simple Point Charge water (SPC), with coordinates from$GMXLIB/spc216.gro .
Other solvents are also supported, as well as mixed solvents. The only restriction to solvent types is that a
solvent molecule consists of exactly one residue. The residue information in the coordinate files is used, and
should therefore be more or less consistent. In practice this means that two subsequent solvent molecules
in the solvent coordinate file should have different residue number. The box of solute is built by stacking
the coordinates read from the coordinate file. This means that these coordinates should be equlibrated in
periodic boundary conditions to ensure a good alignment of molecules on the stacking interfaces.

The program can optionally rotate the solute molecule to align the longest molecule axis along a box edge.
This way the amount of solvent molecules necessary is reduced. It should be kept in mind that this only
works for short simulations, as eg. an alpha-helical peptide in solution can rotate over 90 degrees, within
500 ps. In general it is therefore better to make a more or less cubic box.

Setting -shell larger than zero will place a layer of water of the specified thickness (nm) around the solute.
Hint: it is a good idea to put the protein in the center of a box first (using editconf).

Finally, genbox will optionally remove lines from your topology file in which a number of solvent molecules
is already added, and adds a line with the total number of solvent molecules in your coordinate file.

Files

288 Appendix E. Manual Pages

-cp protein.gro Input, Opt. Generic structure: gro g96 pdb tpr tpb tpa xml
-cs spc216.gro Input, Opt., Lib.Generic structure: gro g96 pdb tpr tpb tpa xml
-ci insert.gro Input, Opt. Generic structure: gro g96 pdb tpr tpb tpa xml

-o out.gro Output Generic structure: gro g96 pdb xml
-p topol.top In/Out, Opt. Topology file

Other options
-h bool no Print help info and quit

-nice int 19 Set the nicelevel
-box vector 0 0 0 box size

-nmol int 0 no of extra molecules to insert
-try int 10 try inserting -nmol*-try times

-seed int 1997 random generator seed
-vdwd real 0.105 default vdwaals distance

-shell real 0 thickness of optional water layer around solute

• Molecules must be whole in the initial configurations.

• At the moment -ci only works when inserting one molecule.

E.112 genconf

genconf multiplies a given coordinate file by simply stacking them on top of each other, like a small child
playing with wooden blocks. The program makes a grid ofuser definedproportions (-nbox), and inter-
spaces the grid point with an extra space-dist .

When option-rot is used the program does not check for overlap between molecules on grid points. It is
recommended to make the box in the input file at least as big as the coordinates + Van der Waals radius.

If the optional trajectory file is given, conformations are not generated, but read from this file and translated
appropriately to build the grid.

Files
-f conf.gro Input Generic structure: gro g96 pdb tpr tpb tpa xml
-o out.gro Output Generic structure: gro g96 pdb xml

-trj traj.xtc Input, Opt. Generic trajectory: xtc trr trj gro g96 pdb

Other options
-h bool no Print help info and quit

-nice int 0 Set the nicelevel
-nbox vector 1 1 1 Number of boxes
-dist vector 0 0 0 Distance between boxes
-seed int 0 Random generator seed, if 0 generated from the time

-rot bool no Randomly rotate conformations
-shuffle bool no Random shuffling of molecules

-sort bool no Sort molecules on X coord
-block int 1 Divide the box in blocks on this number of cpus

-nmolat int 3 Number of atoms per molecule, assumed to start from 0. If you set this
wrong, it will screw up your system!

-maxrot vector90 90 90 Maximum random rotation
-renumber bool no Renumber residues

• The program should allow for random displacement off lattice points.

E.113. genconfd 289

E.113 genconf d

genconf multiplies a given coordinate file by simply stacking them on top of each other, like a small child
playing with wooden blocks. The program makes a grid ofuser definedproportions (-nbox), and inter-
spaces the grid point with an extra space-dist .

When option-rot is used the program does not check for overlap between molecules on grid points. It is
recommended to make the box in the input file at least as big as the coordinates + Van der Waals radius.

If the optional trajectory file is given, conformations are not generated, but read from this file and translated
appropriately to build the grid.

Files
-f conf.gro Input Generic structure: gro g96 pdb tpr tpb tpa xml
-o out.gro Output Generic structure: gro g96 pdb xml

-trj traj.xtc Input, Opt. Generic trajectory: xtc trr trj gro g96 pdb

Other options
-h bool no Print help info and quit

-nice int 0 Set the nicelevel
-nbox vector 1 1 1 Number of boxes
-dist vector 0 0 0 Distance between boxes
-seed int 0 Random generator seed, if 0 generated from the time

-rot bool no Randomly rotate conformations
-shuffle bool no Random shuffling of molecules

-sort bool no Sort molecules on X coord
-block int 1 Divide the box in blocks on this number of cpus

-nmolat int 3 Number of atoms per molecule, assumed to start from 0. If you set this
wrong, it will screw up your system!

-maxrot vector90 90 90 Maximum random rotation
-renumber bool no Renumber residues

• The program should allow for random displacement off lattice points.

E.114 genion

genion replaces solvent molecules by monoatomic ions at the position of the first atoms with the most favor-
able electrostatic potential or at random. The potential is calculated on all atoms, using normal GROMACS
particle based methods (in contrast to other methods based on solving the Poisson-Boltzmann equation).
The potential is recalculated after every ion insertion. If specified in the run input file, a reaction field,
shift function or user function can be used. For the user function a table file can be specified with the
option -table . The group of solvent molecules should be continuous and all molecules should have the
same number of atoms. The user should add the ion molecules to the topology file and include the file
ions.itp . Ion names for Gromos96 should include the charge.

With the option-pot the potential can be written as B-factors in a pdb file (for visualisation using e.g.
rasmol). The unit of the potential is 1000 kJ/(mol e), the scaling be changed with the-scale option.

For larger ions, e.g. sulfate we recommended to use genbox.

Files
-s topol.tpr Input Generic run input: tpr tpb tpa xml

-table table.xvg Input, Opt. xvgr/xmgr file
-n index.ndx Input, Opt. Index file

290 Appendix E. Manual Pages

-o out.gro Output Generic structure: gro g96 pdb xml
-g genion.log Output Log file

-pot pot.pdb Output, Opt. Protein data bank file

Other options
-h bool no Print help info and quit

-nice int 19 Set the nicelevel
-np int 0 Number of positive ions

-pname string Na Name of the positive ion
-pq real 1 Charge of the positive ion
-nn int 0 Number of negative ions

-nname string Cl Name of the negative ion
-nq real -1 Charge of the negative ion

-rmin real 0.6 Minimum distance between ions
-random bool no Use random placement of ions instead of based on potential. The rmin

option should still work
-seed int 1993 Seed for random number generator

-scale real 0.001 Scaling factor for the potential for -pot

E.115 genion d

genion replaces solvent molecules by monoatomic ions at the position of the first atoms with the most favor-
able electrostatic potential or at random. The potential is calculated on all atoms, using normal GROMACS
particle based methods (in contrast to other methods based on solving the Poisson-Boltzmann equation).
The potential is recalculated after every ion insertion. If specified in the run input file, a reaction field,
shift function or user function can be used. For the user function a table file can be specified with the
option -table . The group of solvent molecules should be continuous and all molecules should have the
same number of atoms. The user should add the ion molecules to the topology file and include the file
ions.itp . Ion names for Gromos96 should include the charge.

With the option-pot the potential can be written as B-factors in a pdb file (for visualisation using e.g.
rasmol). The unit of the potential is 1000 kJ/(mol e), the scaling be changed with the-scale option.

For larger ions, e.g. sulfate we recommended to use genbox.

Files
-s topol.tpr Input Generic run input: tpr tpb tpa xml

-table table.xvg Input, Opt. xvgr/xmgr file
-n index.ndx Input, Opt. Index file
-o out.gro Output Generic structure: gro g96 pdb xml
-g genion.log Output Log file

-pot pot.pdb Output, Opt. Protein data bank file

Other options
-h bool no Print help info and quit

-nice int 19 Set the nicelevel
-np int 0 Number of positive ions

-pname string Na Name of the positive ion
-pq real 1 Charge of the positive ion
-nn int 0 Number of negative ions

-nname string Cl Name of the negative ion
-nq real -1 Charge of the negative ion

-rmin real 0.6 Minimum distance between ions

E.116. genpr 291

-random bool no Use random placement of ions instead of based on potential. The rmin
option should still work

-seed int 1993 Seed for random number generator
-scale real 0.001 Scaling factor for the potential for -pot

E.116 genpr

genpr produces an include file for a topology containing a list of atom numbers and three force constants
for the X, Y and Z direction. A single isotropic force constant may be given on the command line instead
of three components.

WARNING: genpr only works for the first molecule. Position restraints are interactions within molecules,
therefore they should be included within the correct[moleculetype] block in the topology. Since
the atom numbers in every moleculetype in the topology start at 1 and the numbers in the input file for genpr
number consecutively from 1, genpr will only produce a useful file for the first molecule.

The -of option produces an index file that can be used for freezing atoms. In this case the input file must be
a pdb file.

Files
-f conf.gro Input Generic structure: gro g96 pdb tpr tpb tpa xml
-n index.ndx Input, Opt. Index file
-o posre.itp Output Include file for topology

-of freeze.ndx Output, Opt. Index file

Other options
-h bool no Print help info and quit

-nice int 0 Set the nicelevel
-fc vector

1000 1000 1000 force constants (kJ mol-1 nm-2)
-freeze real 0 if the -of option or this one is given an index file will be written containing

atom numbers of all atoms that have a B-factor less than the level given
here

E.117 genpr d

genpr produces an include file for a topology containing a list of atom numbers and three force constants
for the X, Y and Z direction. A single isotropic force constant may be given on the command line instead
of three components.

WARNING: genpr only works for the first molecule. Position restraints are interactions within molecules,
therefore they should be included within the correct[moleculetype] block in the topology. Since
the atom numbers in every moleculetype in the topology start at 1 and the numbers in the input file for genpr
number consecutively from 1, genpr will only produce a useful file for the first molecule.

The -of option produces an index file that can be used for freezing atoms. In this case the input file must be
a pdb file.

Files
-f conf.gro Input Generic structure: gro g96 pdb tpr tpb tpa xml
-n index.ndx Input, Opt. Index file
-o posre.itp Output Include file for topology

-of freeze.ndx Output, Opt. Index file

292 Appendix E. Manual Pages

Other options
-h bool no Print help info and quit

-nice int 0 Set the nicelevel
-fc vector

1000 1000 1000 force constants (kJ mol-1 nm-2)
-freeze real 0 if the -of option or this one is given an index file will be written containing

atom numbers of all atoms that have a B-factor less than the level given
here

E.118 gmxcheck

gmxcheck reads a trajectory (.trj , .trr or .xtc) or an energy file (.ene or .edr) and prints out useful
information about them.

Option-c checks for presence of coordinates, velocities and box in the file, for close contacts (smaller than
-vdwfac and not bonded, i.e. not between-bonlo and -bonhi , all relative to the sum of both Van
der Waals radii) and atoms outside the box (these may occur often and are no problem). If velocities are
present, an estimated temperature will be calculated from them.

The program will compare run input (.tpr , .tpb or .tpa) files when both-s1 and-s2 are supplied.
Similarly a pair of trajectory files can be compared (using the-f2 option), or a pair of energy files (using
the-e2 option).

Files
-f traj.xtc Input, Opt. Generic trajectory: xtc trr trj gro g96 pdb

-f2 traj.xtc Input, Opt. Generic trajectory: xtc trr trj gro g96 pdb
-s1 top1.tpr Input, Opt. Generic run input: tpr tpb tpa xml
-s2 top2.tpr Input, Opt. Generic run input: tpr tpb tpa xml

-c topol.tpr Input, Opt. Structure+mass(db): tpr tpb tpa gro g96 pdb xml
-e ener.edr Input, Opt. Generic energy: edr ene

-e2 ener2.edr Input, Opt. Generic energy: edr ene

Other options
-h bool no Print help info and quit

-nice int 0 Set the nicelevel
-vdwfac real 0.8 Fraction of sum of VdW radii used as warning cutoff

-bonlo real 0.4 Min. fract. of sum of VdW radii for bonded atoms
-bonhi real 0.7 Max. fract. of sum of VdW radii for bonded atoms

-tol real 0 Relative tolerance for comparing real values defined as 2*(a-
b)/(oraor+orbor)

-lastener string Last energy term to compare (if not given all are tested). It makes sense
to go up until the Pressure.

E.119 gmxcheck d

gmxcheck reads a trajectory (.trj , .trr or .xtc) or an energy file (.ene or .edr) and prints out useful
information about them.

Option-c checks for presence of coordinates, velocities and box in the file, for close contacts (smaller than
-vdwfac and not bonded, i.e. not between-bonlo and -bonhi , all relative to the sum of both Van
der Waals radii) and atoms outside the box (these may occur often and are no problem). If velocities are
present, an estimated temperature will be calculated from them.

E.120. gmxdump 293

The program will compare run input (.tpr , .tpb or .tpa) files when both-s1 and-s2 are supplied.
Similarly a pair of trajectory files can be compared (using the-f2 option), or a pair of energy files (using
the-e2 option).

Files
-f traj.xtc Input, Opt. Generic trajectory: xtc trr trj gro g96 pdb

-f2 traj.xtc Input, Opt. Generic trajectory: xtc trr trj gro g96 pdb
-s1 top1.tpr Input, Opt. Generic run input: tpr tpb tpa xml
-s2 top2.tpr Input, Opt. Generic run input: tpr tpb tpa xml

-c topol.tpr Input, Opt. Structure+mass(db): tpr tpb tpa gro g96 pdb xml
-e ener.edr Input, Opt. Generic energy: edr ene

-e2 ener2.edr Input, Opt. Generic energy: edr ene

Other options
-h bool no Print help info and quit

-nice int 0 Set the nicelevel
-vdwfac real 0.8 Fraction of sum of VdW radii used as warning cutoff

-bonlo real 0.4 Min. fract. of sum of VdW radii for bonded atoms
-bonhi real 0.7 Max. fract. of sum of VdW radii for bonded atoms

-tol real 0 Relative tolerance for comparing real values defined as 2*(a-
b)/(oraor+orbor)

-lastener string Last energy term to compare (if not given all are tested). It makes sense
to go up until the Pressure.

E.120 gmxdump

gmxdump reads a run input file (.tpa /.tpr /.tpb), a trajectory (.trj /.trr /.xtc) or an energy file
(.ene /.edr) and prints that to standard output in a readable format. This program is essential for checking
your run input file in case of problems.

Files
-s topol.tpr Input, Opt. Generic run input: tpr tpb tpa xml
-f traj.xtc Input, Opt. Generic trajectory: xtc trr trj gro g96 pdb
-e ener.edr Input, Opt. Generic energy: edr ene

Other options
-h bool no Print help info and quit

-nice int 0 Set the nicelevel
-nr bool yes Show index numbers in output (leaving them out makes comparison eas-

ier, but creates a useless topology)

E.121 gmxdump d

gmxdump reads a run input file (.tpa /.tpr /.tpb), a trajectory (.trj /.trr /.xtc) or an energy file
(.ene /.edr) and prints that to standard output in a readable format. This program is essential for checking
your run input file in case of problems.

Files
-s topol.tpr Input, Opt. Generic run input: tpr tpb tpa xml
-f traj.xtc Input, Opt. Generic trajectory: xtc trr trj gro g96 pdb
-e ener.edr Input, Opt. Generic energy: edr ene

294 Appendix E. Manual Pages

Other options
-h bool no Print help info and quit

-nice int 0 Set the nicelevel
-nr bool yes Show index numbers in output (leaving them out makes comparison eas-

ier, but creates a useless topology)

E.122 grompp

The gromacs preprocessor reads a molecular topology file, checks the validity of the file, expands the
topology from a molecular description to an atomic description. The topology file contains information
about molecule types and the number of molecules, the preprocessor copies each molecule as needed.
There is no limitation on the number of molecule types. Bonds and bond-angles can be converted into
constraints, separately for hydrogens and heavy atoms. Then a coordinate file is read and velocities can be
generated from a Maxwellian distribution if requested. grompp also reads parameters for the mdrun (eg.
number of MD steps, time step, cut-off), and others such as NEMD parameters, which are corrected so that
the net acceleration is zero. Eventually a binary file is produced that can serve as the sole input file for the
MD program.

grompp uses the atom names from the topology file. The atom names in the coordinate file (option-c)
are only read to generate warnings when they do not match the atom names in the topology. Note that
the atom names are irrelevant for the simulation as only the atom types are used for generating interaction
parameters.

grompp calls the c-preprocessor to resolve includes, macros etcetera. To specify a macro-preprocessor
other than /lib/cpp (such as m4) you can put a line in your parameter file specifying the path to that cpp.
Specifying-pp will get the pre-processed topology file written out.

If your system does not have a c-preprocessor, you can still use grompp, but you do not have access to the
features from the cpp. Command line options to the c-preprocessor can be given in the.mdp file. See your
local manual (man cpp).

When using position restraints a file with restraint coordinates can be supplied with-r , otherwise restrain-
ing will be done with respect to the conformation from the-c option. For free energy calculation the the
coordinates for the B topology can be supplied with-rb , otherwise they will be equal to those of the A
topology.

Starting coordinates can be read from trajectory with-t . The last frame with coordinates and velocities
will be read, unless the-time option is used. Note that these velocities will not be used whengen vel =
yes in your .mdp file. An energy file can be supplied with-e to have exact restarts when using pressure
and/or temperature coupling. For an exact restart do not forget to turn off velocity generation and turn on
unconstrained starting when constraints are present in the system. If you want to continue a crashed run, it
is easier to usetpbconv .

When preparing an input file for parallelmdrun it may be advantageous to partition the simulation system
over the nodes in a way in which each node has a similar amount of work. The -shuffle option does just
that. For a single protein in water this does not make a difference, however for a system where you have
many copies of different molecules (e.g. liquid mixture or membrane/water system) the option is definitely
a must. The output trajectories will also be shuffled.grompp writes an index file (option-deshuf) which
can be used withtrjconv to deshuffle the trajectories.

A further optimization for parallel systems is the-sort option which sorts molecules according to coor-
dinates. This must always be used in conjunction with-shuffle , however sorting also works when you
have only one molecule type.

Using the-morse option grompp can convert the harmonic bonds in your topology to morse potentials.

E.123. gromppd 295

This makes it possible to break bonds. For this option to work you need an extra file in your $GMXLIB
with dissociation energy. Use the -debug option to get more information on the workings of this option
(look for MORSE in the grompp.log file using less or something like that).

By default all bonded interactions which have constant energy due to dummy atom constructions will be
removed. If this constant energy is not zero, this will result in a shift in the total energy. All bonded
interactions can be kept by turning off-rmdumbds . Additionally, all constraints for distances which will
be constant anyway because of dummy atom constructions will be removed. If any constraints remain
which involve dummy atoms, a fatal error will result.

To verify your run input file, please make notice of all warnings on the screen, and correct where necessary.
Do also look at the contents of themdout.mdp file, this contains comment lines, as well as the input that
grompp has read. If in doubt you can start grompp with the-debug option which will give you more
information in a file called grompp.log (along with real debug info). Finally, you can see the contents of the
run input file with thegmxdumpprogram.

Files
-f grompp.mdp Input, Opt. grompp input file with MD parameters

-po mdout.mdp Output grompp input file with MD parameters
-c conf.gro Input Generic structure: gro g96 pdb tpr tpb tpa xml
-r conf.gro Input, Opt. Generic structure: gro g96 pdb tpr tpb tpa xml

-rb conf.gro Input, Opt. Generic structure: gro g96 pdb tpr tpb tpa xml
-n index.ndx Input, Opt. Index file

-deshuf deshuf.ndx Output, Opt. Index file
-p topol.top Input Topology file

-pp processed.top Output, Opt. Topology file
-o topol.tpr Output Generic run input: tpr tpb tpa xml
-t traj.trr Input, Opt. Full precision trajectory: trr trj
-e ener.edr Input, Opt. Generic energy: edr ene

Other options
-h bool no Print help info and quit

-nice int 0 Set the nicelevel
-v bool yes Be loud and noisy

-time real -1 Take frame at or first after this time.
-np int 1 Generate statusfile for # nodes

-shuffle bool no Shuffle molecules over nodes
-sort bool no Sort molecules according to X coordinate

-rmdumbds bool yes Remove constant bonded interactions with dummies
-load string Releative load capacity of each node on a parallel machine. Be sure to

use quotes around the string, which should contain a number for each
node

-maxwarn int 10 Number of warnings after which input processing stops
-check14 bool no Remove 1-4 interactions without Van der Waals

-renum bool yes Renumber atomtypes and minimize number of atomtypes

E.123 grompp d

The gromacs preprocessor reads a molecular topology file, checks the validity of the file, expands the
topology from a molecular description to an atomic description. The topology file contains information
about molecule types and the number of molecules, the preprocessor copies each molecule as needed.
There is no limitation on the number of molecule types. Bonds and bond-angles can be converted into
constraints, separately for hydrogens and heavy atoms. Then a coordinate file is read and velocities can be

296 Appendix E. Manual Pages

generated from a Maxwellian distribution if requested. grompp also reads parameters for the mdrun (eg.
number of MD steps, time step, cut-off), and others such as NEMD parameters, which are corrected so that
the net acceleration is zero. Eventually a binary file is produced that can serve as the sole input file for the
MD program.

grompp uses the atom names from the topology file. The atom names in the coordinate file (option-c)
are only read to generate warnings when they do not match the atom names in the topology. Note that
the atom names are irrelevant for the simulation as only the atom types are used for generating interaction
parameters.

grompp calls the c-preprocessor to resolve includes, macros etcetera. To specify a macro-preprocessor
other than /lib/cpp (such as m4) you can put a line in your parameter file specifying the path to that cpp.
Specifying-pp will get the pre-processed topology file written out.

If your system does not have a c-preprocessor, you can still use grompp, but you do not have access to the
features from the cpp. Command line options to the c-preprocessor can be given in the.mdp file. See your
local manual (man cpp).

When using position restraints a file with restraint coordinates can be supplied with-r , otherwise restrain-
ing will be done with respect to the conformation from the-c option. For free energy calculation the the
coordinates for the B topology can be supplied with-rb , otherwise they will be equal to those of the A
topology.

Starting coordinates can be read from trajectory with-t . The last frame with coordinates and velocities
will be read, unless the-time option is used. Note that these velocities will not be used whengen vel =
yes in your .mdp file. An energy file can be supplied with-e to have exact restarts when using pressure
and/or temperature coupling. For an exact restart do not forget to turn off velocity generation and turn on
unconstrained starting when constraints are present in the system. If you want to continue a crashed run, it
is easier to usetpbconv .

When preparing an input file for parallelmdrun it may be advantageous to partition the simulation system
over the nodes in a way in which each node has a similar amount of work. The -shuffle option does just
that. For a single protein in water this does not make a difference, however for a system where you have
many copies of different molecules (e.g. liquid mixture or membrane/water system) the option is definitely
a must. The output trajectories will also be shuffled.grompp writes an index file (option-deshuf) which
can be used withtrjconv to deshuffle the trajectories.

A further optimization for parallel systems is the-sort option which sorts molecules according to coor-
dinates. This must always be used in conjunction with-shuffle , however sorting also works when you
have only one molecule type.

Using the-morse option grompp can convert the harmonic bonds in your topology to morse potentials.
This makes it possible to break bonds. For this option to work you need an extra file in your $GMXLIB
with dissociation energy. Use the -debug option to get more information on the workings of this option
(look for MORSE in the grompp.log file using less or something like that).

By default all bonded interactions which have constant energy due to dummy atom constructions will be
removed. If this constant energy is not zero, this will result in a shift in the total energy. All bonded
interactions can be kept by turning off-rmdumbds . Additionally, all constraints for distances which will
be constant anyway because of dummy atom constructions will be removed. If any constraints remain
which involve dummy atoms, a fatal error will result.

To verify your run input file, please make notice of all warnings on the screen, and correct where necessary.
Do also look at the contents of themdout.mdp file, this contains comment lines, as well as the input that
grompp has read. If in doubt you can start grompp with the-debug option which will give you more
information in a file called grompp.log (along with real debug info). Finally, you can see the contents of the
run input file with thegmxdumpprogram.

Files

E.124. highway 297

-f grompp.mdp Input, Opt. grompp input file with MD parameters
-po mdout.mdp Output grompp input file with MD parameters

-c conf.gro Input Generic structure: gro g96 pdb tpr tpb tpa xml
-r conf.gro Input, Opt. Generic structure: gro g96 pdb tpr tpb tpa xml

-rb conf.gro Input, Opt. Generic structure: gro g96 pdb tpr tpb tpa xml
-n index.ndx Input, Opt. Index file

-deshuf deshuf.ndx Output, Opt. Index file
-p topol.top Input Topology file

-pp processed.top Output, Opt. Topology file
-o topol.tpr Output Generic run input: tpr tpb tpa xml
-t traj.trr Input, Opt. Full precision trajectory: trr trj
-e ener.edr Input, Opt. Generic energy: edr ene

Other options
-h bool no Print help info and quit

-nice int 0 Set the nicelevel
-v bool yes Be loud and noisy

-time real -1 Take frame at or first after this time.
-np int 1 Generate statusfile for # nodes

-shuffle bool no Shuffle molecules over nodes
-sort bool no Sort molecules according to X coordinate

-rmdumbds bool yes Remove constant bonded interactions with dummies
-load string Releative load capacity of each node on a parallel machine. Be sure to

use quotes around the string, which should contain a number for each
node

-maxwarn int 10 Number of warnings after which input processing stops
-check14 bool no Remove 1-4 interactions without Van der Waals

-renum bool yes Renumber atomtypes and minimize number of atomtypes

E.124 highway

highway is the gromacs highway simulator. It is an X-windows gadget that shows a (periodic) autobahn
with a user defined number of cars. Fog can be turned on or off to increase the number of crashes. Nice for
a background CPU-eater

Files
-f highway.dat Input Generic data file
-a auto.dat Input Generic data file

Other options
-h bool no Print help info and quit

-nice int 0 Set the nicelevel
-b time -1 First frame (ps) to read from trajectory
-e time -1 Last frame (ps) to read from trajectory

-dt time -1 Only use frame when t MOD dt = first time (ps)

E.125 highway d

highway is the gromacs highway simulator. It is an X-windows gadget that shows a (periodic) autobahn
with a user defined number of cars. Fog can be turned on or off to increase the number of crashes. Nice for
a background CPU-eater

298 Appendix E. Manual Pages

Files
-f highway.dat Input Generic data file
-a auto.dat Input Generic data file

Other options
-h bool no Print help info and quit

-nice int 0 Set the nicelevel
-b time -1 First frame (ps) to read from trajectory
-e time -1 Last frame (ps) to read from trajectory

-dt time -1 Only use frame when t MOD dt = first time (ps)

E.126 make ndx

Index groups are necessary for almost every gromacs program. All these programs can generate default
index groups. You ONLY have to use makendx when you need SPECIAL index groups. There is a default
index group for the whole system, 9 default index groups are generated for proteins, a default index group
is generated for every other residue name.

When no index file is supplied, also makendx will generate the default groups. With the index editor you
can select on atom, residue and chain names and numbers. When a run input file is supplied you can also
select on atom type. You can use NOT, AND and OR, you can split groups into chains, residues or atoms.
You can delete and rename groups.

The atom numbering in the editor and the index file starts at 1.

Files
-f conf.gro Input, Opt. Generic structure: gro g96 pdb tpr tpb tpa xml
-n index.ndx Input, Opt., Mult.Index file
-o index.ndx Output Index file

Other options
-h bool no Print help info and quit

-nice int 0 Set the nicelevel
-natoms int 0 set number of atoms (default: read from coordinate or index file)

-verbose bool no Verbose output

E.127 make ndx d

Index groups are necessary for almost every gromacs program. All these programs can generate default
index groups. You ONLY have to use makendx when you need SPECIAL index groups. There is a default
index group for the whole system, 9 default index groups are generated for proteins, a default index group
is generated for every other residue name.

When no index file is supplied, also makendx will generate the default groups. With the index editor you
can select on atom, residue and chain names and numbers. When a run input file is supplied you can also
select on atom type. You can use NOT, AND and OR, you can split groups into chains, residues or atoms.
You can delete and rename groups.

The atom numbering in the editor and the index file starts at 1.

Files
-f conf.gro Input, Opt. Generic structure: gro g96 pdb tpr tpb tpa xml
-n index.ndx Input, Opt., Mult.Index file
-o index.ndx Output Index file

E.128. mdrun 299

Other options
-h bool no Print help info and quit

-nice int 0 Set the nicelevel
-natoms int 0 set number of atoms (default: read from coordinate or index file)

-verbose bool no Verbose output

E.128 mdrun

The mdrun program is the main computational chemistry engine within GROMACS. Obviously, it performs
Molecular Dynamics simulations, but it can also perform Brownian Dynamics and Langevin Dynamics as
well as Conjugate Gradient or Steepest Descents energy minimization. Normal mode analysis is another
option. In this case mdrun builds a Hessian matrix from single conformation. For usual Normal Modes-like
calculations, make sure that the structure provided is properly energy-minimised. The generated matrix can
be diagonalized by gnmeig.

The mdrun program reads the run input file (-s) and distributes the topology over nodes if needed. The
coordinates are passed around, so that computations can begin. First a neighborlist is made, then the forces
are computed. The forces are globally summed, and the velocities and positions are updated. If neces-
sary shake is performed to constrain bond lengths and/or bond angles. Temperature and Pressure can be
controlled using weak coupling to a bath.

mdrun produces at least three output file, plus one log file (-g) per node. The trajectory file (-o), contains
coordinates, velocities and optionally forces. The structure file (-c) contains the coordinates and velocities
of the last step. The energy file (-e) contains energies, the temperature, pressure, etc, a lot of these things
are also printed in the log file of node 0. Optionally coordinates can be written to a compressed trajectory
file (-x).

When running in parallel with PVM or an old version of MPI the-np option must be given to indicate the
number of nodes.

The option-dgdl is only used when free energy perturbation is turned on.

With -rerun an input trajectory can be given for which forces and energies will be (re)calculated. Neigh-
bor searching will be performed for every frame, unlessnstlist is zero (see the.mdp file).

ED (essential dynamics) sampling is switched on by using the-ei flag followed by an.edi file. The
.edi file can be produced using options in the essdyn menu of the WHAT IF program. mdrun produces a
.edo file that contains projections of positions, velocities and forces onto selected eigenvectors.

The -table option can be used to pass mdrun a formatted table with user-defined potential functions. The file
is read from either the current directory or from the GMXLIB directory. A number of preformatted tables
are presented in the GMXLIB dir, for 6-8, 6-9, 6-10, 6-11, 6-12 Lennard Jones potentials with normal
Coulomb.

The options-pi , -po , -pd , -pn are used for potential of mean force calculations and umbrella sampling.
See manual.

Finally some experimental algorithms can be tested when the appropriate options have been given. Cur-
rently under investigation are: polarizibility, glass simulations, Free energy perturbation, X-Ray bombard-
ments and parallel independent simulations.

When mdrun receives a TERM signal, it will set nsteps to the current step plus one. When mdrun receives
a USR1 signal, it will set nsteps to the next multiple of nstxout after the current step. In both cases all
the usual output will be written to file. When running with MPI, a signal to one of the mdrun processes is
sufficient, this signal should not be sent to mpirun or the mdrun process that is the parent of the others.

Files

300 Appendix E. Manual Pages

-s topol.tpr Input Generic run input: tpr tpb tpa xml
-o traj.trr Output Full precision trajectory: trr trj
-x traj.xtc Output, Opt. Compressed trajectory (portable xdr format)
-c confout.gro Output Generic structure: gro g96 pdb xml
-e ener.edr Output Generic energy: edr ene
-g md.log Output Log file

-dgdl dgdl.xvg Output, Opt. xvgr/xmgr file
-field field.xvg Output, Opt. xvgr/xmgr file
-table table.xvg Input, Opt. xvgr/xmgr file
-rerun rerun.xtc Input, Opt. Generic trajectory: xtc trr trj gro g96 pdb

-ei sam.edi Input, Opt. ED sampling input
-eo sam.edo Output, Opt. ED sampling output

-j wham.gct Input, Opt. General coupling stuff
-jo bam.gct Input, Opt. General coupling stuff

-ffout gct.xvg Output, Opt. xvgr/xmgr file
-devout deviatie.xvg Output, Opt. xvgr/xmgr file

-runav runaver.xvg Output, Opt. xvgr/xmgr file
-pi pull.ppa Input, Opt. Pull parameters
-po pullout.ppa Output, Opt. Pull parameters
-pd pull.pdo Output, Opt. Pull data output
-pn pull.ndx Input, Opt. Index file

-mtx nm.mtx Output, Opt. Hessian matrix
-dn dipole.ndx Output, Opt. Index file

Other options
-h bool no Print help info and quit

-nice int 19 Set the nicelevel
-deffnm string Set the default filename for all file options

-np int 1 Number of nodes, must be the same as used for grompp
-nt int 1 Number of threads to start on each node

-v bool no Be loud and noisy
-compact bool yes Write a compact log file

-multi bool no Do multiple simulations in parallel (only with -np> 1)
-glas bool no Do glass simulation with special long range corrections

-ionize bool no Do a simulation including the effect of an X-Ray bombardment on your
system

E.129 mdrun d

The mdrun program is the main computational chemistry engine within GROMACS. Obviously, it performs
Molecular Dynamics simulations, but it can also perform Brownian Dynamics and Langevin Dynamics as
well as Conjugate Gradient or Steepest Descents energy minimization. Normal mode analysis is another
option. In this case mdrun builds a Hessian matrix from single conformation. For usual Normal Modes-like
calculations, make sure that the structure provided is properly energy-minimised. The generated matrix can
be diagonalized by gnmeig.

The mdrun program reads the run input file (-s) and distributes the topology over nodes if needed. The
coordinates are passed around, so that computations can begin. First a neighborlist is made, then the forces
are computed. The forces are globally summed, and the velocities and positions are updated. If neces-
sary shake is performed to constrain bond lengths and/or bond angles. Temperature and Pressure can be
controlled using weak coupling to a bath.

E.129. mdrund 301

mdrun produces at least three output file, plus one log file (-g) per node. The trajectory file (-o), contains
coordinates, velocities and optionally forces. The structure file (-c) contains the coordinates and velocities
of the last step. The energy file (-e) contains energies, the temperature, pressure, etc, a lot of these things
are also printed in the log file of node 0. Optionally coordinates can be written to a compressed trajectory
file (-x).

When running in parallel with PVM or an old version of MPI the-np option must be given to indicate the
number of nodes.

The option-dgdl is only used when free energy perturbation is turned on.

With -rerun an input trajectory can be given for which forces and energies will be (re)calculated. Neigh-
bor searching will be performed for every frame, unlessnstlist is zero (see the.mdp file).

ED (essential dynamics) sampling is switched on by using the-ei flag followed by an.edi file. The
.edi file can be produced using options in the essdyn menu of the WHAT IF program. mdrun produces a
.edo file that contains projections of positions, velocities and forces onto selected eigenvectors.

The -table option can be used to pass mdrun a formatted table with user-defined potential functions. The file
is read from either the current directory or from the GMXLIB directory. A number of preformatted tables
are presented in the GMXLIB dir, for 6-8, 6-9, 6-10, 6-11, 6-12 Lennard Jones potentials with normal
Coulomb.

The options-pi , -po , -pd , -pn are used for potential of mean force calculations and umbrella sampling.
See manual.

Finally some experimental algorithms can be tested when the appropriate options have been given. Cur-
rently under investigation are: polarizibility, glass simulations, Free energy perturbation, X-Ray bombard-
ments and parallel independent simulations.

When mdrun receives a TERM signal, it will set nsteps to the current step plus one. When mdrun receives
a USR1 signal, it will set nsteps to the next multiple of nstxout after the current step. In both cases all
the usual output will be written to file. When running with MPI, a signal to one of the mdrun processes is
sufficient, this signal should not be sent to mpirun or the mdrun process that is the parent of the others.
Files

-s topol.tpr Input Generic run input: tpr tpb tpa xml
-o traj.trr Output Full precision trajectory: trr trj
-x traj.xtc Output, Opt. Compressed trajectory (portable xdr format)
-c confout.gro Output Generic structure: gro g96 pdb xml
-e ener.edr Output Generic energy: edr ene
-g md.log Output Log file

-dgdl dgdl.xvg Output, Opt. xvgr/xmgr file
-field field.xvg Output, Opt. xvgr/xmgr file
-table table.xvg Input, Opt. xvgr/xmgr file
-rerun rerun.xtc Input, Opt. Generic trajectory: xtc trr trj gro g96 pdb

-ei sam.edi Input, Opt. ED sampling input
-eo sam.edo Output, Opt. ED sampling output

-j wham.gct Input, Opt. General coupling stuff
-jo bam.gct Input, Opt. General coupling stuff

-ffout gct.xvg Output, Opt. xvgr/xmgr file
-devout deviatie.xvg Output, Opt. xvgr/xmgr file

-runav runaver.xvg Output, Opt. xvgr/xmgr file
-pi pull.ppa Input, Opt. Pull parameters
-po pullout.ppa Output, Opt. Pull parameters
-pd pull.pdo Output, Opt. Pull data output
-pn pull.ndx Input, Opt. Index file

-mtx nm.mtx Output, Opt. Hessian matrix

302 Appendix E. Manual Pages

-dn dipole.ndx Output, Opt. Index file

Other options
-h bool no Print help info and quit

-nice int 19 Set the nicelevel
-deffnm string Set the default filename for all file options

-np int 1 Number of nodes, must be the same as used for grompp
-nt int 1 Number of threads to start on each node

-v bool no Be loud and noisy
-compact bool yes Write a compact log file

-multi bool no Do multiple simulations in parallel (only with -np> 1)
-glas bool no Do glass simulation with special long range corrections

-ionize bool no Do a simulation including the effect of an X-Ray bombardment on your
system

E.130 mk angndx

mk angndx makes an index file for calculation of angle distributions etc. It uses a run input file (.tpx) for
the definitions of the angles, dihedrals etc.

Files
-s topol.tpr Input Generic run input: tpr tpb tpa xml
-n angle.ndx Output Index file

Other options
-h bool no Print help info and quit

-nice int 0 Set the nicelevel
-type enum angle Type of angle: angle , g96-angle , dihedral , improper ,

ryckaert-bellemans or phi-psi

E.131 mk angndx d

mk angndx makes an index file for calculation of angle distributions etc. It uses a run input file (.tpx) for
the definitions of the angles, dihedrals etc.

Files
-s topol.tpr Input Generic run input: tpr tpb tpa xml
-n angle.ndx Output Index file

Other options
-h bool no Print help info and quit

-nice int 0 Set the nicelevel
-type enum angle Type of angle: angle , g96-angle , dihedral , improper ,

ryckaert-bellemans or phi-psi

E.132. ngmx 303

E.132 ngmx

ngmx is the Gromacs trajectory viewer. This program reads a trajectory file, a run input file and an index
file and plots a 3D structure of your molecule on your standard X Window screen. No need for a high end
graphics workstation, it even works on Monochrome screens.

The following features have been implemented: 3D view, rotation, translation and scaling of your molecule(s),
labels on atoms, animation of trajectories, hardcopy in PostScript format, user defined atom-filters runs on
MIT-X (real X), open windows and motif, user friendly menus, option to remove periodicity, option to show
computational box.

Some of the more common X command line options can be used:
-bg, -fg change colors, -font fontname, changes the font.

Files
-f traj.xtc Input Generic trajectory: xtc trr trj gro g96 pdb
-s topol.tpr Input Generic run input: tpr tpb tpa xml
-n index.ndx Input, Opt. Index file

Other options
-h bool no Print help info and quit

-nice int 0 Set the nicelevel
-b time -1 First frame (ps) to read from trajectory
-e time -1 Last frame (ps) to read from trajectory

-dt time -1 Only use frame when t MOD dt = first time (ps)

• Balls option does not work

• Some times dumps core without a good reason

E.133 ngmx d

ngmx is the Gromacs trajectory viewer. This program reads a trajectory file, a run input file and an index
file and plots a 3D structure of your molecule on your standard X Window screen. No need for a high end
graphics workstation, it even works on Monochrome screens.

The following features have been implemented: 3D view, rotation, translation and scaling of your molecule(s),
labels on atoms, animation of trajectories, hardcopy in PostScript format, user defined atom-filters runs on
MIT-X (real X), open windows and motif, user friendly menus, option to remove periodicity, option to show
computational box.

Some of the more common X command line options can be used:
-bg, -fg change colors, -font fontname, changes the font.

Files
-f traj.xtc Input Generic trajectory: xtc trr trj gro g96 pdb
-s topol.tpr Input Generic run input: tpr tpb tpa xml
-n index.ndx Input, Opt. Index file

Other options
-h bool no Print help info and quit

-nice int 0 Set the nicelevel
-b time -1 First frame (ps) to read from trajectory
-e time -1 Last frame (ps) to read from trajectory

-dt time -1 Only use frame when t MOD dt = first time (ps)

304 Appendix E. Manual Pages

• Balls option does not work

• Some times dumps core without a good reason

E.134 pdb2gmx

This program reads a pdb file, reads some database files, adds hydrogens to the molecules and generates
coordinates in Gromacs (Gromos) format and a topology in Gromacs format. These files can subsequently
be processed to generate a run input file.

The force fields supported currently are:

G43a1 GROMOS96 43a1 Forcefield (official distribution)

oplsaa OPLS-AA/L all-atom force field (2001 aminoacid dihedrals)

G43b1 GROMOS96 43b1 Vacuum Forcefield (official distribution)

gmx Gromacs Forcefield (a modified GROMOS87, see manual)

G43a2 GROMOS96 43a2 Forcefield (development) (improved alkane dihedrals)

The corresponding data files can be found in the library directory with names like ffXXXX.YYY. Check
chapter 5 of the manual for more information about file formats.

Note that a pdb file is nothing more than a file format, and it need not necessarily contain a protein structure.
Every kind of molecule for which there is support in the database can be converted. If there is no support
in the database, you can add it yourself.

The program has limited intelligence, it reads a number of database files, that allow it to make special
bonds (Cys-Cys, Heme-His, etc.), if necessary this can be done manually. The program can prompt the
user to select which kind of LYS, ASP, GLU, CYS or HIS residue she wants. For LYS the choice is
between LYS (two protons on NZ) or LYSH (three protons, default), for ASP and GLU unprotonated
(default) or protonated, for HIS the proton can be either on ND1 (HISA), on NE2 (HISB) or on both
(HISH). By default these selections are done automatically. For His, this is based on an optimal hydrogen
bonding conformation. Hydrogen bonds are defined based on a simple geometric criterium, specified by
the maximum hydrogen-donor-acceptor angle and donor-acceptor distance, which are set by-angle and
-dist respectively.

Option-merge will ask if you want to merge consecutive chains into one molecule, this can be useful for
connecting chains with a disulfide brigde.

pdb2gmx will also check the occupancy field of the pdb file. If any of the occupanccies are not one,
indicating that the atom is not resolved well in the structure, a warning message is issued. When a pdb file
does not originate from an X-Ray structure determination all occupancy fields may be zero. Either way, it
is up to the user to verify the correctness of the input data (read the article!).

During processing the atoms will be reordered according to Gromacs conventions. With-n an index file
can be generated that contains one group reordered in the same way. This allows you to convert a Gromos
trajectory and coordinate file to Gromos. There is one limitation: reordering is done after the hydrogens are
stripped from the input and before new hydrogens are added. This means that you should not use-ignh .

The .gro and.g96 file formats do not support chain identifiers. Therefore it is useful to enter a pdb file
name at the-o option when you want to convert a multichain pdb file.

The option-dummy removes hydrogen and fast improper dihedral motions. Angular and out-of-plane
motions can be removed by changing hydrogens into dummy atoms and fixing angles, which fixes their
position relative to neighboring atoms. Additionally, all atoms in the aromatic rings of the standard amino
acids (i.e. PHE, TRP, TYR and HIS) can be converted into dummy atoms, elminating the fast improper

E.135. pdb2gmxd 305

dihedral fluctuations in these rings. Note that in this case all other hydrogen atoms are also converted to
dummy atoms. The mass of all atoms that are converted into dummy atoms, is added to the heavy atoms.

Also slowing down of dihedral motion can be done with-heavyh done by increasing the hydrogen-mass
by a factor of 4. This is also done for water hydrogens to slow down the rotational motion of water. The
increase in mass of the hydrogens is subtracted from the bonded (heavy) atom so that the total mass of the
system remains the same.

Files
-f eiwit.pdb Input Generic structure: gro g96 pdb tpr tpb tpa xml
-o conf.gro Output Generic structure: gro g96 pdb xml
-p topol.top Output Topology file
-i posre.itp Output Include file for topology
-n clean.ndx Output, Opt. Index file
-q clean.pdb Output, Opt. Generic structure: gro g96 pdb xml

Other options
-h bool no Print help info and quit

-nice int 0 Set the nicelevel
-merge bool no Merge multiple chains into one molecule

-ff string G43a1 Select the force field, supported are: G43a1, oplsaa, gmx, G43a2, G43b1.
Run pdb2gmx -h for more information.

-water enum spc Water model to use: with GROMOS we recommend SPC, with OPLS,
TIP4P:spc , spce , tip3p , tip4p or tip5p

-inter bool no Set the next 6 options to interactive
-ss bool no Interactive SS bridge selection

-ter bool no Interactive termini selection, iso charged
-lys bool no Interactive Lysine selection, iso charged
-asp bool no Interactive Aspartic Acid selection, iso charged
-glu bool no Interactive Glutamic Acid selection, iso charged
-his bool no Interactive Histidine selection, iso checking H-bonds

-angle real 135 Minimum hydrogen-donor-acceptor angle for a H-bond (degrees)
-dist real 0.3 Maximum donor-acceptor distance for a H-bond (nm)

-una bool no Select aromatic rings with united CH atoms on Phenylalanine, Trypto-
phane and Tyrosine

-ignh bool no Ignore hydrogen atoms that are in the pdb file
-missing bool no Continue when atoms are missing, dangerous
-posrefc real 1000 Force constant for position restraints

-dummy enum none Convert atoms to dummy atoms:none , hydrogens or aromatics
-heavyh bool no Make hydrogen atoms heavy

-deuterate bool no Change the mass of hydrogens to 2 amu

E.135 pdb2gmx d

This program reads a pdb file, reads some database files, adds hydrogens to the molecules and generates
coordinates in Gromacs (Gromos) format and a topology in Gromacs format. These files can subsequently
be processed to generate a run input file.

The force fields supported currently are:

G43a1 GROMOS96 43a1 Forcefield (official distribution)

oplsaa OPLS-AA/L all-atom force field (2001 aminoacid dihedrals)

G43b1 GROMOS96 43b1 Vacuum Forcefield (official distribution)

306 Appendix E. Manual Pages

gmx Gromacs Forcefield (a modified GROMOS87, see manual)

G43a2 GROMOS96 43a2 Forcefield (development) (improved alkane dihedrals)

The corresponding data files can be found in the library directory with names like ffXXXX.YYY. Check
chapter 5 of the manual for more information about file formats.

Note that a pdb file is nothing more than a file format, and it need not necessarily contain a protein structure.
Every kind of molecule for which there is support in the database can be converted. If there is no support
in the database, you can add it yourself.

The program has limited intelligence, it reads a number of database files, that allow it to make special
bonds (Cys-Cys, Heme-His, etc.), if necessary this can be done manually. The program can prompt the
user to select which kind of LYS, ASP, GLU, CYS or HIS residue she wants. For LYS the choice is
between LYS (two protons on NZ) or LYSH (three protons, default), for ASP and GLU unprotonated
(default) or protonated, for HIS the proton can be either on ND1 (HISA), on NE2 (HISB) or on both
(HISH). By default these selections are done automatically. For His, this is based on an optimal hydrogen
bonding conformation. Hydrogen bonds are defined based on a simple geometric criterium, specified by
the maximum hydrogen-donor-acceptor angle and donor-acceptor distance, which are set by-angle and
-dist respectively.

Option-merge will ask if you want to merge consecutive chains into one molecule, this can be useful for
connecting chains with a disulfide brigde.

pdb2gmx will also check the occupancy field of the pdb file. If any of the occupanccies are not one,
indicating that the atom is not resolved well in the structure, a warning message is issued. When a pdb file
does not originate from an X-Ray structure determination all occupancy fields may be zero. Either way, it
is up to the user to verify the correctness of the input data (read the article!).

During processing the atoms will be reordered according to Gromacs conventions. With-n an index file
can be generated that contains one group reordered in the same way. This allows you to convert a Gromos
trajectory and coordinate file to Gromos. There is one limitation: reordering is done after the hydrogens are
stripped from the input and before new hydrogens are added. This means that you should not use-ignh .

The .gro and.g96 file formats do not support chain identifiers. Therefore it is useful to enter a pdb file
name at the-o option when you want to convert a multichain pdb file.

The option-dummy removes hydrogen and fast improper dihedral motions. Angular and out-of-plane
motions can be removed by changing hydrogens into dummy atoms and fixing angles, which fixes their
position relative to neighboring atoms. Additionally, all atoms in the aromatic rings of the standard amino
acids (i.e. PHE, TRP, TYR and HIS) can be converted into dummy atoms, elminating the fast improper
dihedral fluctuations in these rings. Note that in this case all other hydrogen atoms are also converted to
dummy atoms. The mass of all atoms that are converted into dummy atoms, is added to the heavy atoms.

Also slowing down of dihedral motion can be done with-heavyh done by increasing the hydrogen-mass
by a factor of 4. This is also done for water hydrogens to slow down the rotational motion of water. The
increase in mass of the hydrogens is subtracted from the bonded (heavy) atom so that the total mass of the
system remains the same.

Files
-f eiwit.pdb Input Generic structure: gro g96 pdb tpr tpb tpa xml
-o conf.gro Output Generic structure: gro g96 pdb xml
-p topol.top Output Topology file
-i posre.itp Output Include file for topology
-n clean.ndx Output, Opt. Index file
-q clean.pdb Output, Opt. Generic structure: gro g96 pdb xml

Other options
-h bool no Print help info and quit

E.136. protonate 307

-nice int 0 Set the nicelevel
-merge bool no Merge multiple chains into one molecule

-ff string G43a1 Select the force field, supported are: G43a1, oplsaa, gmx, G43a2, G43b1.
Run pdb2gmx -h for more information.

-water enum spc Water model to use: with GROMOS we recommend SPC, with OPLS,
TIP4P:spc , spce , tip3p , tip4p or tip5p

-inter bool no Set the next 6 options to interactive
-ss bool no Interactive SS bridge selection

-ter bool no Interactive termini selection, iso charged
-lys bool no Interactive Lysine selection, iso charged
-asp bool no Interactive Aspartic Acid selection, iso charged
-glu bool no Interactive Glutamic Acid selection, iso charged
-his bool no Interactive Histidine selection, iso checking H-bonds

-angle real 135 Minimum hydrogen-donor-acceptor angle for a H-bond (degrees)
-dist real 0.3 Maximum donor-acceptor distance for a H-bond (nm)

-una bool no Select aromatic rings with united CH atoms on Phenylalanine, Trypto-
phane and Tyrosine

-ignh bool no Ignore hydrogen atoms that are in the pdb file
-missing bool no Continue when atoms are missing, dangerous
-posrefc real 1000 Force constant for position restraints

-dummy enum none Convert atoms to dummy atoms:none , hydrogens or aromatics
-heavyh bool no Make hydrogen atoms heavy

-deuterate bool no Change the mass of hydrogens to 2 amu

E.136 protonate

protonate reads (a) conformation(s) and adds all missing hydrogens as defined inffgmx2.hdb . If
only -s is specified, this conformation will be protonated, if also-f is specified, the conformation(s) will
be read from this file which can be either a single conformation or a trajectory.

If a pdb file is supplied, residue names might not correspond to to the GROMACS naming conventions, in
which case these residues will probably not be properly protonated.

If an index file is specified, please note that the atom numbers should correspond to theprotonated state.
Files

-s topol.tpr Input Structure+mass(db): tpr tpb tpa gro g96 pdb xml
-f traj.xtc Input, Opt. Generic trajectory: xtc trr trj gro g96 pdb
-n index.ndx Input, Opt. Index file
-o protonated.xtc Output Generic trajectory: xtc trr trj gro g96 pdb

Other options
-h bool no Print help info and quit

-nice int 0 Set the nicelevel
-b time -1 First frame (ps) to read from trajectory
-e time -1 Last frame (ps) to read from trajectory

-dt time -1 Only use frame when t MOD dt = first time (ps)

E.137 protonate d

protonate reads (a) conformation(s) and adds all missing hydrogens as defined inffgmx2.hdb . If
only -s is specified, this conformation will be protonated, if also-f is specified, the conformation(s) will
be read from this file which can be either a single conformation or a trajectory.

308 Appendix E. Manual Pages

If a pdb file is supplied, residue names might not correspond to to the GROMACS naming conventions, in
which case these residues will probably not be properly protonated.

If an index file is specified, please note that the atom numbers should correspond to theprotonated state.

Files
-s topol.tpr Input Structure+mass(db): tpr tpb tpa gro g96 pdb xml
-f traj.xtc Input, Opt. Generic trajectory: xtc trr trj gro g96 pdb
-n index.ndx Input, Opt. Index file
-o protonated.xtc Output Generic trajectory: xtc trr trj gro g96 pdb

Other options
-h bool no Print help info and quit

-nice int 0 Set the nicelevel
-b time -1 First frame (ps) to read from trajectory
-e time -1 Last frame (ps) to read from trajectory

-dt time -1 Only use frame when t MOD dt = first time (ps)

E.138 tpbconv

tpbconv can edit run input files in three ways.

1st. by creating a run input file for a continuation run when your simulation has crashed due to e.g. a
full disk, or by making a continuation run input file. Note that a frame with coordinates and velocities is
needed, which means that when you never write velocities, you can not use tpbconv and you have to start
the run again from the beginning. When pressure and/or temperature coupling is used an energy file can be
supplied to get an exact continuation of the original run.

2nd. by creating a tpx file for a subset of your original tpx file, which is useful when you want to remove
the solvent from your tpx file, or when you want to make e.g. a pure Ca tpx file.WARNING: this tpx file
is not fully functional . 3rd. by setting the charges of a specified group to zero. This is useful when doing
free energy estimates using the LIE (Linear Interactio Energy) method.

Files
-s topol.tpr Input Generic run input: tpr tpb tpa xml
-f traj.trr Input, Opt. Full precision trajectory: trr trj
-e ener.edr Input, Opt. Generic energy: edr ene
-n index.ndx Input, Opt. Index file
-o tpxout.tpr Output Generic run input: tpr tpb tpa xml

Other options
-h bool no Print help info and quit

-nice int 0 Set the nicelevel
-time real -1 Continue from frame at this time (ps) instead of the last frame

-extend real 0 Extend runtime by this amount (ps)
-until real 0 Extend runtime until this ending time (ps)
-zeroq bool no Set the charges of a group (from the index) to zero

-unconstrained bool yes For a continuous trajectory, the constraints should not be solved before
the first step (default)

E.139. tpbconvd 309

E.139 tpbconv d

tpbconv can edit run input files in three ways.

1st. by creating a run input file for a continuation run when your simulation has crashed due to e.g. a
full disk, or by making a continuation run input file. Note that a frame with coordinates and velocities is
needed, which means that when you never write velocities, you can not use tpbconv and you have to start
the run again from the beginning. When pressure and/or temperature coupling is used an energy file can be
supplied to get an exact continuation of the original run.

2nd. by creating a tpx file for a subset of your original tpx file, which is useful when you want to remove
the solvent from your tpx file, or when you want to make e.g. a pure Ca tpx file.WARNING: this tpx file
is not fully functional . 3rd. by setting the charges of a specified group to zero. This is useful when doing
free energy estimates using the LIE (Linear Interactio Energy) method.

Files
-s topol.tpr Input Generic run input: tpr tpb tpa xml
-f traj.trr Input, Opt. Full precision trajectory: trr trj
-e ener.edr Input, Opt. Generic energy: edr ene
-n index.ndx Input, Opt. Index file
-o tpxout.tpr Output Generic run input: tpr tpb tpa xml

Other options
-h bool no Print help info and quit

-nice int 0 Set the nicelevel
-time real -1 Continue from frame at this time (ps) instead of the last frame

-extend real 0 Extend runtime by this amount (ps)
-until real 0 Extend runtime until this ending time (ps)
-zeroq bool no Set the charges of a group (from the index) to zero

-unconstrained bool yes For a continuous trajectory, the constraints should not be solved before
the first step (default)

E.140 trjcat

trjcat concatenates several input trajectory files in sorted order. In case of double time frames the one in
the later file is used. By specifying-settime you will be asked for the start time of each file. The input
files are taken from the command line, such that a command liketrjcat -o fixed.trr *.trr
should do the trick. Using-cat you can simply paste several files together without removal of frames with
identical time stamps.

One important option is inferred when the output file is amongst the input files. In that case that particular
file will be appended to which implies you do not need to store double the amount of data. Obviously the
file to append to has to be the one with lowest starting time since one can only append at the end of a file.

Files
-f traj.xtc Input, Mult. Generic trajectory: xtc trr trj gro g96 pdb
-o trajout.xtc Output Generic trajectory: xtc trr trj gro g96 pdb
-n index.ndx Input, Opt. Index file

Other options
-h bool no Print help info and quit

-nice int 19 Set the nicelevel
-tu enum ps Time unit: ps , fs , ns , us , ms, s , mor h

310 Appendix E. Manual Pages

-b time -1 First time to use (ps)
-e time -1 Last time to use (ps)

-dt time 0 Only write frame when t MOD dt = first time (ps)
-prec int 3 Precision for .xtc and .gro writing in number of decimal places

-vel bool yes Read and write velocities if possible
-settime bool no Change starting time interactively

-sort bool yes Sort trajectory files (not frames)
-keeplast bool no keep overlapping frames at end of trajectory

-cat bool no do not discard double time frames

E.141 trjcat d

trjcat concatenates several input trajectory files in sorted order. In case of double time frames the one in
the later file is used. By specifying-settime you will be asked for the start time of each file. The input
files are taken from the command line, such that a command liketrjcat -o fixed.trr *.trr
should do the trick. Using-cat you can simply paste several files together without removal of frames with
identical time stamps.

One important option is inferred when the output file is amongst the input files. In that case that particular
file will be appended to which implies you do not need to store double the amount of data. Obviously the
file to append to has to be the one with lowest starting time since one can only append at the end of a file.

Files
-f traj.xtc Input, Mult. Generic trajectory: xtc trr trj gro g96 pdb
-o trajout.xtc Output Generic trajectory: xtc trr trj gro g96 pdb
-n index.ndx Input, Opt. Index file

Other options
-h bool no Print help info and quit

-nice int 19 Set the nicelevel
-tu enum ps Time unit: ps , fs , ns , us , ms, s , mor h

-b time -1 First time to use (ps)
-e time -1 Last time to use (ps)

-dt time 0 Only write frame when t MOD dt = first time (ps)
-prec int 3 Precision for .xtc and .gro writing in number of decimal places

-vel bool yes Read and write velocities if possible
-settime bool no Change starting time interactively

-sort bool yes Sort trajectory files (not frames)
-keeplast bool no keep overlapping frames at end of trajectory

-cat bool no do not discard double time frames

E.142 trjconv

trjconv can convert trajectory files in many ways:
1. from one format to another
2. select a subset of atoms
3. remove periodicity from molecules
4. keep multimeric molecules together
5. center atoms in the box
6. fit atoms to reference structure

E.142. trjconv 311

7. reduce the number of frames
8. change the timestamps of the frames (-t0 and-timestep)

The programtrjcat can concatenate multiple trajectory files.

Currently seven formats are supported for input and output:.xtc , .trr , .trj , .gro , .g96 , .pdb and
.g87 . The file formats are detected from the file extension. The precision of.xtc and.gro output is
taken from the input file for.xtc , .gro and.pdb , and from the-ndec option for other input formats.
The precision is always taken from-ndec , when this option is set. All other formats have fixed precision.
.trr and.trj output can be single or double precision, depending on the precision of the trjconv binary.
Note that velocities are only supported in.trr , .trj , .gro and.g96 files.

Option-app can be used to append output to an existing trajectory file. No checks are performed to ensure
integrity of the resulting combined trajectory file.

Option -sep can be used to write every frame to a seperate .gro, .g96 or .pdb file, default all frames all
written to one file..pdb files with all frames concatenated can be viewed withrasmol -nmrpdb .

It is possible to select part of your trajectory and write it out to a new trajectory file in order to save disk
space, e.g. for leaving out the water from a trajectory of a protein in water.ALWAYS put the original
trajectory on tape! We recommend to use the portable.xtc format for your analysis to save disk space
and to have portable files.

There are two options for fitting the trajectory to a reference either for essential dynamics analysis or for
whatever. The first option is just plain fitting to a reference structure in the structure file, the second option
is a progressive fit in which the first timeframe is fitted to the reference structure in the structure file to
obtain and each subsequent timeframe is fitted to the previously fitted structure. This way a continuous
trajectory is generated, which might not be the case when using the regular fit method, e.g. when your
protein undergoes large conformational transitions.

Option-pbc sets the type of periodic boundary condition treatment:
whole puts the atoms in the box and then makes broken molecules whole (a run input file is required).
Atom number 1 of each molecule will be inside the box.
com puts the center of mass of allresiduesin the box. Not that this can break molecules that consist of
more than one residue (e.g. proteins).
inbox puts all the atoms in the box.
nojump checks if atoms jump across the box and then puts them back. This has the effect that all molecules
will remain whole (provided they were whole in the initial conformation), note that this ensures a continuous
trajectory but molecules may diffuse out of the box. The starting configuration for this procedure is taken
from the structure file, if one is supplied, otherwise it is the first frame.
cluster clusters all the atoms in the selected index such that they are all closest to the center of mass of
the cluster which is iteratively updated. Note that this will only give meaningful results if you in fact have
a cluster. Luckily that can be checked afterwards using a trajectory viewer.
-pbc is ignored when-fit or -pfit is set, in that case molecules will be made whole.

Option-ur sets the unit cell representation for optionswhole andinbox of -pbc . All three options give
different results for triclinc boxes and identical results for rectangular boxes.rect is the ordinary brick
shape.tric is the triclinic unit cell.compact puts all atoms at the closest distance from the center of the
box. This can be useful for visualizing e.g. truncated octahedrons.

Option -center centers the system in the box. The user can select the group which is used to determine
the geometrical center. Use option-pbc whole in addition to-center when you want all molecules
in the box after the centering.

With -dt it is possible to reduce the number of frames in the output. This option relies on the accuracy
of the times in your input trajectory, so if these are inaccurate use the-timestep option to modify the
time (this can be done simultaneously). For making smooth movies the programg filter can reduce the
number of frames while using low-pass frequency filtering, this reduces aliasing of high frequency motions.

312 Appendix E. Manual Pages

Using-trunc trjconv can truncate.trj in place, i.e. without copying the file. This is useful when a run
has crashed during disk I/O (one more disk full), or when two contiguous trajectories must be concatenated
without have double frames.

trjcat is more suitable for concatenating trajectory files.

Option-dump can be used to extract a frame at or near one specific time from your trajectory.

Files
-f traj.xtc Input Generic trajectory: xtc trr trj gro g96 pdb
-o trajout.xtc Output Generic trajectory: xtc trr trj gro g96 pdb
-s topol.tpr Input, Opt. Structure+mass(db): tpr tpb tpa gro g96 pdb xml
-n index.ndx Input, Opt. Index file

-fr frames.ndx Input, Opt. Index file

Other options
-h bool no Print help info and quit

-nice int 19 Set the nicelevel
-b time -1 First frame (ps) to read from trajectory
-e time -1 Last frame (ps) to read from trajectory

-tu enum ps Time unit: ps , fs , ns , us , ms, s , mor h
-w bool no View output xvg, xpm, eps and pdb files

-skip int 1 Only write every nr-th frame
-dt time 0 Only write frame when t MOD dt = first time (ps)

-dump time -1 Dump frame nearest specified time (ps)
-t0 time 0 Starting time (ps) (default: don’t change)

-timestep time 0 Change time step between input frames (ps)
-pbc enum none PBC treatment (see help text for full description):none , whole ,

inbox , nojump , cluster or com
-ur enum rect Unit-cell representation:rect , tric or compact

-center bool no Center atoms in box
-box vector 0 0 0 Size for new cubic box (default: read from input)

-shift vector 0 0 0 All coordinates will be shifted by framenr*shift
-fit enum none Fit molecule to ref structure in the structure file:none , rot+trans ,

translation or progressive
-ndec int 3 Precision for .xtc and .gro writing in number of decimal places

-vel bool yes Read and write velocities if possible
-force bool no Read and write forces if possible
-trunc time -1 Truncate input trj file after this time (ps)

-exec string Execute command for every output frame with the frame number as ar-
gument

-app bool no Append output
-split time 0 Start writing new file when t MOD split = first time (ps)

-sep bool no Write each frame to a separate .gro, .g96 or .pdb file
-ter bool no Use ’TER’ in pdb file as end of frame in stead of default ’ENDMDL’

E.143 trjconv d

trjconv can convert trajectory files in many ways:
1. from one format to another
2. select a subset of atoms
3. remove periodicity from molecules
4. keep multimeric molecules together

E.143. trjconvd 313

5. center atoms in the box
6. fit atoms to reference structure
7. reduce the number of frames
8. change the timestamps of the frames (-t0 and-timestep)

The programtrjcat can concatenate multiple trajectory files.

Currently seven formats are supported for input and output:.xtc , .trr , .trj , .gro , .g96 , .pdb and
.g87 . The file formats are detected from the file extension. The precision of.xtc and.gro output is
taken from the input file for.xtc , .gro and.pdb , and from the-ndec option for other input formats.
The precision is always taken from-ndec , when this option is set. All other formats have fixed precision.
.trr and.trj output can be single or double precision, depending on the precision of the trjconv binary.
Note that velocities are only supported in.trr , .trj , .gro and.g96 files.

Option-app can be used to append output to an existing trajectory file. No checks are performed to ensure
integrity of the resulting combined trajectory file.

Option -sep can be used to write every frame to a seperate .gro, .g96 or .pdb file, default all frames all
written to one file..pdb files with all frames concatenated can be viewed withrasmol -nmrpdb .

It is possible to select part of your trajectory and write it out to a new trajectory file in order to save disk
space, e.g. for leaving out the water from a trajectory of a protein in water.ALWAYS put the original
trajectory on tape! We recommend to use the portable.xtc format for your analysis to save disk space
and to have portable files.

There are two options for fitting the trajectory to a reference either for essential dynamics analysis or for
whatever. The first option is just plain fitting to a reference structure in the structure file, the second option
is a progressive fit in which the first timeframe is fitted to the reference structure in the structure file to
obtain and each subsequent timeframe is fitted to the previously fitted structure. This way a continuous
trajectory is generated, which might not be the case when using the regular fit method, e.g. when your
protein undergoes large conformational transitions.

Option-pbc sets the type of periodic boundary condition treatment:
whole puts the atoms in the box and then makes broken molecules whole (a run input file is required).
Atom number 1 of each molecule will be inside the box.
com puts the center of mass of allresiduesin the box. Not that this can break molecules that consist of
more than one residue (e.g. proteins).
inbox puts all the atoms in the box.
nojump checks if atoms jump across the box and then puts them back. This has the effect that all molecules
will remain whole (provided they were whole in the initial conformation), note that this ensures a continuous
trajectory but molecules may diffuse out of the box. The starting configuration for this procedure is taken
from the structure file, if one is supplied, otherwise it is the first frame.
cluster clusters all the atoms in the selected index such that they are all closest to the center of mass of
the cluster which is iteratively updated. Note that this will only give meaningful results if you in fact have
a cluster. Luckily that can be checked afterwards using a trajectory viewer.
-pbc is ignored when-fit or -pfit is set, in that case molecules will be made whole.

Option-ur sets the unit cell representation for optionswhole andinbox of -pbc . All three options give
different results for triclinc boxes and identical results for rectangular boxes.rect is the ordinary brick
shape.tric is the triclinic unit cell.compact puts all atoms at the closest distance from the center of the
box. This can be useful for visualizing e.g. truncated octahedrons.

Option -center centers the system in the box. The user can select the group which is used to determine
the geometrical center. Use option-pbc whole in addition to-center when you want all molecules
in the box after the centering.

With -dt it is possible to reduce the number of frames in the output. This option relies on the accuracy
of the times in your input trajectory, so if these are inaccurate use the-timestep option to modify the

314 Appendix E. Manual Pages

time (this can be done simultaneously). For making smooth movies the programg filter can reduce the
number of frames while using low-pass frequency filtering, this reduces aliasing of high frequency motions.

Using-trunc trjconv can truncate.trj in place, i.e. without copying the file. This is useful when a run
has crashed during disk I/O (one more disk full), or when two contiguous trajectories must be concatenated
without have double frames.

trjcat is more suitable for concatenating trajectory files.

Option-dump can be used to extract a frame at or near one specific time from your trajectory.

Files
-f traj.xtc Input Generic trajectory: xtc trr trj gro g96 pdb
-o trajout.xtc Output Generic trajectory: xtc trr trj gro g96 pdb
-s topol.tpr Input, Opt. Structure+mass(db): tpr tpb tpa gro g96 pdb xml
-n index.ndx Input, Opt. Index file

-fr frames.ndx Input, Opt. Index file

Other options
-h bool no Print help info and quit

-nice int 19 Set the nicelevel
-b time -1 First frame (ps) to read from trajectory
-e time -1 Last frame (ps) to read from trajectory

-tu enum ps Time unit: ps , fs , ns , us , ms, s , mor h
-w bool no View output xvg, xpm, eps and pdb files

-skip int 1 Only write every nr-th frame
-dt time 0 Only write frame when t MOD dt = first time (ps)

-dump time -1 Dump frame nearest specified time (ps)
-t0 time 0 Starting time (ps) (default: don’t change)

-timestep time 0 Change time step between input frames (ps)
-pbc enum none PBC treatment (see help text for full description):none , whole ,

inbox , nojump , cluster or com
-ur enum rect Unit-cell representation:rect , tric or compact

-center bool no Center atoms in box
-box vector 0 0 0 Size for new cubic box (default: read from input)

-shift vector 0 0 0 All coordinates will be shifted by framenr*shift
-fit enum none Fit molecule to ref structure in the structure file:none , rot+trans ,

translation or progressive
-ndec int 3 Precision for .xtc and .gro writing in number of decimal places

-vel bool yes Read and write velocities if possible
-force bool no Read and write forces if possible
-trunc time -1 Truncate input trj file after this time (ps)

-exec string Execute command for every output frame with the frame number as ar-
gument

-app bool no Append output
-split time 0 Start writing new file when t MOD split = first time (ps)

-sep bool no Write each frame to a separate .gro, .g96 or .pdb file
-ter bool no Use ’TER’ in pdb file as end of frame in stead of default ’ENDMDL’

E.144 trjorder

trjorder orders molecules according to the smallest distance to atoms in a reference group. It will ask for a
group of reference atoms and a group of molecules. For each frame of the trajectory the selected molecules

E.145. trjorderd 315

will be reordered according to the shortest distance between atom number-da in the molecule and all the
atoms in the reference group. All atoms in the trajectory are written to the output trajectory.

trjorder can be useful for e.g. analyzing the n waters closest to a protein. In that case the reference group
would be the protein and the group of molecules would consist of all the water atoms. When an index group
of the first n waters is made, the ordered trajectory can be used with any Gromacs program to analyze the n
closest waters.

If the output file is a pdb file, the distance to the reference target will be stored in the B-factor field in order
to color with e.g. rasmol.

Files
-f traj.xtc Input Generic trajectory: xtc trr trj gro g96 pdb
-s topol.tpr Input Structure+mass(db): tpr tpb tpa gro g96 pdb xml
-n index.ndx Input, Opt. Index file
-o ordered.xtc Output Generic trajectory: xtc trr trj gro g96 pdb

Other options
-h bool no Print help info and quit

-nice int 19 Set the nicelevel
-b time -1 First frame (ps) to read from trajectory
-e time -1 Last frame (ps) to read from trajectory

-dt time -1 Only use frame when t MOD dt = first time (ps)
-na int 3 Number of atoms in a molecule
-da int 1 Atom used for the distance calculation

E.145 trjorder d

trjorder orders molecules according to the smallest distance to atoms in a reference group. It will ask for a
group of reference atoms and a group of molecules. For each frame of the trajectory the selected molecules
will be reordered according to the shortest distance between atom number-da in the molecule and all the
atoms in the reference group. All atoms in the trajectory are written to the output trajectory.

trjorder can be useful for e.g. analyzing the n waters closest to a protein. In that case the reference group
would be the protein and the group of molecules would consist of all the water atoms. When an index group
of the first n waters is made, the ordered trajectory can be used with any Gromacs program to analyze the n
closest waters.

If the output file is a pdb file, the distance to the reference target will be stored in the B-factor field in order
to color with e.g. rasmol.

Files
-f traj.xtc Input Generic trajectory: xtc trr trj gro g96 pdb
-s topol.tpr Input Structure+mass(db): tpr tpb tpa gro g96 pdb xml
-n index.ndx Input, Opt. Index file
-o ordered.xtc Output Generic trajectory: xtc trr trj gro g96 pdb

Other options
-h bool no Print help info and quit

-nice int 19 Set the nicelevel
-b time -1 First frame (ps) to read from trajectory
-e time -1 Last frame (ps) to read from trajectory

-dt time -1 Only use frame when t MOD dt = first time (ps)
-na int 3 Number of atoms in a molecule
-da int 1 Atom used for the distance calculation

316 Appendix E. Manual Pages

E.146 wheel

wheel plots a helical wheel representation of your sequence.The input sequence is in the .dat file where the
first line contains the number of residues and each consecutive line contains a residuename.

Files
-f nnnice.dat Input Generic data file
-o plot.eps Output Encapsulated PostScript (tm) file

Other options
-h bool no Print help info and quit

-nice int 19 Set the nicelevel
-r0 int 1 The first residue number in the sequence

-rot0 real 0 Rotate around an angle initially (90 degrees makes sense)
-T string Plot a title in the center of the wheel (must be shorter than 10 characters,

or it will overwrite the wheel)
-nn bool yes Toggle numbers

E.147 wheel d

wheel plots a helical wheel representation of your sequence.The input sequence is in the .dat file where the
first line contains the number of residues and each consecutive line contains a residuename.

Files
-f nnnice.dat Input Generic data file
-o plot.eps Output Encapsulated PostScript (tm) file

Other options
-h bool no Print help info and quit

-nice int 19 Set the nicelevel
-r0 int 1 The first residue number in the sequence

-rot0 real 0 Rotate around an angle initially (90 degrees makes sense)
-T string Plot a title in the center of the wheel (must be shorter than 10 characters,

or it will overwrite the wheel)
-nn bool yes Toggle numbers

E.148 x2top

x2top generates a primitive topology from a coordinate file. The program assumes all hydrogens are present
when defining the hybridization from the atom name and the number of bonds. The program can also make
an rtp entry, which you can then add to the rtp database.

When-param is set, equilibrium distances and angles and force constants will be printed in the topology
for all interactions. The equilibrium distances and angles are taken from the input coordinates, the force
constant are set with command line options.

Files
-f conf.gro Input Generic structure: gro g96 pdb tpr tpb tpa xml
-o out.top Output, Opt. Topology file
-r out.rtp Output, Opt. Residue Type file used by pdb2gmx

E.149. x2topd 317

Other options
-h bool no Print help info and quit

-nice int 0 Set the nicelevel
-scale real 1.1 Scaling factor for bonds with unknown atom types relative to atom type

O
-ff enum G43a1 Select the force field for your simulation:G43a1, oplsaa , gmx,

G43a2 or G43b1
-nexcl int 3 Number of exclusions

-H14 bool yes Use 3rd neighbour interactions for hydrogen atoms
-alldih bool no Generate all proper dihedrals
-remdih bool no Remove dihedrals on the same bond as an improper

-pairs bool yes Output 1-4 interactions (pairs) in topology file
-name string ICE Name of your molecule

-pbc bool yes Use periodic boundary conditions.
-param bool no Print parameters in the output
-round bool yes Round off measured values

-kb real 400000 Bonded force constant (kJ/mol/nm2)
-kt real 400 Angle force constant (kJ/mol/rad2)
-kp real 5 Dihedral angle force constant (kJ/mol/rad2)

• The atom type selection is primitive. Virtually no chemical knowledge is used

• Periodic boundary conditions screw up the bonding

• No improper dihedrals are generated

• The atoms to atomtype translation table is incomplete (ffG43a1.n2t file in the $GMXLIB directory).
Please extend it and send the results back to the GROMACS crew.

E.149 x2top d

x2top generates a primitive topology from a coordinate file. The program assumes all hydrogens are present
when defining the hybridization from the atom name and the number of bonds. The program can also make
an rtp entry, which you can then add to the rtp database.

When-param is set, equilibrium distances and angles and force constants will be printed in the topology
for all interactions. The equilibrium distances and angles are taken from the input coordinates, the force
constant are set with command line options.

Files
-f conf.gro Input Generic structure: gro g96 pdb tpr tpb tpa xml
-o out.top Output, Opt. Topology file
-r out.rtp Output, Opt. Residue Type file used by pdb2gmx

Other options
-h bool no Print help info and quit

-nice int 0 Set the nicelevel
-scale real 1.1 Scaling factor for bonds with unknown atom types relative to atom type

O
-ff enum G43a1 Select the force field for your simulation:G43a1, oplsaa , gmx,

G43a2 or G43b1
-nexcl int 3 Number of exclusions

-H14 bool yes Use 3rd neighbour interactions for hydrogen atoms
-alldih bool no Generate all proper dihedrals

318 Appendix E. Manual Pages

-remdih bool no Remove dihedrals on the same bond as an improper
-pairs bool yes Output 1-4 interactions (pairs) in topology file

-name string ICE Name of your molecule
-pbc bool yes Use periodic boundary conditions.

-param bool no Print parameters in the output
-round bool yes Round off measured values

-kb real 400000 Bonded force constant (kJ/mol/nm2)
-kt real 400 Angle force constant (kJ/mol/rad2)
-kp real 5 Dihedral angle force constant (kJ/mol/rad2)

• The atom type selection is primitive. Virtually no chemical knowledge is used

• Periodic boundary conditions screw up the bonding

• No improper dihedrals are generated

• The atoms to atomtype translation table is incomplete (ffG43a1.n2t file in the $GMXLIB directory).
Please extend it and send the results back to the GROMACS crew.

E.150 xpm2ps

xpm2ps makes a beautiful color plot of an XPixelMap file. Labels and axis can be displayed, when they are
supplied in the correct matrix format. Matrix data may be generated by programs such as dodssp, grms
or g mdmat.

Parameters are set in them2pfile optionally supplied with-di . Reasonable defaults are provided. Settings
for the y-axis default to those for the x-axis. Font names have a defaulting hierarchy: titlefont -> legendfont;
titlefont -> (xfont -> yfont -> ytickfont) -> xtickfont, e.g. setting titlefont sets all fonts, setting xfont sets
yfont, ytickfont and xtickfont.

With -f2 a 2nd matrix file can be supplied, both matrix files will be read simultaneously and the upper
left half of the first one (-f) is plotted together with the lower right half of the second one (-f2). The
diagonal will contain values from the matrix file selected with-diag . Plotting of the diagonal values can
be suppressed altogether by setting-diag to none . With -combine an alternative operation can be
selected to combine the matrices. In this case, a new color map will be generated with a red gradient for
negative numbers and a blue for positive.

If the color coding and legend labels of both matrices are identical, only one legend will be displayed, else
two separate legends are displayed.

-title can be set tonone to suppress the title, or toylabel to show the title in the Y-label position
(alongside the Y-axis).

With the-rainbow option dull grey-scale matrices can be turned into attractive color pictures.

Merged or rainbowed matrices can be written to an XPixelMap file with the-xpm option.

Files
-f root.xpm Input X PixMap compatible matrix file

-f2 root2.xpm Input, Opt. X PixMap compatible matrix file
-di ps.m2p Input, Opt., Lib.Input file for mat2ps
-do out.m2p Output, Opt. Input file for mat2ps

-o plot.eps Output, Opt. Encapsulated PostScript (tm) file
-xpm root.xpm Output, Opt. X PixMap compatible matrix file

E.151. xpm2psd 319

Other options
-h bool no Print help info and quit

-nice int 0 Set the nicelevel
-w bool no View output xvg, xpm, eps and pdb files

-frame bool yes Display frame, ticks, labels, title and legend
-title enum top Show title at:top , once , ylabel or none
-yonce bool no Show y-label only once

-legend enum both Show legend:both , first , second or none
-diag enum first Diagonal:first , second or none

-combine enum halves Combine two matrices:halves , add , sub , mult or div
-bx real 0 Box x-size (also y-size when -by is not set)
-by real 0 Box y-size

-rainbow enum no Rainbow colors, convert white to:no , blue or red
-gradient vector 0 0 0 Re-scale colormap to a smooth gradient from white 1,1,1 to r,g,b

-skip int 1 only write out every nr-th row and column
-zeroline bool no insert line in xpm matrix where axis label is zero

-legoffset int 0 Skip first N colors from xpm file for the legend

E.151 xpm2ps d

xpm2ps makes a beautiful color plot of an XPixelMap file. Labels and axis can be displayed, when they are
supplied in the correct matrix format. Matrix data may be generated by programs such as dodssp, grms
or g mdmat.

Parameters are set in them2pfile optionally supplied with-di . Reasonable defaults are provided. Settings
for the y-axis default to those for the x-axis. Font names have a defaulting hierarchy: titlefont -> legendfont;
titlefont -> (xfont -> yfont -> ytickfont) -> xtickfont, e.g. setting titlefont sets all fonts, setting xfont sets
yfont, ytickfont and xtickfont.

With -f2 a 2nd matrix file can be supplied, both matrix files will be read simultaneously and the upper
left half of the first one (-f) is plotted together with the lower right half of the second one (-f2). The
diagonal will contain values from the matrix file selected with-diag . Plotting of the diagonal values can
be suppressed altogether by setting-diag to none . With -combine an alternative operation can be
selected to combine the matrices. In this case, a new color map will be generated with a red gradient for
negative numbers and a blue for positive.

If the color coding and legend labels of both matrices are identical, only one legend will be displayed, else
two separate legends are displayed.

-title can be set tonone to suppress the title, or toylabel to show the title in the Y-label position
(alongside the Y-axis).

With the-rainbow option dull grey-scale matrices can be turned into attractive color pictures.

Merged or rainbowed matrices can be written to an XPixelMap file with the-xpm option.

Files
-f root.xpm Input X PixMap compatible matrix file

-f2 root2.xpm Input, Opt. X PixMap compatible matrix file
-di ps.m2p Input, Opt., Lib.Input file for mat2ps
-do out.m2p Output, Opt. Input file for mat2ps

-o plot.eps Output, Opt. Encapsulated PostScript (tm) file
-xpm root.xpm Output, Opt. X PixMap compatible matrix file

320 Appendix E. Manual Pages

Other options
-h bool no Print help info and quit

-nice int 0 Set the nicelevel
-w bool no View output xvg, xpm, eps and pdb files

-frame bool yes Display frame, ticks, labels, title and legend
-title enum top Show title at:top , once , ylabel or none
-yonce bool no Show y-label only once

-legend enum both Show legend:both , first , second or none
-diag enum first Diagonal:first , second or none

-combine enum halves Combine two matrices:halves , add , sub , mult or div
-bx real 0 Box x-size (also y-size when -by is not set)
-by real 0 Box y-size

-rainbow enum no Rainbow colors, convert white to:no , blue or red
-gradient vector 0 0 0 Re-scale colormap to a smooth gradient from white 1,1,1 to r,g,b

-skip int 1 only write out every nr-th row and column
-zeroline bool no insert line in xpm matrix where axis label is zero

-legoffset int 0 Skip first N colors from xpm file for the legend

E.152 xrama

xrama shows a Ramachandran movie, that is, it shows the Phi/Psi angles as a function of time in an X-
Window.

Static Phi/Psi plots for printing can be made with grama.

Some of the more common X command line options can be used:
-bg, -fg change colors, -font fontname, changes the font.

Files
-f traj.xtc Input Generic trajectory: xtc trr trj gro g96 pdb
-s topol.tpr Input Generic run input: tpr tpb tpa xml

Other options
-h bool no Print help info and quit

-nice int 0 Set the nicelevel
-b time -1 First frame (ps) to read from trajectory
-e time -1 Last frame (ps) to read from trajectory

-dt time -1 Only use frame when t MOD dt = first time (ps)

E.153 xrama d

xrama shows a Ramachandran movie, that is, it shows the Phi/Psi angles as a function of time in an X-
Window.

Static Phi/Psi plots for printing can be made with grama.

Some of the more common X command line options can be used:
-bg, -fg change colors, -font fontname, changes the font.

Files
-f traj.xtc Input Generic trajectory: xtc trr trj gro g96 pdb
-s topol.tpr Input Generic run input: tpr tpb tpa xml

E.153. xramad 321

Other options
-h bool no Print help info and quit

-nice int 0 Set the nicelevel
-b time -1 First frame (ps) to read from trajectory
-e time -1 Last frame (ps) to read from trajectory

-dt time -1 Only use frame when t MOD dt = first time (ps)

322 Appendix E. Manual Pages

Bibliography

[1] Berendsen, H. J. C., van der Spoel, D., van Drunen, R. GROMACS: A message-passing
parallel molecular dynamics implementation. Comp. Phys. Comm. 91:43–56, 1995.

[2] Lindahl, E., Hess, B., van der Spoel, D. Gromacs 3.0: A package for molecular simulation
and trajectory analysis. J. Mol. Mod. 7:306–317, 2001.

[3] van Gunsteren, W. F., Berendsen, H. J. C. Computer simulation of molecular dynamics:
Methodology, applications, and perspectives in chemistry. Angew. Chem. Int. Ed. Engl.
29:992–1023, 1990.

[4] Fraaije, J. G. E. M. Dynamic density functional theory for microphase separation kinetics of
block copolymer melts. J. Chem. Phys. 99:9202–9212, 1993.

[5] McQuarrie, D. A. Statistical Mechanics. New York: Harper & Row. 1976.

[6] van Gunsteren, W. F., Berendsen, H. J. C. Algorithms for macromolecular dynamics and
constraint dynamics. Mol. Phys. 34:1311–1327, 1977.

[7] Geman, Geman. IEEE Trans. Patt. Anal. Mach. Int. 6:721, 1984.

[8] Nilges, M., Clore, G. M., Gronenborn, A. M. Determination of three-dimensional structures
of proteins from interproton distance data by dynamical simulated annealing from a random
array of atoms. FEBS Lett. 239:129–136, 1988.

[9] van Schaik, R. C., Berendsen, H. J. C., Torda, A. E., van Gunsteren, W. F. A structure
refinement method based on molecular dynamics in 4 spatial dimensions. J. Mol. Biol.
234:751–762, 1993.

[10] Zimmerman, K. All purpose molecular mechanics simulator and energy minimizer. J. Comp.
Chem. 12:310–319, 1991.

[11] Adams, D. J., Adams, E. M., Hills, G. J. The computer simulation of polar liquids. Mol.
Phys. 38:387–400, 1979.

[12] Bekker, H., Dijkstra, E. J., Renardus, M. K. R., Berendsen, H. J. C. An efficient, box
shape independent non-bonded force and virial algorithm for molecular dynamics. Mol.
Sim. 14:137–152, 1995.

324 Bibliography

[13] Berendsen, H. J. C. Electrostatic interactions. In: Computer Simulation of Biomolecular
Systems. van Gunsteren, W. F., Weiner, P. K., Wilkinson, A. J. eds. . ESCOM Leiden 1993
161–181.

[14] Hockney, R. W., Goel, S. P. J. Comp. Phys. 14:148, 1974.

[15] Verlet., L. Phys. Rev. 34:1311–1327, 1967.

[16] Berendsen, H. J. C., van Gunsteren, W. F. Practical algorithms for dynamics simulations.

[17] Berendsen, H. J. C., Postma, J. P. M., DiNola, A., Haak, J. R. Molecular dynamics with
coupling to an external bath. J. Chem. Phys. 81:3684–3690, 1984.

[18] Nośe, S. A molecular dynamics method for simulations in the canonical ensemble. Mol.
Phys. 52:255–268, 1984.

[19] Hoover, W. G. Canonical dynamics: equilibrium phase-space distributions. Phys. Rev.A
31:1695–1697, 1985.

[20] Berendsen, H. J. C. Transport properties computed by linear response through weak coupling
to a bath. In: Computer Simulations in Material Science. Meyer, M., Pontikis, V. eds. .
Kluwer 1991 139–155.

[21] Parrinello, M., Rahman, A. Polymorphic transitions in single crystals: A new molecular
dynamics method. J. Appl. Phys. 52:7182–7190, 1981.

[22] Nośe, S., Klein, M. L. Constant pressure molecular dynamics for molecular systems. Mol.
Phys. 50:1055–1076, 1983.

[23] Dick, B. G., Overhauser, A. W. Theory of the dielectric constants of alkali halide crystals.
Phys. Rev. 112:90–103, 1958.

[24] Jordan, P. C., van Maaren, P. J., Mavri, J., van der Spoel, D., Berendsen, H. J. C. Towards
phase transferable potential functions: Methodology and application to nitrogen. J. Chem.
Phys. 103:2272–2285, 1995.

[25] van Maaren, P. J., van der Spoel, D. Molecular dynamics simulations of a water with a novel
shell-model potential. J. Phys. Chem. B. 105:2618–2626, 2001.

[26] Ryckaert, J. P., Ciccotti, G., Berendsen, H. J. C. Numerical integration of the cartesian
equations of motion of a system with constraints; molecular dynamics of n-alkanes. J. Comp.
Phys. 23:327–341, 1977.

[27] Miyamoto, S., Kollman, P. A. SETTLE: An analytical version of the SHAKE and RATTLE
algorithms for rigid water models. J. Comp. Chem. 13:952–962, 1992.

[28] Hess, B., Bekker, H., Berendsen, H. J. C., Fraaije, J. G. E. M. LINCS: A linear constraint
solver for molecular simulations. J. Comp. Chem. 18:1463–1472, 1997.

[29] van Gunsteren, W. F., Berendsen, H. J. C. A leap-frog algorithm for stochastic dynamics.
Mol. Sim. 1:173–185, 1988.

Bibliography 325

[30] Levitt, M., Sander, C., Stern, P. S. The normal modes of a protein: Native bovine pancreatic
trypsin inhibitor. Proc. Natl. Acad. Sci. USA 10:181–199, 1983.

[31] Gō, N., Noguti, T., Nishikawa, T. Dynamics of a small globular protein in terms of low-
frequency vibrational modes. Proc. Natl. Acad. Sci. USA 80:3696–3700, 1983.

[32] Brooks, B., Karplus, M. Harmonic dynamics of proteins: Normal modes and fluctuations in
bovine pancreatic trypsin inhibitor. Proc. Natl. Acad. Sci. USA 80:6571–6575, 1983.

[33] Hayward, S., Ḡo, N. Collective variable description of native protein dynamics. Annu. Rev.
Phys. Chem. 46:223–250, 1995.

[34] de Groot, B. L., Amadei, A., van Aalten, D. M. F., Berendsen, H. J. C. Towards an exhaustive
sampling of the configurational spaces of the two forms of the peptide hormone guanylin. J.
Biomol. Str. Dyn. 13(5):741–751, 1996.

[35] de Groot, B. L., Amadei, A., Scheek, R. M., van Nuland, N. A. J., Berendsen, H. J. C.
An extended sampling of the configurational space of hpr frome. coli. PROTEINS: Struct.
Funct. Gen. 26:314–322, 1996.

[36] Vriend, G. WHAT IF: a molecular modeling and drug design program. J. Mol. Graph.
8:52–56, 1990.

[37] Fincham, D. Parallel computers and molecular simulation. Mol. Sim. 1:1, 1987.

[38] Raine, A. R. C., Fincham, D., Smith, W. Systolic loop methods for molecular dynamics
simulation. Comp. Phys. Comm. 55:13–30, 1989.

[39] van Gunsteren, W. F., Berendsen, H. J. C. Gromos-87 manual. Biomos BV Nijenborgh 4,
9747 AG Groningen, The Netherlands 1987.

[40] van Buuren, A. R., Marrink, S. J., Berendsen, H. J. C. A molecular dynamics study of the
decane/water interface. J. Phys. Chem. 97:9206–9212, 1993.

[41] Mark, A. E., van Helden, S. P., Smith, P. E., Janssen, L. H. M., van Gunsteren, W. F. Con-
vergence properties of free energy calculations:α-cyclodextrin complexes as a case study. J.
Am. Chem. Soc. 116:6293–6302, 1994.

[42] Jorgensen, W. L., Chandrasekhar, J., Madura, J. D., Impey, R. W., Klein, M. L. Comparison
of simple potential functions for simulating liquid water. J. Chem. Phys. 79:926–935, 1983.

[43] van Buuren, A. R., Berendsen, H. J. C. Molecular dynamics simulation of the stability of
a 22 residue alpha-helix in water and 30 % trifluoroethanol. Biopolymers 33:1159–1166,
1993.

[44] Liu, H., Müller-Plathe, F., van Gunsteren, W. F. A force field for liquid dimethyl sulfox-
ide and liquid proporties of liquid dimethyl sulfoxide calculated using molecular dynamics
simulation. J. Am. Chem. Soc. 117:4363–4366, 1995.

[45] Tironi, I. G., Sperb, R., Smith, P. E., van Gunsteren, W. F. A generalized reaction field
method for molecular dynamics simulations. J. Chem. Phys. 102:5451–5459, 1995.

326 Bibliography

[46] van Gunsteren, W. F., Billeter, S. R., Eising, A. A., Hünenberger, P. H., Krüger, P., Mark,
A. E., Scott, W. R. P., Tironi, I. G. Biomolecular Simulation: The GROMOS96 manual and
user guide. Z̈urich, Switzerland: Hochschulverlag AG an der ETH Zürich. 1996.

[47] Morse, P. M. Diatomic molecules according to the wave mechanics. II. vibrational levels.
Phys. Rev. 34:57–64, 1929.

[48] Berendsen, H. J. C., Postma, J. P. M., van Gunsteren, W. F., Hermans, J. Interaction models
for water in relation to protein hydration. In: Intermolecular Forces. Pullman, B. ed. . D.
Reidel Publishing Company Dordrecht 1981 331–342.

[49] Ferguson, D. M. Parametrization and evaluation of a flexible water model. J. Comp. Chem.
16:501–511, 1995.

[50] Brooks, B. R., Bruccoleri, R. E., Olafson, B. D., States, D. J., Swaminathan, S., Karplus, M.
CHARMM: a program for macromolecular energy, minimization, and dynamics calculation.
J. Comp. Chem. 4:187–217, 1983.

[51] Jorgensen, W. L., Tirado-Rives, J. The OPLS potential functions for proteins. energy min-
imizations for crystals of cyclic peptides and crambin. J. Am. Chem. Soc. 110:1657–1666,
1988.

[52] Torda, A. E., Scheek, R. M., van Gunsteren, W. F. Time-dependent distance restraints in
molecular dynamics simulations. Chem. Phys. Lett. 157:289–294, 1989.

[53] van Gunsteren, W. F., Mark, A. E. Validation of molecular dynamics simulations. J. Chem.
Phys. 108:6109–6116, 1998.

[54] Berendsen, H. J. C., van Gunsteren, W. F. Molecular dynamics simulations: Techniques and
approaches. In: Molecular Liquids-Dynamics and Interactions. et al., A. J. B. ed. NATO ASI
C 135. Reidel Dordrecht, The Netherlands 1984 475–500.

[55] Ewald, P. P. Die Berechnung optischer und elektrostatischer Gitterpotentiale. Ann. Phys.
64:253–287, 1921.

[56] Darden, T., York, D., Pedersen, L. Particle mesh Ewald: An N-log(N) method for Ewald
sums in large systems. J. Chem. Phys. 98:10089–10092, 1993.

[57] Essmann, U., Perera, L., Berkowitz, M. L., Darden, T., Lee, H., Pedersen, L. G. A smooth
particle mesh ewald potential. J. Chem. Phys. 103:8577–8592, 1995.

[58] Hockney, R. W., Eastwood, J. W. Computer simulation using particles. New York: McGraw-
Hill. 1981.

[59] Luty, B. A., Tironi, I. G., van Gunsteren, W. F. Lattice-sum methods for calculating electro-
static interactions in molecular simulations. J. Chem. Phys. 103:3014–3021, 1995.

[60] van der Spoel, D., van Buuren, A. R., Tieleman, D. P., Berendsen, H. J. C. Molecular
dynamics simulations of peptides from BPTI: A closer look at amide-aromatic interactions.
J. Biomol. NMR 8:229–238, 1996.

Bibliography 327

[61] Ryckaert, J. P., Bellemans, A. Far. Disc. Chem. Soc. 66:95, 1978.

[62] on Biochemical Nomenclature, I.-I. C. Abrreviations and symbols for the description of
the conformation of polypeptide chains. tentative rules (1969). Biochemistry 9:3471–3478,
1970.

[63] de Loof, H., Nilsson, L., Rigler, R. Molecular dynamics simulations of galanin in aqueous
and nonaqueous solution. J. Am. Chem. Soc. 114:4028–4035, 1992.

[64] Feenstra, K. A., Hess, B., Berendsen, H. J. C. Improving efficiency of large time-scale
molecular dynamics simulations of hydrogen-rich systems. J. Comp. Chem. 20:786–798,
1999.

[65] Feenstra, K. A., Scheek, R. M., Berendsen, H. J. C., Mark, A. E. Analysis of the hierarchy of
motion of globular proteins with implications for protein folding. (submitted to PROTEINS:
Struct. Funct. Gen., feb. 2001).

[66] Hess, B. Determining the shear viscosity of model liquids from molecular dynamics. J.
Chem. Phys. 116:209–217, 2002.

[67] Allen, M. P., Tildesley, D. J. Computer Simulations of Liquids. Oxford: Oxford Science
Publications. 1987.

[68] van der Spoel, D., Berendsen, H. J. C. Molecular dynamics simulations of Leu-enkephalin
in water and DMSO. Biophys. J. 72:2032–2041, 1997.

[69] van der Spoel, D., van Maaren, P. J., Berendsen, H. J. C. A systematic study of water models
for molecular simulation. J. Chem. Phys. 108:10220–10230, 1998.

[70] Smith, P. E., van Gunsteren, W. F. The viscosity of spc and spc/e water. Comp. Phys. Comm.
215:315–318, 1993.

[71] Balasubramanian, S., Mundy, C. J., Klein, M. L. Shear viscosity of polar fluids: Miolecular
dynamics calculations of water. J. Chem. Phys. 105:11190–11195, 1996.

[72] van der Spoel, D., Vogel, H. J., Berendsen, H. J. C. Molecular dynamics simulations of
N-terminal peptides from a nucleotide binding protein. PROTEINS: Struct. Funct. Gen.
24:450–466, 1996.

[73] Amadei, A., Linssen, A. B. M., Berendsen, H. J. C. Essential dynamics of proteins. PRO-
TEINS: Struct. Funct. Gen. 17:412–425, 1993.

[74] Hess, B. Convergence of sampling in protein simulations. Phys. Rev.E 65:031910, 2002.

[75] Hess, B. Similarities between principal components of protein dynamics and random diffu-
sion. Phys. Rev.E 62:8438–8448, 2000.

[76] Kabsch, W., Sander, C. Dictionary of protein secondary structure: Pattern recognition of
hydrogen-bonded and geometrical features. Biopolymers 22:2577–2637, 1983.

[77] Williamson, M. P., Asakura, T. Empirical comparisons of models for chemical-shift calcula-
tion in proteins. J. Magn. Reson. Ser. B 101:63–71, 1993.

328 Bibliography

[78] Bekker, H., Berendsen, H. J. C., Dijkstra, E. J., Achterop, S., v. Drunen, R., v. d. Spoel,
D., Sijbers, A., Keegstra, H., Reitsma, B., Renardus, M. K. R. Gromacs method of virial
calculation using a single sum. InPhysics Computing 92(Singapore, 1993). de Groot, R. A.,
Nadrchal, J., eds. . World Scientific.

[79] Berendsen, H. J. C., Grigera, J. R., Straatsma, T. P. The missing term in effective pair
potentials. J. Phys. Chem. 91:6269–6271, 1987.

[80] Bekker, H. Ontwerp van een special-purpose computer voor moleculaire dynamica simu-
laties. Master’s thesis. RuG. 1987.

[81] van Gunsteren, W. F., Berendsen, H. J. C. Molecular dynamics of simple systems. Practicum
Handleiding voor MD Practicum Nijenborgh 4, 9747 AG, Groningen, The Netherlands 1994.

Index

τT 22
εr 52
1-4 interaction 61, 91

A
accelerate group 15
Adding atom types 110
AFM pulling 111
All-hydrogen force-field 83
Amdahl’s law 39
aminoacids.dat 93, 151
anadock 196
anadockd 196
Angle restraint 64
angle vibration 58
annealing, simulated

seesimulated annealing
atom seeparticle

type 86
types, Adding seeAdding atom types
Dummy∼ seeDummy atom
dummy∼ seedummy atom
united∼ seeunited atom

autocorrelation function 153
average, ensemble seeensemble average

B
Berendsen temperature coupling 22
bond stretching 56
bonded parameter 89
Born-Oppenheimer 4
Boundary Conditions, Periodic

seePeriodic Boundary Conditions
boundary conditions, Periodic

seePeriodic boundary conditions
Brownian Dynamics 33
Buckingham 51
building block 88, 93

C
cdist 197
cdist d 198
center-of-mass velocity 17
Charge Group 76
charge group 19, 134
chemistry, computational

seecomputational chemistry
citing iv
coefficient, diffusion

seediffusion coefficient
combination rule 91, 102
compressibility 24
computational chemistry 1
Conjugate Gradient 34
conjugate gradient 130
connection 91
constant, dielectric seedielectric constant
Constraint 29, 92
constraint 4
Constraint force 107

111
constraints 139
convention, polymer

seepolymer convention
correlation 153
Coulomb 52, 72
coupling

Pressure∼ seePressure coupling
Surface tension∼

seeSurface tension coupling
Temperature∼

seeTemperature coupling
temperature∼

seetemperature coupling
Covariance analysis 161
cut-off 134, 135

330 Index

cutoff 53, 76

D
Data Parallel 39
Database 92
database

hydrogen∼ seehydrogen database
termini∼ seetermini database

Decomposition
Particle∼ seeParticle Decomposition
Space∼ seeSpace Decomposition

degrees of freedom 119
dielectric constant 52, 134
diffusion coefficient 156
dihedral 61

Improper∼ seeImproper dihedral
improper∼ seeimproper dihedral
Proper∼ seeProper dihedral
proper∼ seeproper dihedral

dipolar couplings 68
disco 199
discod 200
dispersion 50

correction 135
Distance restraint 64
distance restraints 141
distribution, Maxwellian

seeMaxwellian distribution
do dssp 164, 172, 201
do dsspd 202
do shift 167, 172
dodecahedron 13
double precision seeprecision, double
dummie seeparticle
Dummy atom 77

87, 119
Dynamics, Brownian

seeBrownian Dynamics
dynamics

Langevin∼ seeLangevin dynamics
mesoscopic∼

seemesoscopic dynamics
Dynamics, Stochastic

seeStochastic Dynamics
dynamics, stochastic

seestochastic dynamics

E
editconf 203
editconfd 205
Einstein relation 156
Electric field 143
electrostatic force 20
Electrostatics 133
eneconv 206
eneconvd 207
energy file 190
Energy

minimization 131
monitor group 15

energy
kinetic∼ seekinetic energy
potential∼ seepotential energy

ensemble average 1
equation, Schr̈odinger

seeSchr̈odinger equation
equations of motion 2, 21
equilibration 191
essential dynamics seecovariance analysis
Essential Dynamics Sampling 38
Ewald sum 55, 80, 133
Ewald, particle-mesh 55
Exclusions 91
exclusions 75

energy monitor group∼ 15
extended ensemble 23

F
ffscan 207
ffscand 208
File type 127
file

energy∼ seeenergy file
index∼ seeindex file
log∼ seelog file
Topology∼ seeTopology file
trajectory∼ seetrajectory file

files, gromos seegromos-96 files
force

Constraint∼ seeConstraint force
constraint∼ seeconstraint force
electrostatic∼ seeelectrostatic force
parabolic∼ seeparabolic force

Index 331

potential of mean∼
seepotentials of mean force

force-field 4, 49
organization 108
All-hydrogen∼

seeAll-hydrogen force-field
changing parameters∼ 109

Fortran 179
Free energy calculations 36, 105
Free energy
free energy calculations 111
Free

energy interactions 72
Energy Perturbation 142

freedom, degrees ofseedegrees of freedom
Freeze group 14
function

autocorrelation∼
seeautocorrelation function

potential∼ seepotential function
shift∼ seeshift function
Tabulated∼ seeTabulated function

G
g anaeig 162, 209
g anaeigd 210
g analyze 162, 212
g analyzed 213
g angle 157, 215
g angled 216
g bond 157, 217
g bondd 217
g bundle 218
g bundled 219
g chi 220
g chi d 222
g cluster 224
g clusterd 225
g clustsize 227
g clustsized 227
g com 152
g confrms 228
g confrmsd 229
g coord 167
g covar 162, 229
g covard 230

g density 167, 231
g densityd 232
g dielectric 232
g dielectricd 233
g dih 234
g dih d 235
g dipoles 155, 156, 235
g dipolesd 237
g disre 238
g disred 238
g dist 239
g dist d 240
g dyndom 240
g dyndomd 241
g enemat 241
g enematd 242
g energy 151, 156, 192, 243
g energyd 245
g filter 246
g filter d 247
g gyrate 159, 247
g gyrated 248
g h2order 249
g h2orderd 249
g hbond 162, 250
g hbondd 251
g helix 253
g helix d 254
g lie 255
g lie d 255
g mdmat 159, 255
g mdmatd 256
g mindist 159, 256
g mindist d 257
g morph 258
g morphd 258
g msd 156, 259
g msdd 260
g nmeig 35, 260
g nmeigd 261
g nmens 35, 261
g nmensd 262
g order 166, 262
g orderd 263
g potential 167, 264
g potentiald 264

332 Index

g pvd 167
g rama 164, 265
g ramad 265
g rdf 153, 266
g rdf d 266
g rms 160, 267
g rms d 268
g rmsdist 160, 270
g rmsdistd 270
g rmsf 271
g rmsf d 272
g rotacf 155, 273
g rotacf d 274
g saltbr 274
g saltbrd 275
g sas 275
g sasd 276
g sgangle 157, 159, 277
g sgangled 277
g sorient 278
g sorientd 279
g tcaf 280
g tcaf d 281
g traj 281
g traj d 282
g velacc 155, 283
g velaccd 284
g wham 284
g whamd 285
genbox 286
genboxd 287
genconf 288
genconfd 289
genion 289
geniond 290
genpr 291
genprd 291
gmxcheck 292
gmxcheckd 292
gmxdump 293
gmxdumpd 293
GMXRC 171
Grid search 19
gromos-87 49
gromos-96

files 84

force field 83
grompp 103, 120, 294
gromppd 295
Group temperature coupling 24
group

accelerate∼ seeaccelerate group
charge∼ seecharge group
Energy monitor∼

seeEnergy monitor group
Freeze∼ seeFreeze group
planar∼ seeplanar group

H
harmonic interaction 91
Hessian 35
highway 297
highwayd 297
html manual 127
hydrogen database 94
hydrogen-bond 87
hypercube 39

I
image, nearest seenearest image
Improper dihedral 60

90
index file 150
install 169
integration timestep 58
interaction list 75
isothermal compressibility 24

K
kinetic energy 20

L
L-BFGS 34
Langevin dynamics 32, 131
leap-frog 21, 129
Lennard-Jones 50, 73
limitations 3
LINCS 30, 74
lincs 140
list, interaction seeinteraction list
log file 132, 191

M

Index 333

makendx 150, 298
makendx d 298
mass, modified seemodified mass
Maxwellian distribution 17
MD

non-equilibrium∼
seenon-equilibrium MD

parallel∼ seeparallel MD
mdrun 299
mdrund 300
mean force, potentials of

seepotentials of mean force
mechanics, statistical

seestatistical mechanics
memory, shared seeshared memory
mesoscopic dynamics 2
Message Passing 39

Interface seeMPI
mirror image 60
mk angndx 150, 302
mk angndxd 302
modeling, molecular

seemolecular modeling
modified mass 120
molecular modeling 1
motion, equations of

seeequations of motion
MPI 39, 44

N
nearest image 18
neighbor list 18, 132
Neighbor searching 18, 132
neighbor, third seethird neighbor
ngmx 151, 303
ngmx d 303
NMR refinement 141

64
non-bonded parameter 90
Non-equilibrium MD 143

15
Normal mode analysis 35, 130
Nośe-Hoover temperature coupling 23

O
octahedron 13

online manual 127
OPLS 62
options 195
Orientation restraint 68
orientation restraints 142

P
Pair interaction 91
parabolic force 55
parallel MD 43
Parallel, Data seeData Parallel
parallelization 38
parameter 85

bonded∼ seebonded parameter
non-bonded∼

seenon-bonded parameter
Parameter, Run seeRun Parameter
Parrinello-Rahman pressure coupling 25
particle 85
Particle Decomposition 40
particle-mesh Ewald seePME
Particle-Particle Particle-Mesh seePPPM
pdb2gmx 63, 88, 120, 304
pdb2gmxd 305
performance 179
Periodic

Boundary Conditions 175
Periodic boundary conditions 11

80
planar group 60
PME 81, 133
Poisson solver 55
polarizability 28
polymer convention 90
Position restraint 63
position restraints 129
potential

energy 20
function 49, 125

potentials of mean force 111
PPPM 46, 81, 133
precision

double∼ 169
single∼ 169

pressure 21
Pressure coupling 24, 137

334 Index

Parrinello-Rahman∼
seeParrinello-Rahman pressure coupling

principal component analysis
seecovariance analysis

processor topology 39
Programs by topic 144
Proper dihedral 61

90
protonate 307
protonated 307
pulling, AFM seeAFM pulling

Q
QSAR 1
quadrupole 87
quasi-Newtonian 130

R
Reaction Field 73
reaction field 52, 185
Reaction-Field 134
refinement,nmr 64
repulsion 50
restraint

Angle∼ seeAngle restraint
Distance∼ seeDistance restraint
Orientation∼ seeOrientation restraint
Position∼ seePosition restraint

Run Parameter 129
Ryckaert-Bellemans 89

S
sampling 28

umbrella∼ seeumbrella sampling
Schr̈odinger equation 1
search

Grid∼ seeGrid search
Simple∼ seeSimple search

searching, Neighbor
seeNeighbor searching

SETTLE 29, 92
SHAKE 29, 74
shake 140
shared memory 46, 47
shell seeparticle

model 28
Shell Molecular Dynamics 131

shift function 20
Simple search 18
Simulated annealing 138

32
single precision seeprecision, single
Soft-core interactions 74
solver, Poisson seePoisson solver
Space Decomposition 40
statistical mechanics 2
Steepest Descent 34
steepest descent 130
Stochastic Dynamics 32
stochastic dynamics 2
stretching, bond seebond stretching
Surface tension coupling 26

T
Tabulated function 124
temperature 20
Temperature coupling 22, 136
temperature coupling 14, 22

Berendsen∼
seeBerendsen temperature coupling

Group∼
seeGroup temperature coupling

temperature coupling, Nosé-Hoover
seeNośe-Hoover temperature coupling

termini database 96
third neighbor 75
time lag 154
timestep, integration

seeintegration timestep
topic, Programs by seePrograms by topic
topology 85
Topology file 97
topology, processorseeprocessor topology
tpbconv 308
tpbconvd 309
trajectory file 28, 132
tree 39
trjcat 309
trjcat d 310
trjconv 310
trjconv d 312
trjorder 314
trjorder d 315

Index 335

type
atom∼ seeatom type
File∼ seeFile type

U
umbrella sampling 111
united atom 87
Urey-Bradley angle vibration 59

V
velocity, center-of-mass

seecenter-of-mass velocity
vibration

angle∼ seeangle vibration
Urey-Bradley angle∼

seeUrey-Bradley angle vibration
virial 21, 76, 77, 175
virtual site 87
Viscosity 122
viscosity 143, 156

W
water 58
weak coupling 22, 24
wheel 166, 316
wheeld 316

X
x2top 316
x2top d 317
xdr 127
xmgr 154, 193
xpm2ps 318
xpm2psd 319
xrama 164, 320
xramad 320
XTC 15

Don’t forget to check out the online resources atwww.gromacs.org.

http://www.gromacs.org

	Introduction
	Computational Chemistry and Molecular Modeling
	Molecular Dynamics Simulations
	Energy Minimization and Search Methods

	Definitions and Units
	Notation
	MD units
	Reduced units

	Algorithms
	Introduction
	Periodic boundary conditions
	Some useful box types
	Cutoff restrictions

	The group concept
	Molecular Dynamics
	Initial conditions
	Neighbor searching
	Compute forces
	Update configuration
	Temperature coupling
	Pressure coupling
	Output step

	Shell molecular dynamics
	Optimization of the shell positions

	Constraint algorithms
	SHAKE
	LINCS

	Simulated Annealing
	Stochastic Dynamics
	Brownian Dynamics
	Energy Minimization
	Steepest Descent
	Conjugate Gradient
	L-BFGS

	Normal Mode Analysis
	Free energy calculations
	Essential Dynamics Sampling
	Parallelization
	Methods of parallelization
	MD on a ring of processors

	Parallel Molecular Dynamics
	Domain decomposition
	Domain decomposition for non-bonded forces
	Parallel PPPM
	Parallel sorting

	Force fields
	Non-bonded interactions
	The Lennard-Jones interaction
	Buckingham potential
	Coulomb interaction
	Coulomb interaction with reaction field
	Modified non-bonded interactions
	Modified short-range interactions with Ewald summation

	Bonded interactions
	Bond stretching
	Morse potential bond stretching
	Cubic bond stretching potential
	Harmonic angle potential
	Cosine based angle potential
	Urey-Bradley potential
	Bond-Bond cross term
	Bond-Angle cross term
	Improper dihedrals
	Proper dihedrals
	Special interactions
	Position restraints
	Angle restraints
	Distance restraints
	Orientation restraints

	Free energy interactions
	Soft-core interactions

	Methods
	Exclusions and 1-4 Interactions.
	Charge Groups.
	Treatment of cutoffs

	Dummy atoms.
	Long Range Electrostatics
	Ewald summation
	PME
	PPPM
	Optimizing Fourier transforms

	All-hydrogen force-field
	GROMOS-96 notes
	The GROMOS-96 force field
	GROMOS-96 files

	Topologies
	Introduction
	Particle type
	Atom types
	Dummy atoms

	Parameter files
	Atoms
	Bonded parameters
	Non-bonded parameters
	Pair interactions
	Exclusions

	Constraints
	Databases
	Residue database
	Hydrogen database
	Termini database

	File formats
	Topology file
	Molecule.itp file
	Ifdef option
	Free energy calculations
	Constraint force
	Coordinate file

	Force-field organization
	Force-field files
	Changing force-field parameters
	Adding atom types

	Special Topics
	Calculating potentials of mean force: the pull code
	Overview
	Usage
	The parameter file
	Output
	Limitations
	Implementation
	Future development

	Removing fastest degrees of freedom
	Hydrogen bond-angle vibrations
	Out-of-plane vibrations in aromatic groups

	Viscosity calculation
	Tabulated functions
	Cubic splines for potentials
	User specified potential functions

	Run parameters and Programs
	Online and html manuals
	File types
	Run Parameters
	General
	Preprocessing
	Run control
	Langevin dynamics
	Energy minimization
	Shell Molecular Dynamics
	Output control
	Neighbor searching
	Electrostatics and VdW
	Temperature coupling
	Pressure coupling
	Simulated annealing
	Velocity generation
	Bonds
	Energy group exclusions
	NMR refinement
	Free Energy Perturbation
	Non-equilibrium MD
	Electric fields
	User defined thingies

	Programs by topic

	Analysis
	Groups in Analysis.
	Default Groups

	Looking at your trajectory
	General properties
	Radial distribution functions
	Correlation functions
	Theory of correlation functions
	Using FFT for computation of the ACF
	Special forms of the ACF
	Some Applications
	Mean Square Displacement

	Bonds, angles and dihedrals
	Radius of gyration and distances
	Root mean square deviations in structure
	Covariance analysis
	Hydrogen bonds
	Protein related items
	Interface related items
	Chemical shifts

	Technical Details
	Installation
	Single or Double precision
	Porting GROMACS
	Multi-processor Optimization

	Environment Variables
	Running GROMACS in parallel

	Some implementation details
	Single Sum Virial in GROMACS.
	Virial.
	Virial from non-bonded forces.
	The intramolecular shift (mol-shift).
	Virial from Covalent Bonds.
	Virial from Shake.

	Optimizations
	Inner Loops for Water
	Fortran Code

	Computation of the 1.0/sqrt function.
	Introduction.
	General
	Applied to floating point numbers
	Specification of the lookup table
	Separate exponent and fraction computation
	Implementation

	Long range corrections
	Dispersion
	Energy
	Virial and pressure

	Averages and fluctuations
	Formulae for averaging
	Implementation
	Part of a Simulation
	Combining two simulations
	Summing energy terms

	Manual Pages
	options
	anadock
	anadock_d
	cdist
	cdist_d
	disco
	disco_d
	do_dssp
	do_dssp_d
	editconf
	editconf_d
	eneconv
	eneconv_d
	ffscan
	ffscan_d
	g_anaeig
	g_anaeig_d
	g_analyze
	g_analyze_d
	g_angle
	g_angle_d
	g_bond
	g_bond_d
	g_bundle
	g_bundle_d
	g_chi
	g_chi_d
	g_cluster
	g_cluster_d
	g_clustsize
	g_clustsize_d
	g_confrms
	g_confrms_d
	g_covar
	g_covar_d
	g_density
	g_density_d
	g_dielectric
	g_dielectric_d
	g_dih
	g_dih_d
	g_dipoles
	g_dipoles_d
	g_disre
	g_disre_d
	g_dist
	g_dist_d
	g_dyndom
	g_dyndom_d
	g_enemat
	g_enemat_d
	g_energy
	g_energy_d
	g_filter
	g_filter_d
	g_gyrate
	g_gyrate_d
	g_h2order
	g_h2order_d
	g_hbond
	g_hbond_d
	g_helix
	g_helix_d
	g_lie
	g_lie_d
	g_mdmat
	g_mdmat_d
	g_mindist
	g_mindist_d
	g_morph
	g_morph_d
	g_msd
	g_msd_d
	g_nmeig
	g_nmeig_d
	g_nmens
	g_nmens_d
	g_order
	g_order_d
	g_potential
	g_potential_d
	g_rama
	g_rama_d
	g_rdf
	g_rdf_d
	g_rms
	g_rms_d
	g_rmsdist
	g_rmsdist_d
	g_rmsf
	g_rmsf_d
	g_rotacf
	g_rotacf_d
	g_saltbr
	g_saltbr_d
	g_sas
	g_sas_d
	g_sgangle
	g_sgangle_d
	g_sorient
	g_sorient_d
	g_tcaf
	g_tcaf_d
	g_traj
	g_traj_d
	g_velacc
	g_velacc_d
	g_wham
	g_wham_d
	genbox
	genbox_d
	genconf
	genconf_d
	genion
	genion_d
	genpr
	genpr_d
	gmxcheck
	gmxcheck_d
	gmxdump
	gmxdump_d
	grompp
	grompp_d
	highway
	highway_d
	make_ndx
	make_ndx_d
	mdrun
	mdrun_d
	mk_angndx
	mk_angndx_d
	ngmx
	ngmx_d
	pdb2gmx
	pdb2gmx_d
	protonate
	protonate_d
	tpbconv
	tpbconv_d
	trjcat
	trjcat_d
	trjconv
	trjconv_d
	trjorder
	trjorder_d
	wheel
	wheel_d
	x2top
	x2top_d
	xpm2ps
	xpm2ps_d
	xrama
	xrama_d

	Bibliography
	Index

