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Preface & Disclaimer

This manual is not complete and has no pretention to be so due to lack of time of the contributors
— our first priority is to improve the software. It is worked on continuously, which in some cases
might mean the information is not entirely correct.

Comments are welcome, please send them by e-mail to gromacs@gromacs.org, or to one of the
mailing lists (see www.gromacs.org).

We try to release an updated version of the manual whenever we release a new version of the soft-
ware, so in general it is a good idea to use a manual with the same major and minor release number
as your GROMACS installation. Any revision numbers (like 3.1.1) are however independent, to
make it possible to implement bug fixes and manual improvements if necessary.

On-line Resources

You can find more documentation and other material at our homepage www.gromacs.org. Among
other things there is an on-line reference, several GROMACS mailing lists with archives and
contributed topologies/force fields.

Citation information

When citing this document in any scientific publication please refer to it as:

D. van der Spoel, E. Lindahl, B. Hess, A. R. van Buuren, E. Apol, P. J. Meulenhoff,
D. P. Tieleman, A. L. T. M. Sijbers, K. A. Feenstra, R. van Drunen and H. J. C.
Berendsen, Gromacs User Manual version 4.5, www.gromacs.org (2010)

However, we prefer that you cite (some of) the GROMACS papers [1, 2, 3, 4, 5] when you publish
your results. Any future development depends on academic research grants, since the package is
distributed as free software!

Current development

GROMACS is a joint effort, with contributions from lots of developers around the world. The core
development is currently taking place at

e Department of Cellular and Molecular Biology, Uppsala University, Sweden.
(David van der Spoel).

e Stockholm Bioinformatics Center, Stockholm University, Sweden
(Erik Lindahl).

e Stockholm Bioinformatics Center, Stockholm University, Sweden
(Berk Hess)
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GROMACS is Free Software

The entire GROMACS package is available under the GNU General Public License. This means
it’s free as in free speech, not just that you can use it without paying us money. For details, check
the COPYING file in the source code or consult www.gnu.org/copyleft/gpl.html.

The GROMACS source code and and selected set of binary packages are available on our home-
page, www.gromacs.org. Have fun.
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Chapter 1
Introduction

1.1 Computational Chemistry and Molecular Modeling

GROMACS is an engine to perform molecular dynamics simulations and energy minimization.
These are two of the many techniques that belong to the realm of computational chemistry and
molecular modeling. Computational chemistry is just a name to indicate the use of computational
techniques in chemistry, ranging from quantum mechanics of molecules to dynamics of large
complex molecular aggregates. Molecular modeling indicates the general process of describing
complex chemical systems in terms of a realistic atomic model, with the goal being to under-
stand and predict macroscopic properties based on detailed knowledge on an atomic scale. Often,
molecular modeling is used to design new materials, for which the accurate prediction of physical
properties of realistic systems is required.

Macroscopic physical properties can be distinguished by (a) static equilibrium properties, such
as the binding constant of an inhibitor to an enzyme, the average potential energy of a system, or
the radial distribution function of a liquid, and (b) dynamic or non-equilibrium properties, such
as the viscosity of a liquid, diffusion processes in membranes, the dynamics of phase changes,
reaction kinetics, or the dynamics of defects in crystals. The choice of technique depends on the
question asked and on the feasibility of the method to yield reliable results at the present state of
the art. Ideally, the (relativistic) time-dependent Schrodinger equation describes the properties of
molecular systems with high accuracy, but anything more complex than the equilibrium state of a
few atoms cannot be handled at this ab initio level. Thus, approximations are necessary; the higher
the complexity of a system and the longer the time span of the processes of interest is, the more
severe the required approximations are. At a certain point (reached very much earlier than one
would wish), the ab initio approach must be augmented or replaced by empirical parameterization
of the model used. Where simulations based on physical principles of atomic interactions still
fail due to the complexity of the system, molecular modeling is based entirely on a similarity
analysis of known structural and chemical data. The QSAR methods (Quantitative Structure-
Activity Relations) and many homology-based protein structure predictions belong to the latter
category.

Macroscopic properties are always ensemble averages over a representative statistical ensemble
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(either equilibrium or non-equilibrium) of molecular systems. For molecular modeling, this has
two important consequences:

e The knowledge of a single structure, even if it is the structure of the global energy min-
imum, is not sufficient. It is necessary to generate a representative ensemble at a given
temperature, in order to compute macroscopic properties. But this is not enough to compute
thermodynamic equilibrium properties that are based on free energies, such as phase equi-
libria, binding constants, solubilities, relative stability of molecular conformations, etc. The
computation of free energies and thermodynamic potentials requires special extensions of
molecular simulation techniques.

e While molecular simulations, in principle, provide atomic details of the structures and mo-
tions, such details are often not relevant for the macroscopic properties of interest. This
opens the way to simplify the description of interactions and average over irrelevant details.
The science of statistical mechanics provides the theoretical framework for such simpli-
fications. There is a hierarchy of methods ranging from considering groups of atoms as
one unit, describing motion in a reduced number of collective coordinates, averaging over
solvent molecules with potentials of mean force combined with stochastic dynamics [6],
to mesoscopic dynamics describing densities rather than atoms and fluxes as response to
thermodynamic gradients rather than velocities or accelerations as response to forces [7].

For the generation of a representative equilibrium ensemble two methods are available: (a) Monte
Carlo simulations and (b) Molecular Dynamics simulations. For the generation of non-equilibrium
ensembles and for the analysis of dynamic events, only the second method is appropriate. While
Monte Carlo simulations are more simple than MD (they do not require the computation of forces),
they do not yield significantly better statistics than MD in a given amount of computer time. There-
fore, MD is the more universal technique. If a starting configuration is very far from equilibrium,
the forces may be excessively large and the MD simulation may fail. In those cases, a robust en-
ergy minimization is required. Another reason to perform an energy minimization is the removal
of all kinetic energy from the system: if several “snapshots” from dynamic simulations must be
compared, energy minimization reduces the thermal noise in the structures and potential energies
so that they can be compared better.

1.2 Molecular Dynamics Simulations

MD simulations solve Newton’s equations of motion for a system of [V interacting atoms:

0%r; )
miﬁ:Fi,zzl...N. (1.1)
The forces are the negative derivatives of a potential function V (71,72, ...,7N):
oV
F, = _27 1.2
i ar, (1.2)

The equations are solved simultaneously in small time steps. The system is followed for some
time, taking care that the temperature and pressure remain at the required values, and the coor-
dinates are written to an output file at regular intervals. The coordinates as a function of time



1.2. Molecular Dynamics Simulations

type of wavenumber

type of bond vibration (cm™1h)
C-H, O-H, N-H | stretch 3000-3500
C=C, C=0 stretch 1700-2000
HOH bending 1600

c-C stretch 1400-1600
H>CX sciss, rock | 1000-1500
CCC bending 800-1000
O-H---0 libration 400- 700
O-H---O stretch 50- 200

Table 1.1: Typical vibrational frequencies (wavenumbers) in molecules and hydrogen-bonded lig-
uids. Compare k7' /h = 200 cm~! at 300 K.

represent a trajectory of the system. After initial changes, the system will usually reach an equi-
librium state. By averaging over an equilibrium trajectory, many macroscopic properties can be
extracted from the output file.

It is useful at this point to consider the limitations of MD simulations. The user should be aware
of those limitations and always perform checks on known experimental properties to assess the
accuracy of the simulation. We list the approximations below.

The simulations are classical

Using Newton’s equation of motion automatically implies the use of classical mechanics to
describe the motion of atoms. This is all right for most atoms at normal temperatures, but
there are exceptions. Hydrogen atoms are quite light and the motion of protons is sometimes
of essential quantum mechanical character. For example, a proton may tunnel through a
potential barrier in the course of a transfer over a hydrogen bond. Such processes cannot be
properly treated by classical dynamics! Helium liquid at low temperature is another example
where classical mechanics breaks down. While helium may not deeply concern us, the high
frequency vibrations of covalent bonds should make us worry! The statistical mechanics of a
classical harmonic oscillator differs appreciably from that of a real quantum oscillator when
the resonance frequency v approximates or exceeds kp7'/h. Now at room temperature the
wavenumber o = 1/\ = v/c at which hv = kgT is approximately 200 cm~. Thus, all
frequencies higher than, say, 100 cm~! may misbehave in classical simulations. This means
that practically all bond and bond-angle vibrations are suspect, and even hydrogen-bonded
motions as translational or librational H-bond vibrations are beyond the classical limit (see
Table 1.1). What can we do?

Well, apart from real quantum-dynamical simulations, we can do one of two things:

(a) If we perform MD simulations using harmonic oscillators for bonds, we should make
corrections to the total internal energy U = Ej;,, +Ep; and specific heat C'y (and to entropy
S and free energy A or G if those are calculated). The corrections to the energy and specific
heat of a one-dimensional oscillator with frequency v are: [§]

1
UM = g 4 kT (237—1—1—61,56_1) (1.3)
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QM _ x’e”
Oy = V+k<(€x_1)2—1>, (1.4)
where x = hv/kT. The classical oscillator absorbs too much energy (k7°), while the high-
frequency quantum oscillator is in its ground state at the zero-point energy level of %hu.
(b) We can treat the bonds (and bond angles) as constraints in the equations of motion. The
rationale behind this is that a quantum oscillator in its ground state resembles a constrained
bond more closely than a classical oscillator. A good practical reason for this choice is
that the algorithm can use larger time steps when the highest frequencies are removed. In
practice the time step can be made four times as large when bonds are constrained than
when they are oscillators [9]. GROMACS has this option for the bonds and bond angles.
The flexibility of the latter is rather essential to allow for the realistic motion and coverage
of configurational space [10].

Electrons are in the ground state

In MD we use a conservative force field that is a function of the positions of atoms only.
This means that the electronic motions are not considered: the electrons are supposed to
adjust their dynamics instantly when the atomic positions change (the Born-Oppenheimer
approximation), and remain in their ground state. This is really all right, almost always. But
of course, electron transfer processes and electronically excited states can not be treated.
Neither can chemical reactions be treated properly, but there are other reasons to shy away
from reactions for the time being.

Force fields are approximate

Force fields provide the forces. They are not really a part of the simulation method and their
parameters can be user-modified as the need arises or knowledge improves. But the form
of the forces that can be used in a particular program is subject to limitations. The force
field that is incorporated in GROMACS is described in Chapter 4. In the present version the
force field is pair-additive (apart from long-range Coulomb forces), it cannot incorporate
polarizabilities, and it does not contain fine-tuning of bonded interactions. This urges the
inclusion of some limitations in this list below. For the rest it is quite useful and fairly
reliable for biologically-relevant macromolecules in aqueous solution!

The force field is pair-additive

This means that all non-bonded forces result from the sum of non-bonded pair interactions.
Non pair-additive interactions, the most important example of which is interaction through
atomic polarizability, are represented by effective pair potentials. Only average non pair-
additive contributions are incorporated. This also means that the pair interactions are not
pure, i.e., they are not valid for isolated pairs or for situations that differ appreciably from the
test systems on which the models were parameterized. In fact, the effective pair potentials
are not that bad in practice. But the omission of polarizability also means that electrons in
atoms do not provide a dielectric constant as they should. For example, real liquid alkanes
have a dielectric constant of slightly more than 2, which reduce the long-range electrostatic
interaction between (partial) charges. Thus, the simulations will exaggerate the long-range
Coulomb terms. Luckily, the next item compensates this effect a bit.

Long-range interactions are cut off
In this version, GROMACS always uses a cut-off radius for the Lennard-Jones interactions
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and sometimes for the Coulomb interactions as well. The “minimum-image convention”
used by GROMACS requires that only one image of each particle in the periodic boundary
conditions is considered for a pair interaction, so the cut-off radius cannot exceed half the
box size. That is still pretty big for large systems, and trouble is only expected for systems
containing charged particles. But then truly bad things can happen, like accumulation of
charges at the cut-off boundary or very wrong energies! For such systems, you should
consider using one of the implemented long-range electrostatic algorithms, such as particle-
mesh Ewald [11, 12].

Boundary conditions are unnatural

Since system size is small (even 10,000 particles is small), a cluster of particles will have a
lot of unwanted boundary with its environment (vacuum). We must avoid this condition if
we wish to simulate a bulk system. As such, we use periodic boundary conditions to avoid
real phase boundaries. Since liquids are not crystals, something unnatural remains. This
item is mentioned last because it is the least of the evils. For large systems, the errors are
small, but for small systems with a lot of internal spatial correlation, the periodic boundaries
may enhance internal correlation. In that case, beware of, and test, the influence of system
size. This is especially important when using lattice sums for long-range electrostatics, since
these are known to sometimes introduce extra ordering.

1.3 Energy Minimization and Search Methods

As mentioned in sec. 1.1, in many cases energy minimization is required. GROMACS provides a
number of methods for local energy minimization, as detailed in sec. 3.10.

The potential energy function of a (macro)molecular system is a very complex landscape (or hy-
persurface) in a large number of dimensions. It has one deepest point, the global minimum and
a very large number of local minima, where all derivatives of the potential energy function with
respect to the coordinates are zero and all second derivatives are non-negative. The matrix of
second derivatives, which is called the Hessian matrix, has non-negative eigenvalues; only the
collective coordinates that correspond to translation and rotation (for an isolated molecule) have
zero eigenvalues. In between the local minima there are saddle points, where the Hessian matrix
has only one negative eigenvalue. These points are the mountain passes through which the system
can migrate from one local minimum to another.

Knowledge of all local minima, including the global one, and of all saddle points would enable
us to describe the relevant structures and conformations and their free energies, as well as the
dynamics of structural transitions. Unfortunately, the dimensionality of the configurational space
and the number of local minima is so high that it is impossible to sample the space at a sufficient
number of points to obtain a complete survey. In particular, no minimization method exists that
guarantees the determination of the global minimum in any practical amount of time. Impractical
methods exist, some much faster than others [13]. However, given a starting configuration, it
is possible to find the nearest local minimum. “Nearest” in this context does not always imply
“nearest” in a geometrical sense (i.e., the least sum of square coordinate differences), but means the
minimum that can be reached by systematically moving down the steepest local gradient. Finding
this nearest local minimum is all that GROMACS can do for you, sorry! If you want to find other
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minima and hope to discover the global minimum in the process, the best advice is to experiment
with temperature-coupled MD: run your system at a high temperature for a while and then quench
it slowly down to the required temperature; do this repeatedly! If something as a melting or glass
transition temperature exists, it is wise to stay for some time slightly below that temperature and
cool down slowly according to some clever scheme, a process called simulated annealing. Since
no physical truth is required, you can use your imagination to speed up this process. One trick
that often works is to make hydrogen atoms heavier (mass 10 or so): although that will slow
down the otherwise very rapid motions of hydrogen atoms, it will hardly influence the slower
motions in the system, while enabling you to increase the time step by a factor of 3 or 4. You can
also modify the potential energy function during the search procedure, e.g. by removing barriers
(remove dihedral angle functions or replace repulsive potentials by soft-core potentials [14]), but
always take care to restore the correct functions slowly. The best search method that allows rather
drastic structural changes is to allow excursions into four-dimensional space [15], but this requires
some extra programming beyond the standard capabilities of GROMACS.

Three possible energy minimization methods are:

e Those that require only function evaluations. Examples are the simplex method and its
variants. A step is made on the basis of the results of previous evaluations. If derivative
information is available, such methods are inferior to those that use this information.

e Those that use derivative information. Since the partial derivatives of the potential energy
with respect to all coordinates are known in MD programs (these are equal to minus the
forces) this class of methods is very suitable as modification of MD programs.

e Those that use second derivative information as well. These methods are superior in their
convergence properties near the minimum: a quadratic potential function is minimized in
one step! The problem is that for IV particles a 3N x 3N matrix must be computed, stored,
and inverted. Apart from the extra programming to obtain second derivatives, for most
systems of interest this is beyond the available capacity. There are intermediate methods
that build up the Hessian matrix on the fly, but they also suffer from excessive storage
requirements. S0 GROMACS will shy away from this class of methods.

The steepest descent method, available in GROMACS, is of the second class. It simply takes a
step in the direction of the negative gradient (hence in the direction of the force), without any
consideration of the history built up in previous steps. The step size is adjusted such that the
search is fast, but the motion is always downhill. This is a simple and sturdy, but somewhat
stupid, method: its convergence can be quite slow, especially in the vicinity of the local minimum!
The faster-converging conjugate gradient method (see e.g. [16]) uses gradient information from
previous steps. In general, steepest descents will bring you close to the nearest local minimum
very quickly, while conjugate gradients brings you very close to the local minimum, but performs
worse far away from the minimum. GROMACS also supports the L-BFGS minimizer, which is
mostly comparable to conjugate gradient method, but in some cases converges faster.



Chapter 2

Definitions and Units

2.1 Notation

The following conventions for mathematical typesetting are used throughout this document:

Item ‘ Notation ‘ Example
Vector Bold italic r;
Vector Length | Italic 5

We define the lowercase subscripts ¢, j, k and [ to denote particles: r; is the position vector of
particle ¢, and using this notation:

Ty =T; — T4 (21)

rij = [rijl 2.2)

The force on particle ¢ is denoted by F'; and
F';; = force on i exerted by j (2.3)

Please note that we changed notation as of version 2.0 to 7;; = r; — 7; since this is the notation
commonly used. If you encounter an error, let us know.

2.2 MD units

GROMACS uses a consistent set of units that produce values in the vicinity of unity for most
relevant molecular quantities. Let us call them MD units. The basic units in this system are nm,
ps, K, electron charge (e) and atomic mass unit (u), see Table 2.1.

Consistent with these units are a set of derived units, given in Table 2.2.

The electric conversion factor f = 47350 = 138.935485(9) kJ mol~! nm e~2. It relates the

mechanical quantities to the electrical quantities as in

2 2
e (2.4)
T T
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Quantity Symbol | Unit

length r nm = 10" m

mass m u (atomic mass unit) = 1.6605402(10)x 1027 kg
(1/12 the mass of a '2C atom)

1.6605402(10) x 10727 kg

time t ps=10"125

charge q e = electronic charge = 1.60217733(49) x 10719 C
temperature T K

Table 2.1: Basic units used in GROMACS. Numbers in parentheses give accuracy.

Quantity Symbol | Unit

energy E,V | kJmol™!

Force F kJ mol~! nm~!

pressure P kI mol~ ! nm™3 = 1030/NAV Pa

1.660 54 x 10° Pa = 16.6054 bar

nmps~! = 1000 ms~*

e nm

kI mol~! e~! =0.010 364 272(3) Volt

kI mol~! nm~! e~ = 1.0364272(3) x 107 Vm~!

velocity

dipole moment
electric potential
electric field

Hexs

Table 2.2: Derived units

Electric potentials ® and electric fields E are intermediate quantities in the calculation of energies
and forces. They do not occur inside GROMACS. If they are used in evaluations, there is a choice
of equations and related units. We strongly recommend following the usual practice of including
the factor f in expressions that evaluate ® and E:

o) =13, Ejrﬂ 2.5)
J
E(r)=f3_q |(:—2|2'> 2.6)
J

With these definitions, g® is an energy and ¢ F is a force. The units are those given in Table 2.2:
about 10 mV for potential. Thus, the potential of an electronic charge at a distance of 1 nm equals
f = 140 units ~ 1.4 V. (exact value: 1.439965 V)

Note that these units are mutually consistent; changing any of the units is likely to produce incon-
sistencies and is therefore strongly discouraged! In particular: if A are used instead of nm, the unit
of time changes to 0.1 ps. If kcal mol~! (= 4.184 kJ mol 1) is used instead of kJ mol~! for energy,
the unit of time becomes 0.488882 ps and the unit of temperature changes to 4.184 K. But in both
cases all electrical energies go wrong, because they will still be computed in kJ mol !, expecting
nm as the unit of length. Although careful rescaling of charges may still yield consistency, it is
clear that such confusions must be rigidly avoided.

In terms of the MD units, the usual physical constants take on different values (see Table 2.3).
All quantities are per mol rather than per molecule. There is no distinction between Boltzmann’s
constant & and the gas constant R: their value is 0.008 314 51 kJ mol ' K.
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Symbol

Name

Value

Nav
R
kp
h
h

C

Avogadro’s number
gas constant
Boltzmann’s constant
Planck’s constant
Dirac’s constant
velocity of light

6.022 136 7(36) x 1023 mol !
8.314510(70) x 1073 kJ mol~! K~!
idem

0.399 031 32(24) kJ mol~* ps

0.063 507 807(38) kJ mol ! ps

299 792.458 nm ps~!

Table 2.3: Some Physical Constants

Quantity Symbol | Relation to SI
Length r* ro!

Mass m* mM~!

Time t* to~t e/M
Temperature T kpT e !
Energy E* Eel

Force F* Foel
Pressure P* Po3e!
Velocity v* v/ M/e
Density p* No3v—1

Table 2.4: Reduced Lennard-Jones quantities

2.3 Reduced units

When simulating Lennard-Jones (LJ) systems, it might be advantageous to use reduced units (i.e.,
setting €;; = 045 = m; = kp = 1 for one type of atoms). This is possible. When specifying
the input in reduced units, the output will also be in reduced units. The one exception is the
temperature, which is expressed in 0.008 314 51 reduced units. This is a consequence of using
Boltzmann’s constant in the evaluation of temperature in the code. Thus not 7', but kg7, is the
reduced temperature. A GROMACS temperature 7' = 1 means a reduced temperature of 0.008 . . .
units; if a reduced temperature of 1 is required, the GROMACS temperature should be 120.2717.

In Table 2.4 quantities are given for LJ potentials:

o= ()" ()]
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Chapter 3
Algorithms

3.1 Introduction

In this chapter we first give describe some general concepts used in GROMACS: periodic bound-
ary conditions (sec. 3.2) and the group concept (sec. 3.3). The MD algorithm is described in
sec. 3.4: first a global form of the algorithm is given, which is refined in subsequent subsections.
The (simple) EM (Energy Minimization) algorithm is described in sec. 3.10. Some other algo-
rithms for special purpose dynamics are described after this.

A few issues are of general interest. In all cases the systemm must be defined, consisting of
molecules. Molecules again consist of particles with defined interaction functions. The detailed
description of the topology of the molecules and of the force field and the calculation of forces is
given in chapter 4. In the present chapter we describe other aspects of the algorithm, such as pair
list generation, update of velocities and positions, coupling to external temperature and pressure,
conservation of constraints. The analysis of the data generated by an MD simulation is treated in
chapter 8.

3.2 Periodic boundary conditions

The classical way to minimize edge effects in a finite system is to apply periodic boundary condi-
tions. The atoms of the system to be simulated are put into a space-filling box, which is surrounded
by translated copies of itself (Fig. 3.1). Thus there are no boundaries of the system; the artifact
caused by unwanted boundaries in an isolated cluster is now replaced by the artifact of periodic
conditions. If the system is crystalline, such boundary conditions are desired (although motions
are naturally restricted to periodic motions with wavelengths fitting into the box). If one wishes to
simulate non-periodic systems, such as liquids or solutions, the periodicity by itself causes errors.
The errors can be evaluated by comparing various system sizes; they are expected to be less severe
than the errors resulting from an unnatural boundary with vacuum.

There are several possible shapes for space-filling unit cells. Some, like the rhombic dodecahedron
and the fruncated octahedron [17] are closer to being a sphere than a cube is, and are therefore
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Figure 3.1: Periodic boundary conditions in two dimensions.

better suited to the study of an approximately spherical macromolecule in solution, since fewer
solvent molecules are required to fill the box given a minimum distance between macromolecular
images. At the same time, rhombic dodecahedra and truncated octahedra are special cases of
triclinic unit cells; the most general space-filling unit cells that comprise all possible space-filling
shapes [18]. For this reason, GROMACS is based on the triclinic unit cell.

GROMACS uses periodic boundary conditions, combined with the minimum image convention:
only one — the nearest — image of each particle is considered for short-range non-bonded in-
teraction terms. For long-range electrostatic interactions this is not always accurate enough, and
GROMACS therefore also incorporates lattice sum methods such as Ewald Sum, PME and PPPM.

GROMACS supports triclinic boxes of any shape. The simulation box (unit cell) is defined by the
3 box vectors a,b and c. The box vectors must satisfy the following conditions:

ay=a,="b,=0 (3.1)
az; >0, by,>0, c;>0 (3.2)
1 1 1
|bl“| < 5(117 |Cx| < 5(1337 |Cy| < 5 by (33)

Equations 3.1 can always be satisfied by rotating the box. Inequalities (3.2) and (3.3) can always
be satisfied by adding and subtracting box vectors.

Even when simulating using a triclinic box, GROMACS always keeps the particles in a brick-
shaped volume, for efficiency reasons, as illustrated in Fig. 3.1 for a 2-dimensional system. From
the output trajectory it might therefore seem as if the simulation was done in a rectangular box.
The program t r jconv can be used to convert the trajectory to a different unit-cell representation.
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Figure 3.2: A rhombic dodecahedron and truncated octahedron (arbitrary orientations).

box type image box box vectors box vector angles
distance | volume | a b c /bc Lac Zab
d 0 0
cubic d a3 0 d 0 90° 90° 90°
0 0 d
rhombic d 0 % d
dodecahedron d Vedd | 0 d 3d 60° 60° 90°
(xy-square) 0.707d% | 0 0 % V2d
rhombic d % d % d
dodecahedron d V2dd | 0 3V3d IV3d| 60° 60° 60°
(xy-hexagon) 0.707d% | 0 0 %\/6 d
truncated d % d —% d
octahedron d V3d3 | 0 2v2d 1v2d | 71.53° 109.47° T1.53°
07704 | 0 0  £V6d

Table 3.1: The cubic box, the rhombic dodecahedron and the truncated octahedron.

It is also possible to simulate without periodic boundary conditions, but it is usually more efficient
to simulate an isolated cluster of molecules in a large periodic box, since fast grid searching can
only be used in a periodic system.

3.2.1 Some useful box types

The three most useful box types for simulations of solvated systems are described in Table 3.1.
The rhombic dodecahedron (Fig. 3.2) is the smallest and most regular space-filling unit cell. Each
of the 12 image cells is at the same distance. The volume is 71% of the volume of a cube having
the same image distance. This saves about 29% of CPU-time when simulating a spherical or
flexible molecule in solvent. There are two different orientations of a rhombic dodecahedron that
satisfy equations 3.1, 3.2 and 3.3. The program editconf produces the orientation which has
a square intersection with the xy-plane. This orientation was chosen because the first two box
vectors coincide with the x and y-axis, which is easier to comprehend. The other orientation can
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be useful for simulations of membrane proteins. In this case the cross-section with the xy-plane is
a hexagon, which has an area which is 14% smaller than the area of a square with the same image
distance. The height of the box (c,) should be changed to obtain an optimal spacing. This box
shape not only saves CPU-time, it also results in a more uniform arrangement of the proteins.

3.2.2 Cut-off restrictions

The minimum image convention implies that the cut-off radius used to truncate non-bonded inter-
actions may not exceed half the shortest box vector:

1 .
Re < 5 min(|[al], [[b]], [el), (3.4)

because otherwise more than one image would be within the cut-off distance of the force. When a
macromolecule, such as a protein, is studied in solution, this restriction alone is not sufficient: in
principle, a single solvent molecule should not be able to ‘see’ both sides of the macromolecule.
This means that the length of each box vector must exceed the length of the macromolecule in the
direction of that edge plus two times the cut-off radius R,.. It is, however, common to compromise
in this respect, and make the solvent layer somewhat smaller in order to reduce the computational
cost. For efficiency reasons the cut-off with triclinic boxes is more restricted. For grid search the
extra restriction is weak:

R, < min(ag, by, c.) 3.5)

For simple search the extra restriction is stronger:
L .
R. < 5 min(ag, by, c.) (3.6)

Each unit cell (cubic, rectangular or triclinic) is surrounded by 26 translated images. A particular
image can therefore always be identified by an index pointing to one of 27 translation vectors and
constructed by applying a translation with the indexed vector (see 3.4.3). Restriction (3.5) ensures
that only 26 images need to be considered.

3.3 The group concept

The GROMACS MD and analysis programs use user-defined groups of atoms to perform certain
actions on. The maximum number of groups is 256, but each atom can only belong to six different
groups, one each of the following:

T-coupling group The temperature coupling parameters (reference temperature, time constant,
number of degrees of freedom, see 3.4.4) can be defined for each T-coupling group sepa-
rately. For example, in a solvated macromolecule the solvent (that tends to generate more
heating by force and integration errors) can be coupled with a shorter time constant to a bath
than is a macromolecule, or a surface can be kept cooler than an adsorbing molecule. Many
different T-coupling groups may be defined. See also center of mass groups below.
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Freeze group Atoms that belong to a freeze group are kept stationary in the dynamics. This is
useful during equilibration, e.g. to avoid badly placed solvent molecules giving unreasonable
kicks to protein atoms, although the same effect can also be obtained by putting a restraining
potential on the atoms that must be protected. The freeze option can be used, if desired, on
just one or two coordinates of an atom, thereby freezing the atoms in a plane or on a line.
When an atom is partially frozen, constraints will still be able to move it, even in a frozen
direction. A fully frozen atom can not be moved by constraints. Many freeze groups can
be defined. Frozen coordinates are unaffected by pressure scaling, in some cases this can
produce unwanted results, in particular when constraints are used as well (in this case you
will get very large pressures). Because of this it is recommended to not combine freeze
groups with constraints and pressure coupling. For the sake of equilibration it could suffice
to start with freezing in a constant volume simulation, and afterward use position restraints
in conjunction with constant pressure.

Accelerate group On each atom in an “accelerate group” an acceleration a¥ is imposed. This
is equivalent to an external force. This feature makes it possible to drive the system into
a non-equilibrium state and enables the performance of non-equilibrium MD and hence to
obtain transport properties.

Energy monitor group Mutual interactions between all energy monitor groups are compiled dur-
ing the simulation. This is done separately for Lennard-Jones and Coulomb terms. In prin-
ciple up to 256 groups could be defined, but that would lead to 256 x256 items! Better use
this concept sparingly.

All non-bonded interactions between pairs of energy monitor groups can be excluded (see
sec. 7.3). Pairs of particles from excluded pairs of energy monitor groups are not put into the
pair list. This can result in a significant speedup for simulations where interactions within
or between parts of the system are not required.

Center of mass group In GROMACS the center of mass (COM) motion can be removed, for
either the complete system or for groups of atoms. The latter is useful, e.g. for systems
where there is limited friction (e.g. gas systems) to prevent center of mass motion to occur.
It makes sense to use the same groups for temperature coupling and center of mass motion
removal.

XTC output group In order to reduce the size of the XTC trajectory file, only a subset of all
particles can be stored. All XTC groups that are specified are saved, the rest is not. If no
XTC groups are specified, than all atoms are saved to the XTC file.

The use of groups in analysis programs is described in chapter 8.

3.4 Molecular Dynamics

A global flow scheme for MD is given in Fig. 3.3. Each MD or EM run requires as input a set of
initial coordinates and — optionally — initial velocities of all particles involved. This chapter does
not describe how these are obtained; for the setup of an actual MD run check the on-line manual
at WWW.Zromacs.org.
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THE GLOBAL MD ALGORITHM

1. Input initial conditions

Potential interaction V' as a function of atom positions
Positions r of all atoms in the system
Velocities v of all atoms in the system

4

repeat 2,3,4 for the required number of steps:

2. Compute forces

The force on any atom

ov

81“@-

is computed by calculating the force between non-bonded atom

pairs:
Fi=>;Fi
plus the forces due to bonded interactions (which may depend on 1,
2, 3, or 4 atoms), plus restraining and/or external forces.
The potential and kinetic energies and the pressure tensor are
computed.

\
3. Update configuration

F;=

The movement of the atoms is simulated by numerically solving
Newton’s equations of motion

&®ri  F;
dt2 N my;
or
d’l‘i dvi Fi
—=v; — = —
dt dt m;
4

4. if required: Output step
write positions, velocities, energies, temperature, pressure, etc.

Figure 3.3: The global MD algorithm
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Velocity

Figure 3.4: A Maxwell-Boltzmann velocity distribution, generated from random numbers.

3.4.1 |Initial conditions
Topology and force field

The system topology, including a description of the force field, must be read in. Force fields and
topologies are described in chapter 4 and 5, respectively. All this information is static; it is never
modified during the run.

Coordinates and velocities

Then, before a run starts, the box size and the coordinates and velocities of all particles are re-
quired. The box size and shape is determined by three vectors (nine numbers) by, ba, b3, which
represent the three basis vectors of the periodic box.

If the run starts at ¢ = %, the coordinates at ¢ = ¢ty must be known. The leap-frog algorithm, the
default algorithm used to update the time step with At (see 3.4.4), also requires that the velocities
att =tg — %At are known. If velocities are not available, the program can generate initial atomic
velocities v;,7 = 1...3N with a Maxwell-Boltzmann distribution (Fig. 3.4) at a given absolute

temperature 7'
2
N m; _mivi
p(vi) =/ 5 exp ( kT > 3.7
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where k is Boltzmann’s constant (see chapter 2). To accomplish this, normally distributed random
numbers are generated by adding twelve random numbers Ry in the range 0 < R; < 1 and
subtracting 6.0 from their sum. The result is then multiplied by the standard deviation of the
velocity distribution \/k7"/m;. Since the resulting total energy will not correspond exactly to the
required temperature 7', a correction is made: first the center-of-mass motion is removed and then
all velocities are scaled so that the total energy corresponds exactly to 1" (see eqn. 3.13).

Center-of-mass motion

The center-of-mass velocity is normally set to zero at every step; there is (usually) no net external
force acting on the system and the center-of-mass velocity should remain constant. In practice,
however, the update algorithm introduces a very slow change in the center-of-mass velocity, and
therefore in the total kinetic energy of the system — especially when temperature coupling is used.
If such changes are not quenched, an appreciable center-of-mass motion can develop in long runs,
and the temperature will be significantly misinterpreted. Something similar may happen due to
overall rotational motion, but only when an isolated cluster is simulated. In periodic systems with
filled boxes, the overall rotational motion is coupled to other degrees of freedom and does not
cause such problems.

3.4.2 Neighbor searching

As mentioned in chapter 4, internal forces are either generated from fixed (static) lists, or from
dynamic lists. The latter consist of non-bonded interactions between any pair of particles. When
calculating the non-bonded forces, it is convenient to have all particles in a rectangular box. As
shown in Fig. 3.1, it is possible to transform a triclinic box into a rectangular box. The output
coordinates are always in a rectangular box, even when a dodecahedron or triclinic box was used
for the simulation. Equation 3.1 ensures that we can reset particles in a rectangular box by first
shifting them with box vector c, then with b and finally with a. Equations 3.3, 3.4 and 3.5 ensure
that we can find the 14 nearest triclinic images within a linear combination that does not involve
multiples of box vectors.

Pair lists generation

The non-bonded pair forces need to be calculated only for those pairs ¢, 7 for which the distance
r;; between 7 and the nearest image of j is less than a given cut-off radius 1. Some of the particle
pairs that fulfill this criterion are excluded, when their interaction is already fully accounted for by
bonded interactions. GROMACS employs a pair list that contains those particle pairs for which
non-bonded forces must be calculated. The pair list contains atoms 7, a displacement vector for
atom ¢, and all particles j that are within rshort of this particular image of atom ¢. The list is
updated every nst1ist steps, where nst1ist is typically 10. There is an option to calculate
the total non-bonded force on each particle due to all particle in a shell around the list cut-off, i.e.
at a distance between rshort and rlong. This force is calculated during the pair list update and
retained during nst1ist steps.

To make the neighbor list, all particles that are close (i.e. within the neighbor list cut-off) to a
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Figure 3.5: Grid search in two dimensions. The arrows are the box vectors.

given particle must be found. This searching, usually called neighbor searching (NS), involves
periodic boundary conditions and determining the image (see sec. 3.2). Without periodic boundary
conditions a simple O(N?) algorithm must be used. With periodic boundary conditions a grid
search can be used, which is O (V).

To completely avoid cut-off artifacts, the non-bonded potentials can be switched exactly to zero
at some distance smaller than the neighbor list cut-off (there are several ways to do this in GRO-
MACS, see sec. 4.1.5). One then has a buffer with the size equal to the neighbor list cut-off minus
the longest interaction cut-off. In this case one can also choose to let mdrun only update the
neighbor list when required. That is when one or more particles have moved more than half the
buffer size from the center of geometry of the charge group they belong to (see sec. 3.4.2) as de-
termined at the previous neighbor search. This option guarantees that there are no cut-off artifacts.
Note that for larger systems this comes at a high computational cost, since the neighbor list update
frequency will be determined by just one or two particles moving slightly beyond the half buffer
length (which not even necessarily implies that the neighbor list is invalid), while 99.99% of the
particles are fine.

Simple search

Due to eqns. 3.1 and 3.6, the vector r;; connecting images within the cut-off . can be found by
constructing:

" = rj—mr (3.8)
" = " —cxround(r?/c,)) (3.9)
" = 7" —bxround(ry/by) (3.10)
r;; = v —axround(r,/a;) (3.11)

When distances between two particles in a triclinic box are needed that do not obey eqn. 3.1, many
shifts of combinations of box vectors need to be considered to find the nearest image.
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Grid search

The grid search is schematically depicted in Fig. 3.5. All particles are put on the NS grid, with the
smallest spacing > R./2 in each of the directions. In the direction of each box vector, a particle
7 has three images. For each direction the image may be -1,0 or 1, corresponding to a translation
over -1, 0 or +1 box vector. We do not search the surrounding NS grid cells for neighbors of
¢ and then calculate the image, but rather construct the images first and then search neighbors
corresponding to that image of i. As Fig. 3.5 shows, some grid cells may be searched more than
once for different images of ¢. This is not a problem, since, due to the minimum image convention,
at most one image will “see” the j-particle. For every particle, fewer than 125 (5) neighboring
cells are searched. Therefore, the algorithm scales linearly with the number of particles. Although
the prefactor is large, the scaling behavior makes the algorithm far superior over the standard
O(N?) algorithm when there are more than a few hundred particles. The grid search is equally
fast for rectangular and triclinic boxes. Thus for most protein and peptide simulations the rhombic
dodecahedron will be the preferred box shape.

Charge groups

Charge groups were originally introduced reduce cut-off artifacts of Coulomb interactions. When
a plain cut-off is used, significant jumps in the potential and forces arise when atoms with (partial)
charges move in and out of the cut-off radius. When all chemical moieties have a net charge of
zero, these jumps can be reduced by moving groups of atoms with net charge zero, called charge
groups, in and out of the neighbor list. This reduces the cut-off effects from the charge-charge level
to the dipole-dipole level, which decay much faster. With the advent of full range electrostatics
methods, such as particle mesh Ewald (sec. 4.9.2), the use of charge groups is no longer required
for accuracy. It might even have a slight negative effect on the accuracy or efficiency, depending
on how the neighbor list is made and the interactions are calculated.

But there is still an important reason for using “charge groups™: efficiency. Where applicable,
neighbor searching is carried out on the basis of charge groups are defined in the molecular topol-
ogy. If the nearest image distance between the geometrical centers of the atoms of two charge
groups is less than the cut-off radius, all atom pairs between the charge groups are included in the
pair list. The neighbor searching for a water system, for instance, is 32 = 9 times faster when each
molecule is treated as a charge group. Also the highly optimized water force loops (see sec. B.2.1)
only work when all atoms in a water molecule form a single charge group. Currently the name
neighbor-search group would be more appropriate, but the name charge group is retained for his-
torical reasons. When developing a new force field, the advice is to use charge groups of 3 to 4
atoms for optimal performance. For all-atom force fields this is relatively easy, as one can simply
put hydrogen atoms, and in some case oxygen atoms, in the same charge group as the heavy atom
they are connected to; for example: CH3, CHy, CH, NHa, NH, OH, CO3, CO.
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3.4.3 Compute forces
Potential energy

When forces are computed, the potential energy of each interaction term is computed as well.
The total potential energy is summed for various contributions, such as Lennard-Jones, Coulomb,
and bonded terms. It is also possible to compute these contributions for groups of atoms that are
separately defined (see sec. 3.3).

Kinetic energy and temperature

The temperature is given by the total kinetic energy of the /N-particle system:

1 N
Egin = 5 it} (3.12)
=1

From this the absolute temperature 7' can be computed using:
1
§NdfkT = Fkin (3.13)

where k is Boltzmann’s constant and Ny is the number of degrees of freedom which can be

computed from:
Ngg = 3N — Ne — Neom 3.14)

Here N, is the number of constraints imposed on the system. When performing molecular dynam-

ics Neom = 3 additional degrees of freedom must be removed, because the three center-of-mass

velocities are constants of the motion, which are usually set to zero. When simulating in vacuo,

the rotation around the center of mass can also be removed, in this case N, = 6. When more

than one temperature coupling group is used, the number of degrees of freedom for group 1 is:
3N — N. — Neom

Ny = (3N'—N}) NN (3.15)

The kinetic energy can also be written as a tensor, which is necessary for pressure calculation in a
triclinic system, or systems where shear forces are imposed:

1 N
Epin =5 ) mivi ® v; (3.16)
i

Pressure and virial

The pressure tensor P is calculated from the difference between kinetic energy Ey;,, and the virial

p—
=)
e

2
P= V(Ekm -5 (3.17)
where V' is the volume of the computational box. The scalar pressure P, which can be used for

pressure coupling in the case of isotropic systems, is computed as:

P = trace(P)/3 (3.18)
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Figure 3.6: The Leap-Frog integration method. The algorithm is called Leap-Frog because = and
v are leaping like frogs over each other’s backs.

The virial = tensor is defined as

[

1
= —527@ ® Fij (3.19)

1<j

The GROMACS implementation of the virial computation is described in sec. B.1.

3.4.4 The leap frog integrator

The default MD integrator in GROMACS is the so-called leap-frog algorithm [19] for the inte-
gration of the equations of motion. When extremely accurate integration is temperature and/or
pressure coupling velocity Verlet integrators are also present and may be preferable (see 3.4.5).
The leap-frog algorithm uses positions r at time ¢ and velocities v at time ¢ — %At; it updates
positions and velocities using the forces F'(¢) determined by the positions at time ¢:

w(t + %At) — (- %At) + %F(t) (3.20)
P4 A = () + Ato(t+ %At) (321)

The algorithm is visualized in Fig. 3.6. It produces trajectories that are identical to the Verlet [20]
algorithm:

r(t+ At) = 2r(t) — r(t — At) + %F(t)AtQ +O(Ath (3.22)

The algorithm is of third order in r and is time-reversible. See ref. [21] for the merits of this
algorithm and comparison with other time integration algorithms.

The equations of motion are modified for temperature coupling and pressure coupling, and ex-
tended to include the conservation of constraints, all of which are described below.

3.4.5 The velocity Verlet integrator

The velocity Verlet algorithm [22] is also implemented in GROMACS, though it is not yet fully
integrated with all sets of options. In velocity Verlet positions r and velocities v at time ¢ are used
to integrate the equations of motion; velocities at the previous half step are not required.

1 At
o(t+5A) = w(t)+ F(1) (3.23)

r(t+A) = () + Atw(t+ %At) (3.24)
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v+ A = vit+an+ 2 pe 4 Ay (3.25)
2 2m
or equivalently:
At?
At
v(t+At) = v(t)+ o [F(t) + F(t+ At)] (3.27)

With no temperature or pressure coupling, and with corresponding starting points, leap-frog and
velocity Verlet will generate identical trajectories, as can easily be verified by hand from the equa-
tions above. Given a single starting file with the same starting point (0) and v(0), leapfrog and
velocity Verlet will not give identical trajectories, as leapfrog will interpret the velocities as corre-
sponding to ¢ = —%At, while velocity Verlet will interpret them as corresponding to the timepoint
t=0.

3.4.6 Understanding reversible integrators: The Trotter decomposition

To further understand the relationship between velocity Verlet and leap-frog integration, we intro-
duce the reversible Trotter formulation of dynamics, which is also useful to understanding imple-
mentations of thermostats and barostats in GROMACS.

A system of coupled, first order differential equations can be evolved from time ¢ = 0 to time ¢ by
applying the evolution operator

I(t) = exp(ilt)['(0)
iL = T'-Vp (3.28)

Where L is the Liouville operator, and I" is the multidimensional vector of independent variables
(positions and velocities). A short-time approximation to the true operator, accurate at time At =
t/ P, is applied P times in succession to evolve the system:

I'(t) = ﬁ exp(iLAt)T'(0) (3.29)

=1

For NVE dynamics, the Liouville operator is:
N N4
L= vi-Vr, 4+ —F(r:) Vo, (3.30)
i=1 i=1""

If this is split into two operators:

N o
iL; = ;EF(W)-V%
N
iLy = Y wvi-Vp, (3.31)

@
Il
—
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Then a short time, symmetric, and thus reversible approximation of the true dynamics will be:
1 1
exp(iLAt) = exp(iL2 5At) exp(iL1 At) exp(z’L2§At) +O(A) (3.32)

Which corresponds to velocity Verlet integration. The first exponential term over %At corresponds
to a velocity half-step, the second exponential term over At corresponds to a full velocity step,
and the last exponential term over %At is the final velocity half step. For future times ¢t = nAt,
this becomes:

1 1 "
exp(iLnAt) = (exp(ingAt) exp(iL1 At) exp(iLo 2At)>
n—1
~ exp(ileo %At) ( exp(iLy At) exp(iLy At))
exp(iLqAt) exp(iLQ%At) (3.33)

This formalism allows us to easily see the difference between the different flavors of Verlet inte-
grators. The leap-frog integrator can be seen as starting with Eq. 3.32 with the exp (L1 At) term,
instead of the half-step velocity term, yielding:

exp(iLnAt) = exp (iL1At)exp (iLaAt) + O(AL) (3.34)

Where the full step in velocity is between ¢ — %At and ¢t + %At, since it is a combination of the
velocity half steps in velocity Verlet. For future times ¢ = n/At, this becomes:

exp(iLnAt) = (exp (1L1At) exp (iLgAt)> (3.35)

Although this does not at first appear symmetric, as long as the full velocity step is between t — %At
and ¢ + %At, then it is simply a way of starting velocity Verlet at a different place in the cycle.

Even though the trajectory and thus potential energies are identical between leap-frog and velocity
Verlet, the kinetic energy and temperature will not necessarily be the same. Standard velocity
Verlet uses the velocities at the ¢ to calculate the kinetic energy and thus the temperature only at
time ¢; the kinetic energy is then the sum over all particles of:

KEmn(t) = ;(2;%(0)2

(2

1 /1 1 1 1 2
= —v;(t — At —v;(t+ At 3.36
2@': .y (2%( AL+ Svilt + 5 )) (3.36)
with the square on the outside of the average. Standard leap-frog calculates the kinetic energy at
time ¢ based on the average kinetic energies at the timesteps ¢ 4 %At andt — %At, or the sum over

all particles of

1 1 1 1 1
K Eaverage(t) = Z om; (2%'(75 - §At)2 + §Ui(t + 2At)2> (3.37)

i

With the square inside the average.
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A nonstandard variant of velocity Verlet which averages the kinetic energies K E'(t + %At) and
KE(t — %At), exactly like leap-frog, is also now implemented in GROMACS (as mdp option
md-vv-avek). Without temperature and pressure coupling, velocity Verlet with half-step-averaged
kinetic energies and leapfrog will be identical up to numerical precision. For temperature and
pressure control schemes, however, velocity Verlet with half-step-averaged kinetic energies and
leap-frog will be different, as will be discussed in the section in thermostats and barostats.

The half-step-averaged kinetic energy and temperature are slightly more accurate for a given step
size, the difference in average kinetic energies using the half-step-averaged kinetic energies (md
and md-vv-avek) will be closer to the kinetic energy obtained in the limit of small step size than
will the full-step kinetic energy (using md-vv). For NVE simulations, this difference is usually not
significant, since the positions and velocities of the particles are still identical; it makes a difference
in the way the the temperature of the simulations are interpreted, but not in the trajectories that
are produced. Although the kinetic energy is more accurate with the half-step-averaged method,
meaning that it changes less as the timestep gets large, it is also more noisy. The rmsd variance
of the total energy of the system (sum of kinetic plus potential) in the half-step-averaged kinetic
energy case will be higher (about twice as high in most cases) than the full-step kinetic energy.
The drift will still be the same, however, as again, the trajectories are identical.

For NVT simulations, however, there will be a difference, as discussed in the section on temper-
ature control, since the velocities of the particles are adjusted such that kinetic energies of the
simulations, which can be calculated either way, reach the distribution corresponding to the set
temperature. In this case, the three methods will not give identical results.

Because the velocity and position are both defined at the same time ¢ the velocity Verlet integrator
can be used for some methods, especially rigorously correct pressure control methods, that are not
actually possible with leap-frog. The integration itself takes negligibly more time than leap-frog,
but twice as many communication calls are currently required. In most cases, and especially for
large systems where communication speed is important for parallelization and differences between
thermodynamic ensembles vanish in the 1/N limit, and when only NVT ensembles are required,
leap-frog will likely be the preferred integrator. For pressure control simulations where the fine
details of the thermodynamics are important, only velocity Verlet allows the true ensemble to be
calculated. In either case, simulation with double precision may be required to get fine details of
thermodynamics correct.

3.4.7 Twin-range cut-offs

To save computation time, slowly varying forces can be calculated less often than rapidly varying
forces. In GROMACS such a multiple time step splitting is possible between short and long range
non-bonded interactions. In GROMACS versions up to 4.0, an irreversible integration scheme was
used which is also used by the GROMOS simulation package: every n steps the long range forces
are determined and these are then also used (without modification) for the next n — 1 integration
steps in eqn. 3.20. Such an irreversible scheme can result in bad energy conservation and, possi-
bly, bad sampling. Since version 4.5, a leap-frog version of the reversible Trotter decomposition
scheme [23] is used. In this integrator the long-range forces are determined every n steps and are
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Figure 3.7: Energy drift per degree of freedom in SPC/E water with twin-range cut-offs for re-
action field (left) and Lennard-Jones interaction (right) as a function of the long-range time step
length for the irreversible “GROMOS” scheme and a reversible Trotter scheme.

then integrated into the velocity in eqn. 3.20 using a time step of Atpr = nAt:

1 1
1 v(t — iAt) + — [Fsr(t) + nFir(t)] At , step%n=0
v(t+ ;A = . q‘ (3.38)
v(t — iAt) + —Fgr(t)At , step%n#0
m

The parameter n is equal to the neighbor list update frequency. In 4.5, the velocity Verlet version
of multiple time-stepping is not yet fully implemented.

Several other simulation packages uses multiple time stepping for bonds and/or the PME mesh
forces. In GROMACS we have not implemented this (yet), since we use a different philosophy.
Bonds can be constrained (which is also a physically more sound approximation of a quantum
oscillator), which allows the smallest time step to be increased to the larger one. This not only
halves the number of force calculations, but also the update calculations. For even larger time
steps, angle vibrations involving hydrogen atoms can be removed using virtual interaction sites
(see sec. 6.5), which brings the shortest time step up to PME mesh update frequency of a multiple
time stepping scheme.

As an example we show the energy conservation for integrating the equations of motion for SPC/E
water at 300 K. To avoid cut-off effects, reaction field electrostatics with e = oo and shifted
Lennard-Jones interactions are used, both with a buffer region. The long-range interactions were
evaluated between 1.0 and 1.4 nm. In Fig. 3.6 one can see that for electrostatics the Trotter scheme
does an order of magnitude better up to Aty r = 16 fs. The electrostatics depends strongly on the
orientation of the water molecules, which changes rapidly. For Lennard-Jones interactions the en-
ergy drift is linear in Aty r and roughly two orders of magnitude smaller than for the electrostatics.
Lennard-Jones forces are smaller than Coulomb forces and they are mainly affected by translation
of water molecules, not rotation.
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3.4.8 Temperature coupling

While direct use of molecular dynamics gives rise to the NVE (constant number, constant vol-
ume, constant energy ensemble), most quantities that we wish to calculate are actually from a
constant temperature (NVT) ensemble. GROMACS can use either the weak coupling scheme of
Berendsen [24], the extended ensemble Nosé-Hoover scheme [25, 26], or the velocity rescaling
scheme [27] to simulate constant temperature, with advantages of each of the schemes laid out
below.

There are several other reasons why it might be necessary to control the temperature of the system
(drift during equilibration, drift as a result of force truncation and integration errors, heating due to
external or frictional forces), but this is not entirely correct to do from a thermodynamic standpoint,
and in some cases only masks the symptoms (increase in temperature of the system) rather than the
underlying problem (deviations from correct physics in the dynamics). For larger systems, errors
in ensemble averages and structural properties incurred by using temperature control to remove
slow drifts in temperature appear to be negligible, but no completely comprehensive comparisons
have been carried out, and some caution must be taking in interpreting the results.

Berendsen temperature coupling

The Berendsen algorithm mimics weak coupling with first-order kinetics to an external heat bath
with given temperature 7j. See ref. [28] for a comparison with the Nosé-Hoover scheme. The
effect of this algorithm is that a deviation of the system temperature from 7j is slowly corrected
according to

dar To—-T

dt 7
which means that a temperature deviation decays exponentially with a time constant 7. This
method of coupling has the advantage that the strength of the coupling can be varied and adapted
to the user requirement: for equilibration purposes the coupling time can be taken quite short (e.g.
0.01 ps), but for reliable equilibrium runs it can be taken much longer (e.g. 0.5 ps) in which case
it hardly influences the conservative dynamics.

(3.39)

The Berendsen thermostat suppresses the fluctuations of the kinetic energy. This means that one
does not generate a proper canonical ensemble, so rigorously, the sampling will indeed be incor-
rect. This error scales with 1/, so for very large systems most ensemble averages will not be
affected significantly, except for the distribution of the kinetic energy itself. However, fluctution
properties, such as the heat capacity, will be affected. A similar thermostat which does produce a
correct ensemble is the velocity rescaling thermostat [27] described below.

The heat flow into or out of the system is affected by scaling the velocities of each particle every
step, or every nc steps, with a time-dependent factor A, given by

1/2
1+ "TCAt{ To - 1}] (3.40)

P
TT T(t— At

The parameter 77 is close, but not exactly equal, to the time constant 7 of the temperature coupling
(eqn. 3.39):
T = QCvTT/Ndfk' (3.41)
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where C'y is the total heat capacity of the system, k is Boltzmann’s constant, and Ny is the
total number of degrees of freedom. The reason that 7 # 7 is that the kinetic energy change
caused by scaling the velocities is partly redistributed between kinetic and potential energy and
hence the change in temperature is less than the scaling energy. In practice, the ratio 7 /7 ranges
from 1 (gas) to 2 (harmonic solid) to 3 (water). When we use the term “temperature coupling
time constant,” we mean the parameter 7. Note that in practice the scaling factor A is limited
to the range of 0.8 <= A\ <= 1.25, to avoid scaling by very large numbers which may crash the
simulation. In normal use, A will always be much closer to 1.0.

Velocity rescaling thermostat

The velocity rescaling thermostat [27] is essentially a Berendsen thermostat (see above) with an
additional stochastic term that ensures a correct kinetic energy distribution:

dt KK, d
dK = (Ko~ K)—+2) [~ o W (3.42)
T f T

where K is the kinetic energy, Ny the number of degrees of freedom and dIW' a Wiener process.
There are no additional parameters, except for a random seed. This thermostat produces a correct
canonical ensemble and still has the advantage of the Berendsen thermostat: first order decay
of temperature deviations and no oscillations. When an NV'IT" ensemble is used, the conserved
energy quantity is written to the energy and log file.

Nosé-Hoover temperature coupling

The Berendsen weak coupling algorithm is extremely efficient for relaxing a system to the target
temperature, but once your system has reached equilibrium it might be more important to probe a
correct canonical ensemble. This is unfortunately not the case for the weak coupling scheme.

To enable canonical ensemble simulations, GROMACS also supports the extended-ensemble ap-
proach first proposed by Nosé [25] and later modified by Hoover [26]. The system Hamiltonian
is extended by introducing a thermal reservoir and a friction term in the equations of motion. The
friction force is proportional to the product of each particle’s velocity and a friction parameter, &.
This friction parameter (or “heat bath” variable) is a fully dynamic quantity with its own momen-
tum (p¢) and equation of motion; the time derivative is calculated from the difference between the
current kinetic energy and the reference temperature.

In this formulation, the particles’ equations of motion in Fig. 3.3 are replaced by

dQ’I"Z‘ . Fi pg dri

=——-= 343
a2 m;  Q dt’ (3.43)
where the equation of motion for the heat bath parameter £ is
d
L _(T-T). (3.44)

dt
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The reference temperature is denoted 7, while 7" is the current instantaneous temperature of the
system. The strength of the coupling is determined by the constant () (usually called the “mass
parameter” of the reservoir) in combination with the reference temperature. !

The conserved quantity for the Nos{’e-Hoover equations of motion is not the total energy, but
rather

N 2

D; Pe
H = U — + N¢ET 3.45
;:1: o +U(r1,72,...,7N) + 20 + N¢kT¢ (3.45)

Where Ny is the total number of degrees of freedom.

In our opinion, the mass parameter is a somewhat awkward way of describing coupling strength,
especially due to its dependence on reference temperature (and some implementations even in-
clude the number of degrees of freedom in your system when defining (). To maintain the cou-
pling strength, one would have to change () in proportion to the change in reference temperature.
For this reason, we prefer to let the GROMACS user work instead with the period 77 of the oscil-
lations of kinetic energy between the system and the reservoir instead. It is directly related to )
and T} via
_ T%T()

Q= . (3.46)

472
This provides a much more intuitive way of selecting the Nosé-Hoover coupling strength (similar

to the weak coupling relaxation), and in addition 77 is independent of system size and reference
temperature.

It is however important to keep the difference between the weak coupling scheme and the Nosé-
Hoover algorithm in mind: Using weak coupling you get a strongly damped exponential relax-
ation, while the Nosé-Hoover approach produces an oscillatory relaxation. The actual time it
takes to relax with Nosé-Hoover coupling is several times larger than the period of the oscillations
that you select. These oscillations (in contrast to exponential relaxation) also means that the time
constant normally should be 4-5 times larger than the relaxation time used with weak coupling,
but your mileage may vary.

Nosé-Hoover dynamics in simple systems such as collections of harmonic oscillators, can be non-
ergodic, meaning that only a subsection of phase space is ever sampled, even if the simulations
were to run for infinitely long. For this reason, the Nosé-Hoover chain approach was developed,
where each of the Nosé-Hoover thermostats is has its own Nosé-Hoover thermostat controlling
its temperature. In the limit of an infinite chain of thermostats, the dynamics are guaranteed to
be ergodic. Using just a few chains can greatly improve the ergodicity, but recent reseach has
shown that the system will still be nonergodic, and it is still not entirely clear what the practical
effect of this [29]. Currently, the default number of chains is 10, but this can be controlled by user
option. In the case of chains, the equations are modified in the following way to include a chain
of thermostatting particles [30]:

d’r; _ F;  pgdry

dt? N my; Q 1 dt

'Note that some derivations, an alternative notation Ealt = Ve = D¢ /Q is used.
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dpe, p§2
= (T'-1T
2
dpes..n _ Pg;_, _ kT p§L+1
dt Qi1 P Qi
dpr pr 1
= — kT 3.47
dt (QN 1 G:47)
The conserved quantity for Nosé-Hoover chains is:
N D,
H=> —“+4U(r,re,...,Tn +Z +kaT§1+kTZ£k (3.48)
o 2ma sz k=2

The values and velocities of the Nosé-Hoover thermostat variables are generally not included in the
output, as they take up a fair amount of space and are generally not important for analysis of sim-
ulations, but this can be overridden by defining the environment variable GMX_NOSEHOOVER_ —
CHAINS, which will print the values of all the positions and velocities of all Nosé-Hoover parti-
cles in the chain to the .edr file. Leap-frog simulations currently can only have Nosé-Hoover chain
lengths of 1, but this will likely be updated in later version.

As described in the integrator section, for temperature coupling, the temperature that the algorithm
attempts to match to the reference temperature is calculated differently in velocity Verlet and
leapfrog dynamics. Velocity Verlet (md-vv) uses the full-step kinetic energy, while leapfrog and
md-vv-avek use the half-step-averaged kinetic energy.

We can examine the Trotter decomposition again to better understand the differences between
these constant-temperature integrators. In the case of Nosé-Hoover dynamics (for simplicity, using
a chain with V = 1, with more details at Ref. [31]), we split the Liouville operator as:

1L =101 +1Ls + tLNuc (3.49)
where:
- 0
L, — i
o ; mj or;
0
Ly = S Fy—
e ; Ip;
iLxue = %—&v Vo + 29 L r_q) 2 (3.50)
NHC 2.7Q 0 o€ 0 Ope .

For standard velocity Verlet with Nosé-Hoover temperature control, this becomes:

exp(iLAt) = exp (iLngcAt/2)exp (iLyAt/2)
exp (iL1 At) exp (iLaAt/2) exp (iLnucAt/2) + O(At3)  (3.51)

For half-step-averaged temperature control using md-vv-avek, this decomposition will not work,
since we do not have the full step temperature until after the second velocity step. However, we
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can construct an alternate decomposition that is still reversible, by switching the place of the NHC
and velocity portions of the decomposition.

exp(tLAt) = exp (iLaAt/2)exp (iLnucAt/2) exp (iL1 At)
exp (iLnxucAt/2) exp (iLaAt/2) + O(AE) (3.52)

This formalism allows us to easily see the difference between the different flavors of velocity
Verlet integrator. The leapfrog integrator can be seen as starting with Eq. 3.52 just before the
exp (iL1At) term, yielding:

exp(iLAt) = exp (iL1At)exp (iLngcAt/2)
exp (iLoAt) exp (iLnacAt/2) + O(At?) (3.53)

and then using some algebra tricks to solve for some quantities are required before they are actually
calculated [32].

Group temperature coupling

In GROMACS temperature coupling can be performed on groups of atoms, typically a protein and
solvent. The reason such algorithms were introduced is that energy exchange between different
components is not perfect, due to different effects including cut-offs etc. If now the whole system
is coupled to one heat bath, water (which experiences the largest cut-off noise) will tend to heat
up and the protein will cool down. Typically 100 K differences can be obtained. With the use of
proper electrostatic methods (PME) these difference are much smaller but still not negligible. The
parameters for temperature coupling in groups are given in the mdp file. Recent investigation has
shown that small temperature differences between protein and water may actually be an artifact
of the way temperature is calculated when there are finite timesteps, and very large differences in
temperature are likely a sign of something else seriously going wrong with the system, and should
be investigated carefully [33].

One special case should be mentioned: it is possible to T-couple only part of the system, leaving
other parts without temperature coupling. This is done by specifying zero for the time constant 77
for the group of which should not be thermostatted. If only part of the system is thermostatted, the
system will still eventually converge to an NVT system. In fact, one suggestion for minimizing
errors in the temperature caused by discretized timesteps is that if constraints on the water are used,
then only the water degrees of freedom should be thermostatted, not protein degrees of freedom, as
the higher frequency modes in the protein can cause larger deviations from the “true” temperature,
the temperature obtained with small timesteps [33].

3.4.9 Pressure coupling

In the same spirit as the temperature coupling, the system can also be coupled to a “pressure
bath.” GROMACS supports both the Berendsen algorithm [24] that scales coordinates and box
vectors every step, the extended ensemble Parrinello-Rahman approach [34, 35], and for the ve-
locity Verlet variants, the Martyna-Tuckerman-Tobias-Klein (MTTK) implementation of pressure
control [31]. Parrinello-Rahman and Berendsen can be combined with any of the temperature
coupling methods above; MTTK can only be used with Nosé-Hoover temperature control.
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Berendsen pressure coupling

The Berendsen algorithm rescales the coordinates and box vectors every step, or every npc steps,
with a matrix p, which has the effect of a first-order kinetic relaxation of the pressure towards a

given reference pressure Py:
dP  Py-P

T 3.54
dt Tp (3.54)
The scaling matrix g is given by
npcAt
pij = 81 — —5 — i { Poij — Py (1)} (3.55)
Tp

Here 3 is the isothermal compressibility of the system. In most cases this will be a diagonal
matrix, with equal elements on the diagonal, the value of which is generally not known. It suffices
to take a rough estimate because the value of 3 only influences the non-critical time constant of
the pressure relaxation without affecting the average pressure itself. For water at 1 atm and 300 K
f=4.6x10"1Pa~! =4.6 x 107° bar~!, which is 7.6 x 10~* MD units (see chapter 2). Most
other liquids have similar values. When scaling completely anisotropically, the system has to be
rotated in order to obey eqn. 3.1. This rotation is approximated in first order in the scaling, which
is usually less than 10~%. The actual scaling matrix g’ is:

Pox Moy + Uyz Moz + Hza
p' = 0 Hyy Hyz T+ Hzy (3.56)
0 0 Hzz

The velocities are neither scaled nor rotated.

In GROMACS, the Berendsen scaling can also be done isotropically, which means that instead
of P a diagonal matrix with elements of size trace(P)/3 is used. For systems with interfaces,
semi-isotropic scaling can be useful. In this case the x/y-directions are scaled isotropically and
the z direction is scaled independently. The compressibility in the x/y or z-direction can be set to
zero, to scale only in the other direction(s).

If you allow full anisotropic deformations and use constraints you might have to scale more slowly
or decrease your timestep to avoid errors from the constraint algorithms. It is important to note
that although the Berendsen pressure control algorithm yields a simulation with the correct average
pressure, it does not yield the exact NPT ensemble, and it is not yet clear exactly what errors this
approximation may yield.

Parrinello-Rahman pressure coupling

In cases where the fluctuations in pressure or volume are important per se (e.g. to calculate ther-
modynamic properties), especially for small systems, it may be a problem that the exact ensemble
is not well-defined for the weak coupling scheme, and that it does not simulate the true NPT
ensemble.

GROMACS also supports constant-pressure simulations using the Parrinello-Rahman approach [34,
35], which is similar to the Nosé-Hoover temperature coupling, and in theory gives the true NPT
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ensemble. With the Parrinello-Rahman barostat, the box vectors as represented by the matrix b
obey the matrix equation of motion?

dv? —13/—1

@ - VW b (P - Pref) . (357)
The volume of the box is denoted V', and W is a matrix parameter that determines the strength of
the coupling. The matrices P and P, are the current and reference pressures, respectively.

The equations of motion for the particles are also changed, just as for the Nosé-Hoover coupling.
In most cases you would combine the Parrinello-Rahman barostat with the Nosé-Hoover thermo-
stat, but to keep it simple we only show the Parrinello-Rahman modification here:

d2’l“z' FZ' d’l‘i
db’ db
M = b! [bdt + dtb’] bt (3.59)

The (inverse) mass parameter matrix W ! determines the strength of the coupling, and how the
box can be deformed. The box restriction (3.1) will be fulfilled automatically if the corresponding
elements of W' are zero. Since the coupling strength also depends on the size of your box,
we prefer to calculate it automatically in GROMACS. You only have to provide the approximate
isothermal compressibilities 3 and the pressure time constant 7, in the input file (L is the largest
box matrix element):

. 4% By
(w )] = St (3.60)
Just as for the Nosé-Hoover thermostat, you should realize that the Parrinello-Rahman time con-
stant is not equivalent to the relaxation time used in the Berendsen pressure coupling algorithm.
In most cases you will need to use a 4-5 times larger time constant with Parrinello-Rahman cou-
pling. If your pressure is very far from equilibrium, the Parrinello-Rahman coupling may result in
very large box oscillations that could even crash your run. In that case you would have to increase
the time constant, or (better) use the weak coupling scheme to reach the target pressure, and then
switch to Parrinello-Rahman coupling once the system is in equilibrium. Additionally, using the
leap-frog algorithm, the pressure at time ¢ is not available until after the time step has completed,
and so the pressure from the previous step must be used, which makes te algorithm not directly
reversible, and may not be appropriate for high precision thermodynamic calculations.

Surface tension coupling

When a periodic system consists of more than one phase, separated by surfaces which are par-
allel to the xy-plane, the surface tension and the z-component of the pressure can be coupled to
a pressure bath. Presently, this only works with the Berendsen pressure coupling algorithm in

The box matrix representation b in GROMACS corresponds to the transpose of the box matrix representation b in
the paper by Nosé and Klein. Because of this, some of our equations will look slightly different.
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GROMACS. The average surface tension 7(¢) can be calculated from the difference between the
normal and the lateral pressure:

V() = ;/OL {Pzz(z,t) - P’”m(z’t)gpyy(z’w}dz (3.61)
= % {Pzz(t) _ L=ld) ; Pyy(t)} (3.62)

where L is the height of the box and n is the number of surfaces. The pressure in the z-direction
is corrected by scaling the height of the box with ,:

At

APzz = 7{P0zz - Pzz(t)} (363)
Tp

Moz =1+ ﬂzzAPzz (3.64)

This is similar to normal pressure coupling, except that the power of 1/3 is missing. The pressure
correction in the z-direction is then used to get the correct convergence for the surface tension to
the reference value . The correction factor for the box-length in the x/y-direction is:

_ .. At no Poa(t) 4 Pyy(t) } )
Hofy =15 Basy (uzz I. {Pzz(t) + AP, 5 (3.65)

The value of (3., is more critical than with normal pressure coupling. Normally an incorrect
compressibility will just scale 7, but with surface tension coupling it affects the convergence of
the surface tension. When (3, is set to zero (constant box height), AP, is also set to zero, which
is necessary for obtaining the correct surface tension.

MTTK pressure control algorithms

As mentioned in the previous section, one weakness of leap-frog integration is in constant pressure
simulations, since the pressure requires a calculation of both the virial and the kinetic energy at the
full time step; for leap-frog, this information is not available until after the full timestep. Velocity
Verlet does allow the calculation, at the cost of an extra round of global communication, and can
compute, mod any integration errors, the true NPT ensemble.

The full equations, combining both pressure coupling and temperature coupling, are taken from
Martyna et al. [31] and Tuckerman [36] and are referred to here as MTTK equations (Martyna-
Tuckerman-Tobias-Klein). We introduce for convenience ¢ = (1/3)In(V/Vy), where V; is a
reference volume. The momentum of e is v, = p./W = ¢ = V/3V, and define & = 1 + 3/Ny, s
(see Ref [36])

The isobaric equations are then:

. D; De
r, = — 4+ —=r;
3 mz + W T
Pi 1 De D;
o AP 2 2
m; m; " W m;
Pe
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e W P (N2 6.66)
W - W int — m; .
3.67)
where:
Py = Pin— Puir = 3V lg <2m@ — T z)] (3.68)

The terms including « are required to make phase space incompressible [36]. The e acceleration
term can be rewritten as:

%; = ?;;// (aPkln - Pvir - P) (369)

In terms of velocities, these equations become:

TP = U+ VT
1
’l'JZ‘ = fFZ‘—Oé’UE’UZ'
m;
€ = U
3V al
- W(Pint—P (—1) (Z 3)
P, Pn — P, : [Z(l v —r F)] (3.70)
int = Lkin— Lvir = 555 PULCT R S .
3V |5 \2
For these equations, the conserved quantity is:
N pg
H = 4+ U (r1,72,...,7N) (3.71)
=1 2mi 2W

The next step is to add temperature control. Adding Nosé-Hoover chains, including to the barostat
degree of freedom, where we use 7 for the barostat Nosé-Hoover variables, and Q' for the coupling
constants of the thermostats of the barostats, we get:

. _ Pi | Pe
r, = mi+W"°z
b _ LF qPe Pi _ Pa Pi
m; m; sz Q1 m;
¢ = &
w
De 3V p
W = W(Oépkin—Pvir—P) é’,l
: 43
& = =E
Qr
. p
Nk = L,k

k
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pe, = Gr— 2o g1 M1
Qrt1
Py = G- Dl g M1
k+1
pr = Gu
pnM = /M
(3.72)
Where:
N 2
1 D;
Pint = Pkin PVlr = 3V |J§:1 (27721 -7 Fz)]
N pz
Gy = = — N¢kT
m;
i=1
P
G, = Ml kT k=2,....M
g 2Qk-1
2
Db
G\ = = —kT
! oW K
P2
G, = =L kT k=2,...,M 3.73
k 2@;6 . ) ) ( )
The conserved quantity is now:
Y p, p?
H = L U — + PV
D gy FU LTz ) g+ PV
M2 M 2 M M
> = + Y B NpkTE + KT Y &+ KT (3.74)
k=1 2Qy, k=1 2Qy, i=2 k=1

Returning to the Trotter decomposition formalism, for pressure control and temperature control
we get: [31]
il =ily + il +iLey + 1Le2 + iLNHC—baro + 1 LNHC (3.75)

where NHC-baro correspond to the Nose-Hoover chain of the barostat, and NHC corresponds to
the NHC of the particles.

AN 9

Ly = Y [t 4yl 3.76
it =1 {mz + w } (9’)"1' ( )
Ly = F,—a-—"p, - — 3.77
L9 ; OZW i 8p2- ( )
. pe O

Lo, = == 3.78
thel W de (3.78)
iLy = G2 (3.79)
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and where
G. =3V (aPyin — Pvir — P) (3.80)
Using the Trotter decomposition, we get:

exp(iLAt) = exp (iLNHC—baroAt/2) exp (i LnucAt/2)
exp (1L 2At/2) exp (1L At/2)
exp (1Le1 At) exp (i L1 At)
exp (1LaAt/2) exp (1L 2At/2)
exp (iLnucAt/2) exp (i LNHC—baro AL/2) + O(ALY) (3.81)
The action of exp (i L1 At) comes from the solution of the the differential equation 7; = v; 4+ v7;

with v; = p;/m; and v, constant with initial condition r;(0), evaluate at ¢ = At¢. This yields the

evolution:
veat/25inh (VAL /2)

’I"i(At) =17r; (O)QUeAt + At’Ui (0)6 'UEAt/Q (382)
The action of exp (iLoAt/2) comes from the solution of the differential equation ©; = 5 o
avev;, yielding:
—~ At _ sinh (v At/4)
(AL/2) = v:(0)e WeA/2 1 =0 () veAt/AZ T\ T ) 383
vl B/ = w0 o, 0 avAt/4 (3.83)

md-vv-avek uses the full step kinetic energies for determining the pressure with the pressure con-
trol, but the half-step-averaged kinetic energy for the temperatures, which can be written as a
Trotter decomposition as:

exp(iLAt) = exp (iLNHC—baroAt/2) exp (iLe2At/2) exp (iLaAt/2)
exp (iLnacAt/2) exp (iL1At) exp (iL1At) exp (iLnacAt/2)
exp (iLoAt/2) exp (iLc 2At/2) exp (i LNHC - baroAt/2) + O(At?)3.84)
With constraints, the equations becomes significantly more complicated(!), in that each of these
equations need to be solved iteratively for the constraint forces. The discussion of the details of

the iteration is beyond the scope of this manual; readers are encouraged to see the implementation
described in Ref. [37].

Infrequent evaluation of temperature and pressure coupling

Temperature and pressure control require global communication to compute the kinetic energy and
virial, which can become costly if performed every step for large systems. We can rearrange the
Trotter decomposition to give alternate symplectic, reversible integrator with the coupling steps
every n steps instead of every steps. These new integrators will diverge if the coupling time step
is too large, as the auxiliary variable integrations will not converge. However, in most cases, long
coupling times are more appropriate, as they disturb the dynamics less [31].

Standard velocity Verlet with Nosé-Hoover temperature control has a Trotter expansion:
exp(iLAt) =~ exp (iLnucAt/2)exp (iLaAt/2)
exp (iL1At) exp (iLo At/2) exp (i LnpgcAt/2) (3.85)
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If the Nosé-Hoover chain is sufficiently slow with respect to the motions of the system, we can
write an alternate integrator over n steps for velocity Verlet as:

exp(iLAt) ~ (exp (iLngc(nAt/2)) [exp (iLyAt/2)
exp (1L1At) exp (iL2At/2)]" exp (i Lnac(nAt/2)) (3.86)

For pressure control, this becomes:

exp(iLAt) =~ exp (iLNuCc—paro(nAL/2)) exp (i Lygc(nAt/2))
exp (1L 2(nAt/2)) [exp (iL2At/2)
e1At) exp (1L At)
exp (iLaAt/2)]" exp (iLe2(nAt/2))
exp (iLnnc(nAt/2)) exp (iLNHC-baro(RAE/2)) (3.87)

(iL
exp (iL

Where the box volume integration occurs every step, but the auxiliary variable integrations happen
every n steps.

3.4.10 The complete update algorithm

The complete algorithm for the update of velocities and coordinates is given using leapfrog in
Fig. 3.8. The SHAKE algorithm of step 4 is explained below.

GROMACS has a provision to “freeze” (prevent motion of) selected particles, which must be
defined as a “freeze group.” This is implemented using a freeze factor f ,, which is a vector, and
differs for each freezegroup (see sec. 3.3). This vector contains only zero (freeze) or one (don’t
freeze). When we take this freeze factor and the external acceleration ay, into account the update
algorithm for the velocities becomes:

At At F(t)
'v(t+?) = f xAx v(t—?)—FTAt—i-ahAt (3.88)

where ¢ and h are group indices which differ per atom.

3.4.11 Output step

The important output of the MD run is the trajectory file name.trj which contains particle
coordinates and (optionally) velocities at regular intervals. Since the trajectory files are lengthy,
one should not save every step! To retain all information it suffices to write a frame every 15 steps,
since at least 30 steps are made per period of the highest frequency in the system, and Shannon’s
sampling theorem states that two samples per period of the highest frequency in a band-limited
signal contain all available information. But that still gives very long files! So, if the highest
frequencies are not of interest, 10 or 20 samples per ps may suffice. Be aware of the distortion of
high-frequency motions by the stroboscopic effect, called aliasing: higher frequencies are mirrored
with respect to the sampling frequency and appear as lower frequencies.
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THE UPDATE ALGORITHM

Given:
Positions r of all atoms at time ¢
Velocities v of all atoms at time ¢ — %At
Accelerations F'/m on all atoms at time ¢.
(Forces are computed disregarding any constraints)
Total kinetic energy and virial at t — At
\
1. Compute the scaling factors A and p
according to eqns. 3.40 and 3.55

I
2. Update and scale velocities: v = (v + aAt)

4

3. Compute new unconstrained coordinates: ' = r + v’ At

Y

4. Apply constraint algorithm to coordinates: constrain(r’ — r; r)

4

5. Correct velocities for constraints: v = (r” —r)/At

4

6. Scale coordinates and box: 7 = ur”;b = ub

Figure 3.8: The MD update algorithm with the leapfrog integrator
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3.5 Shell molecular dynamics

GROMACS can simulate polarizability using the shell model of Dick and Overhauser [38]. In
such models a shell particle representing the electronic degrees of freedom is attached to a nucleus
by a spring. The potential energy is minimized with respect to the shell position at every step
of the simulation (see below). Successful applications of shell models in GROMACS have been
published for Ny [39] and water [40].

3.5.1 Optimization of the shell positions
The force F'g on a shell particle S can be decomposed into two components:
Fg = Fyona + Frp (3.89)

where F'y,,,q denotes the component representing the polarization energy, usually represented by
a harmonic potential and F',,; is the sum of Coulomb and van der Waals interactions. If we assume
that F',,; is almost constant we can analytically derive the optimal position of the shell, i.e. where
F s =0. If we have the shell S connected to atom A we have

Fyonag = kp(xs —xa) (3.90)

In an iterative solver, we have positions xg(n) where n is the iteration count. We now have at
iteration n:

F,, = Fg—ky(xs(n) —xa) (3.91)

and the optimal position for the shells xg(n + 1) thus follows from

Fg—kp(xs(n) —xa) +kp(zs(n+1) —xs) =0 (3.92)
if we write
Axg =xs(n+1) — :I:s(n) (3.93)
we finally obtain
Azg = Fg/k, (3.94)

which then yields the algorithm to compute the next trial in the optimization of shell positions:

asg(n + 1) = xg(n) + Fs/kb (3.95)

3.6 Constraint algorithms

Constraints can be imposed in GROMACS using LINCS (default) or the traditional SHAKE
method.
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3.6.1 SHAKE

The SHAKE [41] algorithm changes a set of unconstrained coordinates ' to a set of coordinates
r” that fulfill a list of distance constraints, using a set r as reference:

SHAKE(r — "; r)

This action is consistent with solving a set of Lagrange multipliers in the constrained equations of
motion. SHAKE needs a tolerance TOL; it will continue until all constraints are satisfied within a
relative tolerance TOL. An error message is given if SHAKE cannot reset the coordinates because
the deviation is too large, or if a given number of iterations is surpassed.

Assume the equations of motion must fulfill X" holonomic constraints, expressed as
op(ri...rn)=0; k=1...K (3.96)

(e.g. (r1 — r2)? — b? = 0). Then the forces are defined as

8 K
o (v +> )\kak> (3.97)

k=1

where A\ are Lagrange multipliers which must be solved to fulfill the constraint equations. The
second part of this sum determines the constraint forces G;, defined by

G- -3 a2 (3.98)
L k=1 k{?ri .

The displacement due to the constraint forces in the leap frog or Verlet algorithm is equal to
(G;i/m;)(At)2. Solving the Lagrange multipliers (and hence the displacements) requires the so-
lution of a set of coupled equations of the second degree. These are solved iteratively by SHAKE.
For the special case of rigid water molecules, that often make up more than 80% of the simulation
system we have implemented the SETTLE algorithm [42] (sec. 5.5).

For velocity Verlet, an additional round of constraining must be done, to constrain the velocities of
the second velocity half step, removing any component of the velocity parallel to the bond vector.
This step is called RATTLE, and is covered in more detail in the original Andersen paper [43].

3.6.2 LINCS
The LINCS algorithm

LINCS is an algorithm that resets bonds to their correct lengths after an unconstrained update [44].
The method is non-iterative, as it always uses two steps. Although LINCS is based on matrices, no
matrix-matrix multiplications are needed. The method is more stable and faster than SHAKE, but
it can only be used with bond constraints and isolated angle constraints, such as the proton angle
in OH. Because of its stability, LINCS is especially useful for Brownian dynamics. LINCS has
two parameters, which are explained in the subsection parameters. The parallel version of LINCS,
P-LINCS, is described in subsection 3.17.3.
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. projecting out correction for
unconstrained . .
forces working — rotational
update )
along the bonds lengthening

Figure 3.9: The three position updates needed for one time step. The dashed line is the old bond
of length d, the solid lines are the new bonds. [ = dcos# and p = (2d* — ZQ)%.

The LINCS formulas

We consider a system of N particles, with positions given by a 3N vector (). For molecular
dynamics the equations of motion are given by Newton’s Law:

d’r

— =MF 3.99

a2 (3.99)
where F is the 3N force vector and M is a 3N x 3N diagonal matrix, containing the masses of
the particles. The system is constrained by K time-independent constraint equations

gi(’l"):"l“l'l—’l"i2|—di:0 izl,...,K (3100)

In a numerical integration scheme LINCS is applied after an unconstrained update, just like
SHAKE. The algorithm works in two steps (see figure Fig. 3.9). In the first step the projections of
the new bonds on the old bonds are set to zero. In the second step a correction is applied for the
lengthening of the bonds due to rotation. The numerics for the first step and the second step are
very similar. A complete derivation of the algorithm can be found in [44]. Only a short description
of the first step is given here.

A new notation is introduced for the gradient matrix of the constraint equations which appears on

the right hand side of the equation

_ O9n
8ri

Notice that B is a K x 3N matrix, it contains the directions of the constraints. The following equa-

tion shows how the new constrained coordinates 7,1 are related to the unconstrained coordinates

unc
TnJrl

By

(3.101)

rpt1 = (I —T,B,)riq +Tpd =
unc y -1 —1 T+1—1 unc (3102)
rae - M B,(B,M "B,) " (B,r;q —d)

where T = M BT (BM~'B")~!. The derivation of this equation from eqns. 3.99 and 3.100
can be found in [44].
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This first step does not set the real bond lengths to the prescribed lengths, but the projection of the
new bonds onto the old directions of the bonds. To correct for the rotation of bond ¢, the projection
of the bond on the old direction is set to

pi =\/2d? — I? (3.103)

where [; is the bond length after the first projection. The corrected positions are
T:L+1 = =TyBy)rni1+Thp (3.104)

This correction for rotational effects is actually an iterative process, but during MD only one
iteration is applied. The relative constraint deviation after this procedure will be less than 0.0001
for every constraint. In energy minimization this might not be accurate enough, so the number of
iterations is equal to the order of the expansion (see below).

Half of the CPU time goes to inverting the constraint coupling matrix B, M 71B£, which has to
be done every time step. This K x K matrix has 1/m;, +1/m;, on the diagonal. The off-diagonal
elements are only non-zero when two bonds are connected, then the element is cos ¢/m., where
m. is the mass of the atom connecting the two bonds and ¢ is the angle between the bonds.

The matrix T is inverted through a power expansion. A K x K matrix S is introduced which is
the inverse square root of the diagonal of B,, M ~' B This matrix is used to convert the diagonal
elements of the coupling matrix to one

(B,M'Bl)"l =88 YB,M'BI)"'§"1§

(3.105)
=S(SB,M'BTS8)"'S=8(I - A,)"'S

The matrix A,, is symmetric and sparse and has zeros on the diagonal. Thus a simple trick can be
used to calculate the inverse

(I-A,) ' '=T+A,+A2+A3+. .. (3.106)

This inversion method is only valid if the absolute values of all the eigenvalues of A,, are smaller
than one. In molecules with only bond constraints, the connectivity is so low that this will always
be true, even if ring structures are present. Problems can arise in angle-constrained molecules. By
constraining angles with additional distance constraints, multiple small ring structures are intro-
duced. This gives a high connectivity, leading to large eigenvalues. Therefore LINCS should NOT
be used with coupled angle-constraints.

For molecules with all bonds constrained the eigenvalues of A are around 0.4. This means that
with each additional order in the expansion eqn. 3.106 the deviations decrease by a factor 0.4. But
for relatively isolated triangles of constraints the largest eigenvalue is around 0.7. Such triangles
can occur when removing hydrogen angle vibrations with an additional angle constraint in alcohol
groups or when constraining water molecules with LINCS, for instance with flexible constraints.
The constraints in such triangles converge twice as slow as the other constraints. Therefore, start-
ing with GROMACS 4, additional terms are added to the expansion for such triangles:

(I-A) '~ T+ Ayt .+ AN+ (A 4.+ AN Al (3.107)

where N; is the normal order of the expansion and A* only contains the elements of A that couple
constraints within rigid triangles, all other elements are zero. In this manner the accuracy of angle
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constraints comes close to that of the other constraints, while the series of matrix vector multi-
plications required for determining the expansion only needs to be extended for a few constraint
couplings. This procedure is described in the P-LINCS paper[45].

The LINCS Parameters

The accuracy of LINCS depends on the number of matrices used in the expansion eqn. 3.106.
For MD calculations a fourth order expansion is enough. For Brownian dynamics with large time
steps an eighth order expansion may be necessary. The order is a parameter in the * . mdp file.
The implementation of LINCS is done in such a way that the algorithm will never crash. Even
when it is impossible to to reset the constraints LINCS will generate a conformation which fulfills
the constraints as well as possible. However, LINCS will generate a warning when in one step a
bond rotates over more than a predefined angle. This angle is set by the user in the * . mdp file.

3.7 Simulated Annealing

The well known simulated annealing (SA) protocol is supported in GROMACS, and you can even
couple multiple groups of atoms separately with an arbitrary number of reference temperatures
that change during the simulation. The annealing is implemented by simply changing the current
reference temperature for each group in the temperature coupling, so the actual relaxation and
coupling properties depends on the type of thermostat you use and how hard you are coupling it.
Since we are changing the reference temperature it is important to remember that the system will
NOT instantaneously reach this value - you need to allow for the inherent relaxation time in the
coupling algorithm too. If you are changing the annealing reference temperature faster than the
temperature relaxation you will probably end up with a crash when the difference becomes too
large.

The annealing protocol is specified as a series of corresponding times and reference temperatures
for each group, and you can also choose whether you only want a single sequence (after which the
temperature will be coupled to the last reference value), or if the annealing should be periodic and
restart at the first reference point once the sequence is completed. You can mix and match both
types of annealing and non-annealed groups in your simulation.

3.8 Stochastic Dynamics

Stochastic or velocity Langevin dynamics adds a friction and a noise term to Newton’s equations
of motion: )
der; dr; o

mit gy = —mibi g+ Fir)+ 7 (3.108)
where &; is the friction constant [1/ps] and 7; (¢) is a noise process with (7; (t) ?’j (t+s) =
2m;&;kpT(s)d;;. When 1/§; is large compared to the time scales present in the system, one
could see stochastic dynamics as molecular dynamics with stochastic temperature-coupling. The
advantage compared to MD with Berendsen temperature-coupling is that in case of SD the gen-
erated ensemble is known. For simulating a system in vacuum there is the additional advantage
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that there is no accumulation of errors for the overall translational and rotational degrees of free-
dom. When 1/¢; is small compared to the time scales present in the system, the dynamics will be
completely different from MD, but the sampling is still correct.

In GROMACS there are two algorithms to integrate equation (3.108): an efficient one, where the
relative error in the temperature is %At &, and a more complex leap-frog algorithm [46], which
has third-order accuracy for any value of At&. In this complex algorithm four Gaussian random
number are required per integration step per degree of freedom, and with constraints the coordi-
nates need to be constrained twice per integration step. Depending on the computational cost of
the force calculation, this can take a significant part of the simulation time. Exact continuation of
a stochastic dynamics simulation is not possible, because the state of the random number gener-
ator is not stored. When using SD as a thermostat, an appropriate value for £ is 0.5 ps~!, since
this results in a friction that is lower than the internal friction of water, while it is high enough to
remove excess heat (unless plain cut-off or reaction-field electrostatics is used). With this value of
¢ the efficient algorithm will usually be accurate enough.

3.9 Brownian Dynamics

In the limit of high friction, stochastic dynamics reduces to Brownian dynamics, also called po-
sition Langevin dynamics. This applies to over-damped systems, i.e. systems in which the inertia
effects are negligible. The equation is:

dr; 1 o
d—; = %Fi(r)—i— T; (3.109)

where ~; is the friction coefficient [amu/ps] and r;(¢) is a noise process with (ri(t) ?'j(t +35)) =
26(5)d;jkBT/~;. In GROMACS the equations are integrated with a simple, explicit scheme:

ri(t + At) = ri(t) + gFi(r(t)) + ,/21<;BTg r& (3.110)
Vi Vi

where rZ-G is Gaussian distributed noise with ;4 = 0, o = 1. The friction coefficients y; can be
chosen the same for all particles or as ; = m;/&;, where the friction constants ; can be different
for different groups of atoms. Because the system is assumed to be over-damped, large timesteps
can be used. LINCS should be used for the constraints since SHAKE will not converge for large
atomic displacements. BD is an option of the mdrun program.

3.10 Energy Minimization

Energy minimization in GROMACS can be done using steepest descent, conjugate gradients, or I-
bfgs (limited-memory Broyden-Fletcher-Goldfarb-Shanno quasi-Newtonian minimizer... we pre-
fer the abbreviation). EM is just an option of the mdrun program.
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3.10.1 Steepest Descent

Although steepest descent is certainly not the most efficient algorithm for searching, it is robust
and easy to implement.

We define the vector r as the vector of all 3N coordinates. Initially a maximum displacement hg
(e.g. 0.01 nm) must be given.

First the forces F' and potential energy are calculated. New positions are calculated by

Fy
= ——h 3.111

where h,, is the maximum displacement and F’,, is the force, or the negative gradient of the poten-
tial V. The notation max(| F',,|) means the largest of the absolute values of the force components.
The forces and energy are again computed for the new positions

If (V41 < V,,) the new positions are accepted and h,,+1 = 1.2h,,.

If (V.41 > Vi) the new positions are rejected and h,, = 0.2h,,.

The algorithm stops when either a user-specified number of force evaluations has been performed
(e.g. 100), or when the maximum of the absolute values of the force (gradient) components is
smaller than a specified value €. Since force truncation produces some noise in the energy evalua-
tion, the stopping criterion should not be made too tight to avoid endless iterations. A reasonable
value for € can be estimated from the root mean square force f a harmonic oscillator would exhibit
at a temperature 7' This value is

f=2wvVv2mkT (3.112)

where v is the oscillator frequency, m the (reduced) mass, and k£ Boltzmann’s constant. For a
weak oscillator with a wave number of 100 cm~! and a mass of 10 atomic units, at a temperature
of 1 K, f = 7.7kJ mol~! nm~!. A value for e between 1 and 10 is acceptable.

3.10.2 Conjugate Gradient

Conjugate gradient is slower than steepest descent in the early stages of the minimization, but
becomes more efficient closer to the energy minimum. The parameters and stop criterion are the
same as for steepest descent. In GROMACS conjugate gradient can not be used with constraints,
including the SETTLE algorithm for water [42], as this has not been implemented. If water is
present it must be of a flexible model, which can be specified in the mdp file by define =
—-DFLEXIBLE

This is not really a restriction, since the accuracy of conjugate gradient is only required for mini-
mization prior to a normal mode analysis, which cannot be performed with constraints. For most
other purposes steepest descent is efficient enough.

3.10.3 L-BFGS

The original BFGS algorithm works by successively creating better approximations of the inverse
Hessian matrix, and moving the system to the currently estimated minimum. The memory re-
quirements for this are proportional to the square of the number of particles, so it is not practical
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for large systems like biomolecules. Instead, we use the L-BFGS algorithm of Nocedal [47, 48],
which approximates the inverse Hessian by a fixed number of corrections from previous steps.
This sliding-window technique is almost as efficient as the original method, but the memory re-
quirements are much lower - proportional to the number of particles multiplied with the correction
steps. In practice we have found it to converge faster than conjugate gradients, but due to the
correction steps it is not yet parallelized. It is also noteworthy that switched or shifted interactions
usually improve the convergence, since sharp cut-offs mean the potential function at the current
coordinates is slightly different from the previous steps used to build the inverse Hessian approxi-
mation.

3.11  Normal Mode Analysis

Normal mode analysis [49, 50, 51] can be performed using GROMACS, by diagonalization of the
mass-weighted Hessian H:

RTM™YPHM™Y?R = diag(\1,...,Asn) (3.113)
N = (27mw;)? (3.114)

where M contains the atomic masses, R is a matrix that contains the eigenvectors as columns, \;
are the eigenvalues and w; are the corresponding frequencies.

First the Hessian matrix, which is a 3N x 3N matrix where N is the number of atoms, needs to
be calculated:
oV

Hy: = Foidn, (3.115)

where z; and x; denote the atomic X, y or z coordinates. In practice, this equation is not used, but
the Hessian is calculated numerically from the force as:

Hy — _filx 1 he;) — fi(x — he;) (3.116)

2h
ov
fi = — (3.117)
8@
where e; is the unit vector in direction j. It should be noted that for a usual Normal Mode calcula-
tion, it is necessary to completely minimize the energy prior to computation of the Hessian. What
tolerance is required depends on the type of system, but a rough indication is 0.001 kJ mol~!. This

should be done with conjugate gradients or I-bfgs in double precision.

A number of GROMACS programs are involved in these calculations. First, the energy should
be minimized using mdrun. Then, mdrun computes the Hessian. Note that for generating the
run input file, one should use the minimized conformation from the full precision trajectory file,
as the structure file is not accurate enough. g_nmeig does the diagonalization and the sorting of
the normal modes according to their frequencies. Both mdrun and g_nmeig should be run in
double precision. The normal modes can be analyzed with the program g_anaeig. Ensembles
of structures at any temperature and for any subset of normal modes can be generated with g_—
nmens. An overview of normal mode analysis and the related principal component analysis (see
sec. 8.10) can be found in [52].
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Figure 3.10: Free energy cycles. A: to calculate AGq, the free energy difference between the
binding of inhibitor I to enzymes E respectively E’. B: to calculate AG2, the free energy differ-
ence for binding of inhibitors I respectively I’ to enzyme E.

3.12 Free energy calculations

Free energy calculations can be performed in GROMACS using slow-growth methods. An exam-
ple problem might be: calculate the difference in free energy of binding of an inhibitor I to an
enzyme E and to a mutated enzyme E’.It is not feasible with computer simulations to perform a
docking calculation for such a large complex, or even releasing the inhibitor from the enzyme in a
reasonable amount of computer time with reasonable accuracy. However, if we consider the free
energy cycle in (Fig. 3.10A) we can write

AG: — AGy = AGs — AGy (3.118)

If we are interested in the left-hand term we can equally well compute the right-hand term.

If we want to compute the difference in free energy of binding of two inhibitors I and I’ to an
enzyme E (Fig. 3.10B) we can again use eqn. 3.118 to compute the desired property.

Free energy differences between two molecular species can be calculated in GROMACS using the
“slow-growth” method. In fact, such free energy differences between different molecular species
are physically meaningless, but they can be used to obtain meaningful quantities employing a
thermodynamic cycle. The method requires a simulation during which the Hamiltonian of the
system changes slowly from that describing one system (A) to that describing the other system
(B). The change must be so slow that the system remains in equilibrium during the process; if that
requirement is fulfilled, the change is reversible and a slow-growth simulation from B to A will
yield the same results (but with a different sign) as a slow-growth simulation from A to B. This is
a useful check, but the user should be aware of the danger that equality of forward and backward
growth results does not guarantee correctness of the results.

The required modification of the Hamiltonian H is realized by making H a function of a coupling
parameter \ : H = H(p, q; \) in such a way that A = 0 describes system A and A = 1 describes
system B:

H(p.q;0) = H*(p,q); H(p,q;1) = H®(p.q). (3.119)
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In GROMACS, the functional form of the A-dependence is different for the various force-field
contributions and is described in section sec. 4.5.

The Helmholtz free energy A is related to the partition function () of an IV, V, T ensemble, which
is assumed to be the equilibrium ensemble generated by a MD simulation at constant volume and
temperature. The generally more useful Gibbs free energy G is related to the partition function
A of an N, p, T ensemble, which is assumed to be the equilibrium ensemble generated by a MD
simulation at constant pressure and temperature:

AN = —kpThQ (3.120)
Q = ¢ [ expl-pH(p.q: N dpdg (3.121)
G(\) = —kgTlnA (3.122)
A = c///exp[—ﬂH(p,q;)\)—ﬁpV]dpdqu (3.123)
G = A+pV, (3.124)

where 3 = 1/(kgT) and ¢ = (N!h3N)~!. These integrals over phase space cannot be evaluated
from a simulation, but it is possible to evaluate the derivative with respect to A as an ensemble
average:

dA _ [[(9H/ON) exp|-BH (p,q; N dpdg _ <§5> , (3.125)
NVT;\

d\ — [[exp[-BH(p,¢;\]dpdg
with a similar relation for dG/d\ in the N, p, T ensemble. The difference in free energy between
A and B can be found by integrating the derivative over A:

1
AB(V,T) — ANV, T) = /<?§> dX (3.126)
0 NVT;\
1
GB(p,T) — G (p, T) = /<‘?£> da. (3.127)
0 NpT;\

If one wishes to evaluate GB(p, T) — G*(p,T), the natural choice is a constant-pressure simu-
lation. However, this quantity can also be obtained from a slow-growth simulation at constant
volume, starting with system A at pressure p and volume V' and ending with system B at pressure
pB, by applying the following small (but, in principle, exact) correction:

pB

GP(p) — G p) = AP(V) — AN(V) — /p VB — V]dp (3.128)

Here we omitted the constant 7" from the notation. This correction is roughly equal to —%(p

p)AV = (AV)?/(2kV), where AV is the volume change at p and & is the isothermal compress-
ibility. This is usually small; for example, the growth of a water molecule from nothing in a bath
of 1000 water molecules at constant volume would produce an additional pressure of as much as
22 bar, but a correction to the Helmholtz free energy of just -1 kJ/mol.

B _

In Cartesian coordinates, the kinetic energy term in the Hamiltonian depends only on the momenta,
and can be separately integrated and in fact removed from the equations. When masses do not
change, there is no contribution from the kinetic energy at all; otherwise the integrated contribution
to the free energy is —3kpT In(m®/m*). Note that this is only true in the absence of constraints.
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GROMACS offers the possibility to integrate eq. 3.126 or eq. 3.127 in one simulation over the
full range from A to B. However, if the change is large and insufficient sampling can be expected,
the user may prefer to determine the value of (dG/d\) accurately at a number of well-chosen
intermediate values of A. This can easily be done by setting the stepsize delta_lambda to zero.
Each simulation can be equilibrated first, and a proper error estimate can be made for each value of
dG /d\ from the fluctuation of OH /O\. The total free energy change is then determined afterward
by an appropriate numerical integration procedure.

The A-dependence for the force-field contributions is described in detail in section sec. 4.5.

3.13 Replica exchange

Replica exchange molecular dynamics (REMD) is a method that can be used to speed up the sam-
pling of any type of simulation, especially if conformations are separated by relatively high energy
barriers. It involves simulating multiple replicas of the same system at different temperatures and
randomly exchanging the complete state of two replicas at regular intervals with the probability:

P(1 < 2) = min (l,exp Kk'BlTl - kBlT2> (U — Ug)]) (3.129)

where 77 and T5 are the reference temperatures and U; and U, are the instantaneous potential
energies of replicas 1 and 2 respectively. After exchange the velocities are scaled by (73 /T»)*%?
and a neighbor search is performed the next step. This combines the fast sampling and frequent
barrier-crossing of the highest temperature with correct Boltzmann sampling at all the different
temperatures [53, 54]. We only attempt exchanges for neighboring temperatures as the probability
decreases very rapidly with the temperature difference. One should not attempt exchanges for
all possible pairs in one step. If, for instance, replicas 1 and 2 would exchange, the chance of
exchange for replicas 2 and 3 not only depends on the energies of replicas 2 and 3, but also on the
energy of replica 1. In GROMACS this is solved by attempting exchange for all “odd” pairs on
“odd” attempts and for all “even” pairs on “even” attempts. If we have four replicas: 0, 1, 2 and 3,
ordered in temperature and we attempt exchange every 1000 steps, pairs 0-1 and 2-3 will be tried
at steps 1000, 3000 etc. and pair 1-2 at steps 2000, 4000 etc.

How should one choose the temperatures? The energy difference can be written as:
(&
Uy —U;= Ndfng(Tl — 1) (3.130)

where Ny is the total number of degrees of freedom of one replica and c is 1 for harmonic poten-
tials and around 2 for protein/water systems. If 75 = (1 + €)7T the probability becomes:

2
P(1 < 2) =exp (—&fﬁ) ~ exp (—62;Ndf> (3.131)
Thus for a probability of e =2 ~ 0.135 one obtains € ~ 2/ \/¢ Ngs. With all bonds constrained one
has Nyt = 2 Nytoms and thus for ¢ = 2 one should choose € as 1/ vV/Natoms. However there is one
problem when using pressure coupling. The density at higher temperatures will decrease, leading
to higher energy [55], which should be taken into account. The GROMACS website features a so-
called “REMD calculator,” that lets you type in the temperature range and the number of atoms,
and based on that proposes a set of temperatures.
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An extension to the REMD for the isobaric-isothermal ensemble was proposed by Okabe et
al. [56]. In this work the exchange probability is modified to:

. 1 1 P P
P 2) =min (Lew | (o - o) G-t + (- ) - )
(3.132)
where P; and P, are the respective reference pressures and V; and V5 are the respective instanta-
neous volumes in the simulations. In most cases the differences in volume are so small that the
second term is negligible. It only plays a role when the difference between P; and P is large or
in phase transitions.

Replica exchange is an option of the mdrun program. It will only work when MPI is installed,
due to the inherent parallelism in the algorithm. For efficiency each replica can run on a separate
node. See the manual page of mdrun on how to use it.

3.14 Essential Dynamics Sampling

The results from Essential Dynamics (see sec. 8.10) of a protein can be used to guide MD sim-
ulations. The idea is that from an initial MD simulation (or from other sources) a definition of
the collective fluctuations with largest amplitude is obtained. The position along one or more of
these collective modes can be constrained in a (second) MD simulation in a number of ways for
several purposes. For example, the position along a certain mode may be kept fixed to monitor
the average force (free-energy gradient) on that coordinate in that position. Another application
is to enhance sampling efficiency with respect to usual MD [57, 58]. In this case, the system is
encouraged to sample its available configuration space more systematically than in a diffusion-like
path that proteins usually take.

Another possibility to enhance sampling is flooding. Here a flooding potential is added to certain
(collective) degrees of freedom to expel the system out of a region of phase space [59].

The procedure for essential dynamics sampling or flooding is as follows. First, the eigenvectors
and eigenvalues need to be determined using covariance analysis (g_covar) or normal modes
analysis (g_nmeig). Then, this information is fed into make_edi, which has many options for
selecting vectors and setting parameters, see Appendix D for the manual page of make_edi. The
generated edi input file is then passed to mdrun.

3.15 Parallelization

The CPU time required for a simulation can be reduced by running the simulation in parallel over
more than one processor or processor core. Ideally one would want to have linear scaling: running
on N processors/cores makes the simulation NV times faster. In practice this can only be achieved
for a small number of processors. The scaling will depend a lot on the algorithms used. Also,
different algorithms can have different restrictions on the interaction ranges between atoms. In
GROMACS we have two types of parallelization: particle decomposition and domain decomposi-
tion. Particle decomposition is only useful for a few special cases. Domain decomposition, which
is the default algorithm, will always be faster and scale better.
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3.16 Particle decomposition

Particle decomposition, also called force decomposition, is the simplest type of decomposition.
At the start of the simulation, particles are assigned to processors. Then forces between particles
need to be assigned to processors such that the force load is evenly balanced. This decomposition
requires that each processor know the coordinates of at least half of the particles in the system.
Thus for a high number of processors NV, about N x N/2 coordinates need to be communicated.
Because of this quadratic relation particle decomposition does not scale well.

Particle decomposition was the only method available before version 4 of GROMACS. Now it is
only useful in cases where domain decomposition does not work, such as systems with long-range
bonded interactions, especially NMR distance or orientation restraints. With particle decomposi-
tion only whole molecules can be assigned to a processor.

3.17 Domain decomposition

Since most interactions in molecular simulations are local, domain decomposition is a natural way
to decompose the system. In domain decomposition, a spatial domain is assigned to each proces-
sor, which will then integrate the equations of motion for the particles that currently reside in its
local domain. With domain decomposition, there are two choices that have to be made: the divi-
sion of the unit cell into domains and the assignment of the forces to processors. Most molecular
simulation packages use the half-shell method for assigning the forces. But there are two meth-
ods that always require less communication: the eighth shell [60] and the midpoint [61] method.
GROMACS currently uses the eighth shell method, but for certain systems or hardware architec-
tures it might be advantageous to use the midpoint method. Therefore, we might implement the
midpoint method in the future. Most of the details of the domain decomposition can be found in
the GROMACS 4 paper [5].

3.17.1 Coordinate and force communication

In the most general case of a triclinic unit cell, the space in divided with a 1-, 2-, or 3-D grid
in parallelepipeds that we call domain decomposition cells. Each cell is assigned to a processor.
The system is partitioned over the processors at the beginning of each MD step in which neighbor
searching is performed. Since the neighbor searching is based on charge groups, charge groups
are also the units for the domain decomposition. Charge groups are assigned to the cell where
their center of geometry resides. Before the forces can be calculated, the coordinates from some
neighboring cells need to be communicated, and after the forces are calculated, the forces need
to be communicated in the other direction. The communication and force assignment is based on
zones that can cover one or multiple cells. An example of a zone setup is shown in Fig. 3.11.

The coordinates are communicated by moving data along the “negative” direction in z, y or 2
to the next neighbor. This can be done in one or multiple pulses. In Fig. 3.11 two pulses in x
are required, then one in y and then one in z. The forces are communicated by reversing this
procedure. See the GROMACS 4 paper [5] for details on determining which non-bonded and
bonded forces should be calculated on which node.
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Figure 3.11: A non-staggered domain decomposition grid of 3x2x2 cells. Coordinates in zones
1 to 7 are communicated to the corner cell that has its home particles in zone 0. r. is the cut-off
radius.

3.17.2 Dynamic load balancing

When different processors have a different computational load (load imbalance), all processors
will have to wait for the one that takes the most time. One would like to avoid such a situation.
Load imbalance can occur due to three reasons:

e inhomogeneous particle distribution

e inhomogeneous interaction cost distribution (charged/uncharged, water/non-water due to
GROMACS water innerloops)

e statistical fluctuation (only with small particle numbers)

So we need a dynamic load balancing algorithm where the volume of each domain decomposition
cell can be adjusted independently. To achieve this, the 2- or 3-D domain decomposition grids
need to be staggered. Fig. 3.12 shows the most general case in 2-D. Due to the staggering, one
might require two distance checks for deciding if a charge group needs to be communicated: a
non-bonded distance and a bonded distance check.

By default, mdrun automatically turns on the dynamic load balancing during a simulation when
the total performance loss due to the force calculation imbalance is 5% or more. Note that the
reported force load imbalance numbers might be higher, since the force calculation is only part of
work that needs to be done during an integration step. The load imbalance is reported in the log
file at log output steps and when the —v option is used also on screen. The average load imbalance
and the total performance loss due to load imbalance are reported at the end of the log file.

There is one important parameter for the dynamic load balancing, which is the minimum allowed
scaling. By default, each dimension of the domain decomposition cell can scale down by at least
a factor of 0.8. For 3-D domain decomposition this allows cells to change their volume by about
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Figure 3.12: The zones to communicate to the processor of zone 0, see the text for details. r. and
rp are the non-bonded and bonded cut-off radii respectively, d is an example of a distance between
following, staggered boundaries of cells.

a factor of 0.5, which should allow for compensation of a load imbalance of 100%. The required
scaling can be changed with the —dds option of mdrun.

3.17.3 Constraints in parallel

Since with domain decomposition parts of molecules can reside on different processors, bond
constraints can cross cell boundaries. Therefore a parallel constraint algorithm is required. GRO-
MACS uses the P-LINCS algorithm [45], which is the parallel version of the LINCS algorithm [44]
(see 3.6.2). The P-LINCS procedure is illustrated in Fig. 3.13. When molecules cross the cell
boundaries, atoms in such molecules up to 1incs_order + 1 bonds away are communicated
over the cell boundaries. Then, the normal LINCS algorithm can be applied to the local bonds
plus the communicated ones. After this procedure, the local bonds are correctly constrained, even
though the extra communicated ones are not. One coordinate communication step is required for
the initial LINCS step and one for each iteration. Forces do not need to be communicated.

3.17.4 Interaction ranges

Domain decomposition takes advantage of the locality of interactions. This means that there will
be limitations on the range of interactions. By default, mdrun tries to find the optimal balance
between interaction range and efficiency. But it can happen that a simulation stops with an error
message about missing interactions, or that a simulation might run slightly faster with shorter
interaction ranges. A list of interaction ranges and their default values is given in Table 3.2.

In most cases the defaults of mdrun should not cause the simulation to stop with an error message
of missing interactions. The range for the bonded interactions is determined from the distance
between bonded charge-groups in the starting configuration, 10% is added for headroom. For the
constraints, the value of 7, is determined by taking the maximum distance that LINC'S order +
1 bonds can cover when they all connect at angles of 120 degrees. The actual constraint commu-
nication is not limited by 7..,, but by the minimum cell size L, which has the following lower
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Figure 3.13: Example of the parallel setup of P-LINCS with one molecule split over three domain
decomposition cells, using a matrix expansion order of 3. The top part shows which atom coordi-
nates need to be communicated to which cells. The bottom parts show the local constraints (solid)
and the non-local constraints (dashed) for each of the three cells.

interaction

range

option

default

non-bonded
two-body bonded
multi-body bonded

constraints

virtual sites

Te = MaX(Tist,TV AW T Coul)
max(rmp,Te)
Tmb
Tcon

Tcon

mdp file

mdrun -rdd
mdrun —-rdd
mdrun -—-rcon
mdrun —-rcon

starting conf. + 10%
starting conf. + 10%
est. from bond lengths
0

Table 3.2: The interaction ranges with domain decomposition.
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Figure 3.14: Example of 8 nodes without (left) and with (right) MPMD. The PME communication
(red arrows) is much higher on the left than on the right. For MPMD additional PP - PME coordi-
nate and force communication (blue arrows) is required, but the total communication complexity
is lower.

limit:
Lo > max(rmp, Teon) (3.133)

Without dynamic load balancing the system is actually allowed to scale beyond this limit when
pressure scaling is used. Note that for triclinic boxes, L¢ is not simply the box diagonal compo-
nent divided by the number of cells in that direction, rather it is the shortest distance between the
triclinic cells borders. For rhombic dodecahedra this is a factor of 1/3/2 shorter along x and .

When 7,,,, > r., mdrun employs a smart algorithm to reduce the communication. Simply
communicating all charge groups within r,,,;, would increase the amount of communication enor-
mously. Therefore only charge-groups that are connected by bonded interactions to charge groups
which are not locally present are communicated. This leads to little extra communication, but also
to a slightly increased cost for the domain decomposition setup. In some cases, e.g. coarse-grained
simulations with a very short cut-off, one might want to set 7,,,;, by hand to reduce this cost.

3.17.5 Multiple-Program, Multiple-Data PME parallelization

Electrostatics interactions are long-range, therefore special algorithms are used to avoid summa-
tion over many atom pairs. In GROMACS this is usually PME (sec. 4.9.2). Since with PME
all particles interact with each other, global communication is required. This will usually be the
limiting factor for scaling with domain decomposition. To reduce the effect of this problem, we
have come up with a Multiple-Program, Multiple-Data approach [5]. Here, some processors are
selected to do only the PME mesh calculation, while the other processors, called particle-particle
(PP) nodes, do all the rest of the work. For rectangular boxes the optimal PP to PME node ratio
is usually 3:1, for rhombic dodecahedra usually 2:1. When the number of PME nodes is reduced
by a factor of 4, the number of communication calls is reduced by about a factor of 16. Or put
differently, we can now scale to 4 times more nodes. In addition, for modern 4 or 8 core machines
in a network, the effective network bandwidth for PME is quadrupled, since only a quarter of the
cores will be using the network connection on each machine during the PME calculations.

mdrun will by default interleave the PP and PME nodes. If the processors are not number consec-
utively inside the machines, one might want to use mdrun -ddorder pp_pme. For machines
with a real 3-D torus and proper communication software that assigns the processors accordingly
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one should use mdrun -ddorder cartesian.

To optimize the performance one should usually set up the cut-offs and the PME grid such that the
PME load is 25 to 33% of the total calculation load. grompp will print an estimate for this load
at the end and also mdrun calculates the same estimate to determine the optimal number of PME
nodes to use. For high parallelization it might be worthwhile to optimize the PME load with the
mdp settings and/or the number of PME nodes with the —npme option of mdrun. For changing
the electrostatics settings it is useful to know the accuracy of the electrostatics remains nearly
constant when the Coulomb cut-off and the PME grid spacing are scaled by the same factor. Note
that it is usually better to overestimate than to underestimate the number of PME nodes, since the
number of PME nodes is smaller than the number of PP nodes, which leads to less total waiting
time.

The PME domain decomposition can be 1-D or 2-D along the x and/or y axis. 2-D decomposition
is also known as pencil decomposition because of the shape of the domains at high parallelization.
1-D decomposition along the y axis can only be used when the PP decomposition has only 1 do-
main along x. 2-D PME decomposition has to have the number of domains along x equal to the
number of the PP decomposition. mdrun automatically chooses 1-D or 2-D PME decomposition
(when possible with the total given number of nodes), based on the minimum amount of commu-
nication for the coordinate redistribution in PME plus the communication for the grid overlap and
transposes. To avoid superfluous communication of coordinates and forces between the PP and
PME nodes, the number of DD cells in the x direction should ideally be the same or a multiple of
the number of PME nodes. By default, mdrun takes care of this issue.

3.17.6 Domain decomposition flow chart

In Fig. 3.15 a flow chart is shown for domain decomposition with all possible communication for
different algorithms. For simpler simulations, the same flow chart applies, without the algorithms
and communication for the algorithms that are not used.

3.18 Implicit solvent

Implicit solvent models provide an efficient way of representing the electrostatic effects of solvent
molecules, while saving a large piece of the computations involved in an accurate, aqueous de-
scription of the surrounding water in molecular dynamics simulations. Implicit solvation models
offer several advantages compared with explicit solvation, including eliminating the need for the
equilibration of water around the solute, and the absence of viscosity, which allows the protein to
more quickly explore conformational space.

Implicit solvent calculations in GROMACS can be done using the generalized Born-formalism,
and the Still [62], HCT [63], and OBC [64] models are available for calculating the Born radii.

Here, the free energy G, Of solvation is the sum of three terms, a solvent-solvent cavity term
(Geav), a solute-solvent van der Waals term (G,q4,,), and finally a solvent-solute electrostatics
polarization term (G ).

The sum of G4, and G,,4,, corresponds to the (non-polar) free energy of solvation for a molecule
from which all charges have been removed, and is commonly called G, calculated from the
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Figure 3.15: Flow chart showing the algorithms and communication (arrows) for a standard MD
simulation with virtual sites, constraints and separate PME-mesh nodes.
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total solvent accessible surface area multiplied with a surface tension. The total expression for the
solvation free energy then becomes:

Gsolv = an + Gpol (3-134)

Under the generalized Born model, G, is calculated from the generalized Born equation [62]

Cpol = ( ) ZZ 5% (3.135)

1 72
=1j>i r -+ bib; exp(4bb>

In GROMACS we have introduced the substitution [65]

(3.136)

which makes it possible to introduce a cheap transformation to a new variable x when evaluating
each interaction, such that

-
T = b:?bj = 1ijCiC; (3.137)

In the end, the full re-formulation of 3.135 becomes:

Gyt = (1 _ > ZZ 04 (1 _ > qucl S gpc; € (3.138)

= 1]>z 7>

The non-polar part (G,,;,) of Equation 3.134 is calculated directly from the Born radius of each
atom using a simple ACE type approximation by Schaefer et al. [66], including a simple loop
over all atoms. This requires only one extra solvation parameter, independent of atom type, but
differing slightly between the three Born radii models.
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Chapter 4

Interaction function and force
field

To accommodate the potential functions used in some popular force fields (see 4.10), GROMACS
offers a choice of functions, both for non-bonded interaction and for dihedral interactions. They
are described in the appropriate subsections.

The potential functions can be subdivided into three parts

1. Non-bonded: Lennard-Jones or Buckingham, and Coulomb or modified Coulomb. The non-
bonded interactions are computed on the basis of a neighbor list (a list of non-bonded atoms
within a certain radius), in which exclusions are already removed.

2. Bonded: covalent bond-stretching, angle-bending, improper dihedrals, and proper dihedrals.
These are computed on the basis of fixed lists.

3. Restraints: position restraints, angle restraints, distance restraints, orientation restraints and
dihedral restraints, all based on fixed lists.

4.1 Non-bonded interactions

Non-bonded interactions in GROMACS are pair-additive and centro-symmetric:

V(Tl,...TN) :ZVij(mj); (41)
1<J
dVij(rij) 7ij
F,=— IR ASLY VAR R N 4.2
Z dY’ij Tij J ( )

J
The non-bonded interactions contain a repulsion term, a dispersion term, and a Coulomb term.
The repulsion and dispersion term are combined in either the Lennard-Jones (or 6-12 interaction),
or the Buckingham (or exp-6 potential). In addition, (partially) charged atoms act through the
Coulomb term.
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Figure 4.1: The Lennard-Jones interaction.

4.1.1 The Lennard-Jones interaction

The Lennard-Jones potential V7, ; between two atoms equals:

o2 o)
Vig(ri) = —45 — —4 4.3)
T

See also Fig. 4.1 The parameters C’i(jm) and C’i(j6 ) depend on pairs of atom types; consequently they
are taken from a matrix of LJ-parameters.

The force derived from this potential is:

c(12) cON
i) T (4.4)

Fi(""ij) = (12 ;{3 —6 7

ij ii ) Tij

The LJ potential may also be written in the following form:

0'.4 12 0'44 6
Vig(rij) = deq; ((ﬁ) - (ﬁ) ) (4.5)
i iJ

In constructing the parameter matrix for the non-bonded LJ-parameters, two types of combination
rules can be used within GROMACS, only geometric averages (type 1 in the input section of the

force field file):
of = (aPag)”
Ci(j12) _ (Cz'(i12) CJ(';2))1/2
or, alternatively the Lorentz-Berthelot rules can be used. An arithmetic average is used to calculate
0;j, while a geometric average is used to calculate ¢;; (type 2):

(4.6)

oij = 3(0ii+0j5) @7

6 = (euiey)?
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Figure 4.2: The Buckingham interaction.

finally an geometric average for both parameters can be used (type 3):
Oij = (Uz'i Ujj)1/2
eij = (eii 6jj)1/2

This last rule is used by the OPLS force field.

4.1.2 Buckingham potential

S ; . | . . I
0.2 0.3 0.4 0.5 0.6 0.7 0.8

(4.8)

The Buckingham potential has a more flexible and realistic repulsion term than the Lennard-Jones

interaction, but is also more expensive to compute. The potential form is:
Cij

Ven(rij) = Aij exp(=Bijrij) — 5~

ij

See also Fig. 4.2. The force derived from this is:

Coi |l ris
Fi(rij) = AijBij eXp(—BijTij) — 6% 7’7”
iJ )

There is only one set of combination rules for Buckingham potentials:
A = (A A)'?
Bij = 5(Bii+ Bjj)
Cij = (CuCy)'?

4.1.3 Coulomb interaction

The Coulomb interaction between two charge particles is given by:

Vo(ry) = f-14

ErTij

4.9)

(4.10)

4.11)

(4.12)
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Figure 4.3: The Coulomb interaction (for particles with equal signed charge) with and without
reaction field. In the latter case €, was 1, €,y was 78, and r. was 0.9 nm. The dot-dashed line is
the same as the dashed line, except for a constant.

See also Fig. 4.3, where f = -—— = 138.935 485 (see chapter 2)

4reg

The force derived from this potential is:

.
Fi(rij)=f qzqé - (4.13)
Eﬂ'ij ’I”Z'j

In GROMACS the relative dielectric constant €, may be set in the in the input for grompp.

4.1.4 Coulomb interaction with reaction field

The Coulomb interaction can be modified for homogeneous systems by assuming a constant di-
electric environment beyond the cut-off r. with a dielectric constant of €, ;. The interaction then
reads:

3
4 Erf —Er Tij %4; _ 3ers
Verp = 1 — | — —_— 4.14

erf feTrij [ + 2e,f +ep 13 ] farrc 2erf +er (4.14)
in which the constant expression on the right makes the potential zero at the cut-off .. For charged
cut-off spheres this corresponds to neutralization with a homogeneous background charge. We can
rewrite eqn. 4.14 for simplicity as

qiq; | 1
Verp = f;—: [TU + kg T?j —CTf] (4.15)
with
ks 1 e (4.16)
T - .
rd (26,5 +€r)
1 1 3e
ep = — +kpr? = rf 4.17)

Te Te (2erf + 1)
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For large ¢, the ks goes to r;3/2, while for €,¢ = &, the correction vanishes. In Fig. 4.3 the
modified interaction is plotted, and it is clear that the derivative with respect to r;; (= -force) goes
to zero at the cut-off distance. The force derived from this potential reads:

Qi 1 T
Fz‘(""ij) = fq 9 lQ — 2krfrij1 L (4.18)

r | Ty Tij

The reaction-field correction should also be applied to all excluded atoms pairs, including self
pairs, in which case the normal Coulomb term in eqns. 4.14 and 4.18 is absent.

Tironi ef al. have introduced a generalized reaction field in which the dielectric continuum beyond
the cut-off r. also has an ionic strength I [67]. In this case we can rewrite the constants &,y and
crf using the inverse Debye screening length «:

eoerf RT - goerf RT =

by = - (ers — )1+ K70) + 36ry (m)j (4.20)
78 (2807 +&r)(1 + kre) + &rp(hre)

o 1 3erp(1+ kre + 5 (kre)?) @21)
rf re (28,5 + &) (1 + Kre) + & (Kre)? '

oI F2 2 K
2 Z cizf 4.19)
=1

where F' is Faraday’s constant, R is the ideal gas constant, 7' the absolute temperature, c¢; the
molar concentration for species ¢ and z; the charge number of species ¢ where we have K different
species. In the limit of zero ionic strength (x = 0) eqns. 4.20 and 4.21 reduce to the simple forms
of eqns. 4.16 and 4.17 respectively.

4.1.5 Modified non-bonded interactions

In GROMACS, the non-bonded potentials can be modified by a shift function. The purpose of this
is to replace the truncated forces by forces that are continuous and have continuous derivatives
at the cut-off radius. With such forces the timestep integration produces much smaller errors and
there are no such complications as creating charges from dipoles by the truncation procedure. In
fact, by using shifted forces there is no need for charge groups in the construction of neighbor lists.
However, the shift function produces a considerable modification of the Coulomb potential. Unless
the “missing” long-range potential is properly calculated and added (through the use of PPPM,
Ewald, or PME), the effect of such modifications must be carefully evaluated. The modification
of the Lennard-Jones dispersion and repulsion is only minor, but it does remove the noise caused
by cut-off effects.

There is no fundamental difference between a switch function (which multiplies the potential with
a function) and a shift function (which adds a function to the force or potential) [68]. The switch
function is a special case of the shift function, which we apply to the force function F(r), related
to the electrostatic or van der Waals force acting on particle ¢ by particle j as:
Tii
F; = cF(ryj)— (4.22)

sz
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For pure Coulomb or Lennard-Jones interactions F(r) = F,(r) = r—(@+1_ The shifted force
Fs(r) can generally be written as:

Fy(r) = Fo(r) r<r
Fy(r) = Fo(r)+S(r) m<r<re (4.23)
Fy(r) = 0 re <7

When 1 = O this is a traditional shift function, otherwise it acts as a switch function. The

corresponding shifted coulomb potential then reads:

Vi(rij) = f®s(rij)qiq; (4.24)

where ®(r) is the potential function
o
(1) = / Fy(2) dz 4.25)
T

The GROMACS shift function should be smooth at the boundaries, therefore the following bound-
ary conditions are imposed on the shift function:

5: (1) = 0
S0 = on 42
§'(re) = —Fy(re)
A 37¢ degree polynomial of the form
S(r)=A(r—r1)*+ B(r —r)® 4.27)

fulfills these requirements. The constants A and B are given by the boundary condition at r.:

(a+4dDr. — (a+1)r

A = —
rét? (re — )2
(4.28)
B - (a+3)re — (a+1)r
rét? (re —r)?
Thus the total force function is:
@
Fy(r) = pras s Alr—r)?+B(r—mr)3 (4.29)
and the potential function reads:
1 A B
O(r) = ﬁ_g(r_rl)g_ Z(r—rl)A‘—C (4.30)
where .
C=——"(re—m)* = —(re—m)* 4.31)
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Figure 4.4: The Coulomb Force, Shifted Force and Shift Function S(r), using r; =2 and r. = 4.

When r1 = 0, the modified Coulomb force function is

1 5r2  4r3
Fy(r) = 5 7"721 + E (4.32)
which is identical to the parabolic force function recommended to be used as a short-range func-
tion in conjunction with a Poisson solver for the long-range part [69]. The modified Coulomb
potential function is:

1 5 53 gt
S(r)=-— >+ T 4.33)

ro 3re 3r: ol

See also Fig. 4.4.

4.1.6 Modified short-range interactions with Ewald summation

When Ewald summation or particle-mesh Ewald is used to calculate the long-range interactions,
the short-range Coulomb potential must also be modified, similar to the switch function above. In
this case the short range potential is given by:

V(r)= ferfcﬁé & >Qz’QJ‘7 (4.34)
ij

where ( is a parameter that determines the relative weight between the direct space sum and the
reciprocal space sum and erfc(z) is the complementary error function. For further details on long-
range electrostatics, see sec. 4.9.
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Figure 4.5: Principle of bond stretching (left), and the bond stretching potential (right).

4.2 Bonded interactions

Bonded interactions are based on a fixed list of atoms. They are not exclusively pair interac-
tions, but include 3- and 4-body interactions as well. There are bond stretching (2-body), bond
angle (3-body), and dihedral angle (4-body) interactions. A special type of dihedral interaction
(called improper dihedral) is used to force atoms to remain in a plane or to prevent transition to a
configuration of opposite chirality (a mirror image).

4.2.1 Bond stretching

Harmonic potential

The bond stretching between two covalently bonded atoms ¢ and j is represented by a harmonic
potential:

1
Vi (rij) = §k§’j(rij — by;)? (4.35)
See also Fig. 4.5, with the force given by:

T
Fi(rij) = kij(rij — bij)

sz

(4.36)

Fourth power potential

In the GROMOS-96 force field [70], the covalent bond potential is, for reasons of computational
efficiency, written as:

1 2
Vi (riy) = ;Y (7 — 03) (4.37)

The corresponding force is:
Fi(rij) = kY (rd, — %) 74 (4.38)
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The force constants for this form of the potential are related to the usual harmonic force constant
kbharm (gec. 4.2.1) as

2k°b; = EHherm (4.39)

The force constants are mostly derived from the harmonic ones used in GROMOS-87 [71]. Al-
though this form is computationally more efficient (because no square root has to be evaluated), it
is conceptually more complex. One particular disadvantage is that since the form is not harmonic,
the average energy of a single bond is not equal to %kT as it is for the normal harmonic potential.

4.2.2 Morse potential bond stretching

For some systems that require an anharmonic bond stretching potential, the Morse potential [72]
between two atoms i and j is available in GROMACS. This potential differs from the harmonic
potential in that it has an asymmetric potential well and a zero force at infinite distance. The
functional form is:

Vinorse(1ij) = Dij[1 — exp(—By;(rij — bij)))?, (4.40)
See also Fig. 4.6, and the corresponding force is:

Frnorse(tij) = 2DiiBijrij exp(—Bij(rij — bij))*

- 4.41
[1 — exp(—Bij(rij — bz’j))]%j., (44D

where D;; is the depth of the well in kJ/mol, 3;; defines the steepness of the well (in nm~!), and
b;; is the equilibrium distance in nm. The steepness parameter 3;; can be expressed in terms of
the reduced mass of the atoms i and j, the fundamental vibration frequency w;; and the well depth

Dijl
107
Bij = wij, | 5 5; (4.42)

and because w = |/k/u, one can rewrite 3;; in terms of the harmonic force constant k;;:

kij
2Dij

Bij = (4.43)

For small deviations (r;; — b;;), one can approximate the exp-term to first-order using a Taylor
expansion:

exp(—z) = 1—x (4.44)
and substituting eqn. 4.43 and eqn. 4.44 in the functional form:
Vinorse(rij) = Dij[1 — exp(—=By(rij — bij))]*
= Dyl = (1= /55 (i — b)) 2 (4.45)
= gkij(rij — bij))?

we recover the harmonic bond stretching potential.
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Figure 4.6: The Morse potential well, with bond length 0.15 nm.

4.2.3 Cubic bond stretching potential

Another anharmonic bond stretching potential that is slightly simpler than the Morse potential
adds a cubic term in the distance to the simple harmonic form:

Vi (ri) = ki (rig — big)? + kRS (rig — big)? (4.46)

A flexible water model (based on the SPC water model [73]) including a cubic bond stretching
potential for the O-H bond was developed by Ferguson [74]. This model was found to yield a
reasonable infrared spectrum. The Ferguson water model is available in the GROMACS library
(flexwat-ferguson.itp). It should be noted that the potential is asymmetric: overstretching
leads to infinitely low energies. The integration timestep is therefore limited to 1 fs.

The force corresponding to this potential is:

o e
Fi(ri;) = 2kY(rij — bij) T] + BKY K (rij — bij)® T] (4.47)
1) )

4.2.4 FENE bond stretching potential

In coarse-grained polymer simulations the beads are often connected by a FENE (finitely extensi-
ble nonlinear elastic) potential [75]:

1 7“2.
VRENE(rij) = — = kUbilog (1 — -5 (4.48)
2 bi;
The potential looks complicated, but the expression for the force is simpler:
r2\ !
FrENE(Tij) = —K) ( - b?) Tij (4.49)
ij

At short distances the potential asymptotically goes to a harmonic potential with force constant
kP, while it diverges at distance b.
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Figure 4.7: Principle of angle vibration (left) and the bond angle potential (right).

4.2.5 Harmonic angle potential

The bond-angle vibration between a triplet of atoms ¢ - j - k is also represented by a harmonic
potential on the angle ;.

1
Va(Oijk) = ki (Oign — O550) (4.50)

As the bond-angle vibration is represented by a harmonic potential, the form is the same as the
bond stretching (Fig. 4.5).

The force equations are given by the chain rule:

F, — _dVa(HZ-jk)
avad (rij - Txy)
Foo— _ a(0ijr)  where Oijk = arccos ————— 4.51)
k d’l’k TijTkj
F; = —F; - Fy,

The numbering ¢, 7, k is in sequence of covalently bonded atoms. Atom j is in the middle; atoms
i and k are at the ends (see Fig. 4.7). Note that in the input in topology files, angles are given in
degrees and force constants in kJ/mol/rad?.

4.2.6 Cosine based angle potential

In the GROMOS-96 force field a simplified function is used to represent angle vibrations:

1 2
Va(Oijk) = §kfjk (cos(@ijk) — cos(&%@) (4.52)
where U
cos(yjp) = —L—H (4.53)
TijTky

The corresponding force can be derived by partial differentiation with respect to the atomic posi-
tions. The force constants in this function are related to the force constants in the harmonic form
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ko-harm (gec. 4.2.5) by:
K sin®(65;;,) = kOt (4.54)

In the GROMOS-96 manual there is a much more complicated conversion formula which is tem-
perature dependent. The formulas are equivalent at 0 K and the differences at 300 K are on the
order of 0.1 to 0.2%. Note that in the input in topology files, angles are given in degrees and force
constants in kJ/mol.

4.2.7 Urey-Bradley potential

The Urey-Bradley bond-angle vibration between a triplet of atoms ¢ - j - k is represented by a
harmonic potential on the angle 6;;; and a harmonic correction term on the distance between the
atoms ¢ and k. Although this can be easily written as a simple sum of two terms, it is convenient
to have it as a single entry in the topology file and in the output as a separate energy term. It is
used mainly in the CHARMm force field [76]. The energy is given by:

1 1
Va(0iji) = 5kﬁjk(eijk — Op)? + §kg,§(rik —r9)? (4.55)

The force equations can be deduced from sections 4.2.1 and 4.2.5.

4.2.8 Bond-Bond cross term

The bond-bond cross term for three particles ¢, j, k forming bonds ¢ — j and k — j is given by [77]:
V;T/ = krr’ (|'r'z — rj\ — Tle) (|’I’k — rj| — Tge) (4.56)

where k., is the force constant, and 71, and 73 are the equilibrium bond lengths of the ¢ — j and
k — j bonds respectively. The force associated with this potential on particle i is:

’I"Z'—’I"j

|ri — 74

Fi=—kyp (ry —rj| —12) 4.57)
The force on atom k can be obtained by swapping ¢ and k in the above equation. Finally, the force
on atom j follows from the fact that the sum of internal forces should be zero: F'; = —F; — F'..

4.2.9 Bond-Angle cross term
The bond-angle cross term for three particles i, j, k forming bonds ¢ — j and k — j is given by [77]:
Vie = ko (I1i — Ti| = 73¢) (|18 — 75| — 716 + |18 — 7| — 72¢) (4.58)

where k,¢ is the force constant, r3. is the 7 — k distance, and the other constants are the same as
in Equation 4.56. The force associated with the potential on atom ¢ is:

’I“Z'—’l“j r; — Tk

|’I" —’l“‘| +(|7“1—7°]’ _Tle+|'r'k—'rj| —7"26)
? J

Fi = =k |(Iri =il —73e) Trs = ]
7

(4.59)



4.2. Bonded interactions 73

l
1

J k

i k

Figure 4.8: Principle of improper dihedral angles. Out of plane bending for rings (left), sub-
stituents of rings (middle), out of tetrahedral (right). The improper dihedral angle £ is defined as
the angle between planes (i,j,k) and (j,k,1) in all cases.

4.2.10 Quartic angle potential

For special purposes there is an angle potential that uses a fourth order polynomial:

5
VaOiji) = D Cn(Biji — 055)" (4.60)

n=0

4.2.11 Improper dihedrals

Improper dihedrals are meant to keep planar groups (e.g. aromatic rings) planar, or to prevent
molecules from flipping over to their mirror images, see Fig. 4.8.

Improper dihedrals: harmonic type

The simplest improper dihedral potential is a harmonic potential; it is plotted in Fig. 4.9.

1
Via(&ijrr) = ikg(gijkl —&)? 4.61)

Since the potential is harmonic it is discontinuous, but since the discontinuity is chosen at 180°
distance from & this will never cause problems. Note that in the input in topology files, angles are
given in degrees and force constants in kJ/mol/rad?.

Improper dihedrals: periodic type

This potential is identical to the periodic proper dihedral (see below). There is a separate dihedral
type for this (type 4) only to be able to distinguish improper from proper dihedrals in the parameter
section and the output.

4.2.12 Proper dihedrals

For the normal dihedral interaction there is a choice of either the GROMOS periodic function or a
function based on expansion in powers of cos ¢ (the so-called Ryckaert-Bellemans potential). This
choice has consequences for the inclusion of special interactions between the first and the fourth



74 Chapter 4. Interaction function and force field

25

20

[
13

Vy (kI mole™)
5

Figure 4.9: Improper dihedral potential.

atom of the dihedral quadruple. With the periodic GROMOS potential a special 1-4 LJ-interaction
must be included; with the Ryckaert-Bellemans potential for alkanes the 1-4 interactions must be
excluded from the non-bonded list. Note: Ryckaert-Bellemans potentials are also used in e.g. the
OPLS force field in combination with 1-4 interactions. You should therefore not modify topologies
generated by pdb2gmx in this case.

Proper dihedrals: periodic type

Proper dihedral angles are defined according to the IUPAC/IUB convention, where ¢ is the angle
between the 7jk and the jkl planes, with zero corresponding to the cis configuration (¢ and [ on
the same side). There are two dihedral function types in GROMACS topology files. There is the
standard type 1 which behaves like any other bonded interactions. For certain force fields, type 9 is
useful. Type 9 allows multiple potential functions to be applied automatically to a single dihedral
inthe [ dihedral ] section when multiple parameters are defined for the same atomtypes in
the [ dihedraltypes ] section.

Vd(¢ijkl) = k¢(1 + COS(TL({) — qbs)) (4.62)

Proper dihedrals: Ryckaert-Bellemans function

For alkanes, the following proper dihedral potential is often used (see Fig. 4.11):

5

Vio(dijit) = D Culcos(y))", (4.63)

n=0

where 1) = ¢ — 180°.
Note: A conversion from one convention to another can be achieved by multiplying every coeffi-
cient C), by (—1)".

An example of constants for C is given in Table 4.1.
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Figure 4.10: Principle of proper dihedral angle (left, in trans form) and the dihedral angle potential
(right).

Co 928 | Cy -13.12 | Cy 2624
Cp 1216 | C3  -3.06 | C5 -31.5

Table 4.1: Constants for Ryckaert-Bellemans potential (kJ mol~!).
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Figure 4.11: Ryckaert-Bellemans dihedral potential.
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(Note: The use of this potential implies exclusion of LJ interactions between the first and the last
atom of the dihedral, and % is defined according to the “polymer convention” (¥¢rqns = 0).)

The RB dihedral function can also be used to include Fourier dihedrals (see below):

Vis(dikt) = 5 [Fa(L+ cos()) + Fa(l — cos(26)) + Fi(1 + cos(30) + Fi(1 — cos(46))]
(4.64)
Because of the equalities cos(2¢) = 2 cos?(4) —1, cos(3¢) = 4 cos3(¢) —3 cos(¢) and cos(4¢) =
8 cos?(¢p) — 8 cos?(¢) + 1 one can translate the OPLS parameters to Ryckaert-Bellemans param-

eters as follows:
Co = B+ %(F1 + F3)

Ci = i(—Fi+3F3)

Co = —Fh+4F,

C — _om, (4.65)
Cy, = —-4F,

Cs = 0

with OPLS parameters in protein convention and RB parameters in polymer convention (this yields
a minus sign for the odd powers of cos(¢)).

Note: Mind the conversion from kcal mol~! for literature OPLS and RB parameters to kJ mol~!
in GROMACS.

Proper dihedrals: Fourier function

The OPLS potential function is given as the first three or four [78] cosine terms of a Fourier series.
In GROMACS the four term function is implemented:

Vie(bism) = 5[C1(1 4 cos(9)) + Oo(1 — cos(26)) + Cs(1 + cos(30) + Ca(1 + cos(4e)],
(4.66)
Internally, GROMACS uses the Ryckaert-Bellemans code to compute Fourier dihedrals (see above),
because this is more efficient.

Note: Mind the conversion from kcal mol~" for literature OPLS parameters to kJ mol~! in GRO-
MACS.

4.2.13 Tabulated interaction functions

For full flexibility, any functional shape can be used for bonds, angles and dihedrals through user-
supplied tabulated functions. The functional shapes are:

Vi(rij) = kfi(rij) (4.67)
VaOijk) =k fr(0ijr) (4.68)
Va(bijm) = k[ oijm) (4.69)

where k is a force constant in units of energy and f is a cubic spline function; for details see 6.7.1.
For each interaction, the force constant k£ and the table number n are specified in the topology. The
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are two different types of bonds, one that generates exclusions and one that does not. For details
see Table 5.5. The table files are supplied to the mdrun program. After the table file name an
underscore, the letter “b” for bonds, “a” for angles or “d” for dihedrals and the table number are
appended. For example, for a bond with n = 0 (and using the default table file name) the table is
read from the file table_b0.xvg. The format for the table files is three columns with z, f(x),
—f'(x), where x should be uniformly-spaced. Requirements for entries in the topology are given
in Table 5.5. The setup of the tables is as follows:

bonds: x is the distance in nm. For distances beyond the table length cause mdrun to quit with
an error message

angles: z is the angle in degrees. The table should go from O up to and including 180 degrees; the
derivative is taken in degrees.

dihedrals: z is the dihedral angle in degrees. The table should go from -180 up to and including
180 degrees; the IUPAC/IUB convention is used, i.e. zero is cis, the derivative is taken in degrees.

4.3 Restraints

Special potentials are used for imposing restraints on the motion of the system, either to avoid
disastrous deviations, or to include knowledge from experimental data. In either case they are not
really part of the force field and the reliability of the parameters is not important. The potential
forms, as implemented in GROMACS, are mentioned just for the sake of completeness.

4.3.1 Position restraints

These are used to restrain particles to fixed reference positions R;. They can be used during
equilibration in order to avoid drastic rearrangements of critical parts (e.g. to restrain motion in a
protein that is subjected to large solvent forces when the solvent is not yet equilibrated). Another
application is the restraining of particles in a shell around a region that is simulated in detail, while
the shell is only approximated because it lacks proper interaction from missing particles outside
the shell. Restraining will then maintain the integrity of the inner part. For spherical shells, it is a
wise procedure to make the force constant depend on the radius, increasing from zero at the inner
boundary to a large value at the outer boundary. This feature has not, however, been implemented
in GROMACS.

The following form is used:

1
Vor(ri) = Shprlri = R;? (4.70)

The potential is plotted in Fig. 4.12.

The potential form can be rewritten without loss of generality as:

1 . . R
Vir(ri) = 5 ke (0i = X0 % 4 Kl (i = YO? 3 + k(20 — 20)° 2] 4.71)
Now the forces are:
FP = =k (2 — X5)
F = —kj (v —Yi) 4.72)

Fp = —ky (50— Z))
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Figure 4.12: Position restraint potential.

Using three different force constants the position restraints can be turned on or off in each spatial
dimension; this means that atoms can be harmonically restrained to a plane or a line. Position
restraints are applied to a special fixed list of atoms. Such a list is usually generated by the
pdb2gmx program.

4.3.2 Angle restraints

These are used to restrain the angle between two pairs of particles or between one pair of particles
and the z-axis. The functional form is similar to that of a proper dihedral. For two pairs of atoms:

T —7T; T — T
Var(ri, vy T, 7)) = kor(1 — cos(n(6 — 6y))), where 6 = arccos J .
ar( R ) aT( ( ( ))) Hrj _ ,,,lH Hrl _ rkH

4.73)
For one pair of atoms and the z-axis:
TP —T; 0
Var(13,75) = kar(1 — cos(n(6 — 6p))), where 6 = arccos ﬁ -0 (4.74)
r;, —T;

1
A multiplicity (n) of 2 is useful when you do not want to distinguish between parallel and anti-

parallel vectors. The equilibrium angle 6 should be between 0 and 180 degrees for multiplicity 1
and between 0 and 90 degrees for multiplicity 2.

4.3.3 Dihedral restraints

These are used to restrain the dihedral angle ¢ defined by four particles as in an improper dihedral
(sec. 4.2.11) but with a slightly modified potential. Using:

¢ = (¢ — o) MOD 27 (4.75)
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where ¢ is the reference angle, the potential is defined as:

Skainr(¢' — ¢o — Ap)? for ¢/ > A¢

Vdihr (¢/) = 0 for (b/ S A(b (476)

where A¢ is a user defined angle and k4, is the force constant. Note that in the input in topology
files, angles are given in degrees and force constants in kJ/mol/rad?.

4.3.4 Distance restraints

Distance restraints add a penalty to the potential when the distance between specified pairs of
atoms exceeds a threshold value. They are normally used to impose experimental restraints from,
for instance, experiments in nuclear magnetic resonance (NMR), on the motion of the system.
Thus, MD can be used for structure refinement using NMR data. In GROMACS there are three
ways to impose restraints on pairs of atoms:

e Simple harmonic restraints: use [ bonds ] type 6. (see sec. 5.4).
e Piecewise linear/harmonic restraints: [ bonds ] type 10.
e Complex NMR distance restraints, optionally with pair, time and/or ensemble averaging.

The last two options will be detailed now.

The potential form for distance restraints is quadratic below a specified lower bound and between
two specified upper bounds, and linear beyond the largest bound (see Fig. 4.13).

Skar(rij — 10)? for rij < 1o
0 for 1o < 1 < M
Vdr(rij) = 1 9 (477)
§kdr("”z‘j —71) for m < rp < 1o
%kdr(rg — 7’1)(27’@' —T9 — 7“1) for 72 S T'ij
The forces are
T
—kdr (T'ij — 7’0) Ti; for ri; < To
0 for 79 < 1y < M
F, = r. 4.78)
—kar(rij —m)5> for m < oy <oy
T
—de (Tz — 7‘1)?; for T2 S Tz‘j

For restraints not derived from NMR data, this functionality will usually suffice and a section of [
bonds ] type 10 can be used to apply individual restraints between pairs of atoms, atoms. atoms,
see 5.7.1. For applying restraints derived from NMR measurements, more complex functionality
might be required, which is provided through the [ distance_restraints 1] section and
is described below.
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Figure 4.13: Distance Restraint potential.

Time averaging

Distance restraints based on instantaneous distances can potentially reduce the fluctuations in a
molecule significantly. This problem can be overcome by restraining to a time averaged dis-
tance [79]. The forces with time averaging are:

—kg, (rij —ro) 5> for i < o
0 for rp < Fij < rm
e r Tij _ (4.79)
—kgp(Tij —r)52 for r < T <oy
T ~
_chlLr (T2 - Tl)ﬁ,; for r9 < Tij

where 7;; is given by an exponential running average with decay time 7:
rij =<ry > (4.80)

The force constant &, is switched on slowly to compensate for the lack of history at the beginning

of the simulation: y
kg, = kar (1 — exp (—)) (4.81)
T

Because of the time averaging, we can no longer speak of a distance restraint potential.

This way an atom can satisfy two incompatible distance restraints on average by moving between
two positions. An example would be an amino acid sidechain that is rotating around its y dihedral
angle, thereby coming close to various other groups. Such a mobile side chain can give rise to
multiple NOEs that can not be fulfilled by a single structure.

The computation of the time averaged distance in the mdrun program is done in the following
fashion:

r=35(0) = 1i(0)7°

r35(t) = ﬁij (t — At) exp (—%) + 7rij(t) 73 {1 — exp (_%)} (4.82)
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When a pair is within the bounds, it can still feel a force because the time averaged distance can
still be beyond a bound. To prevent the protons from being pulled too close together, a mixed
approach can be used. In this approach, the penalty is zero when the instantaneous distance is
within the bounds, otherwise the violation is the square root of the product of the instantaneous
violation and the time averaged violation:

_ ri; _
kgr\/(rij — To)(?"ij — To) Tij for Ti; <To and Tij; <To
R . — Tij —
F; = _kgr min (\/(Tij — Tl)(rij — 7‘1),7‘2 — 7“1) Ti; for Tij > T1 and Tij > T1
0 otherwise
(4.83)

Averaging over multiple pairs

Sometimes it is unclear from experimental data which atom pair gives rise to a single NOE, in
other occasions it can be obvious that more than one pair contributes due to the symmetry of the
system, e.g. a methyl group with three protons. For such a group, it is not possible to distinguish
between the protons, therefore they should all be taken into account when calculating the distance
between this methyl group and another proton (or group of protons). Due to the physical nature of
magnetic resonance, the intensity of the NOE signal is inversely proportional to the sixth power
of the inter-atomic distance. Thus, when combining atom pairs, a fixed list of NV restraints may be
taken together, where the apparent “distance” is given by:

N ~1/6
ry(t) = [Z Fn(t)_G] (4.84)

n=1

where we use 7;; or eqn. 4.80 for the 7,,. The ry of the instantaneous and time-averaged distances
can be combined to do a mixed restraining, as indicated above. As more pairs of protons contribute
to the same NOE signal, the intensity will increase, and the summed “distance” will be shorter than
any of its components due to the reciprocal summation.

There are two options for distributing the forces over the atom pairs. In the conservative option,
the force is defined as the derivative of the restraint potential with respect to the coordinates. This
results in a conservative potential when time averaging is not used. The force distribution over
the pairs is proportional to 7~6. This means that a close pair feels a much larger force than a
distant pair, which might lead to a molecule that is “too rigid.” The other option is an equal
force distribution. In this case each pair feels 1/ of the derivative of the restraint potential with
respect to 7. The advantage of this method is that more conformations might be sampled, but the
non-conservative nature of the forces can lead to local heating of the protons.

It is also possible to use ensemble averaging using multiple (protein) molecules. In this case the
bounds should be lowered as in:

rn = nn x M—1/6

ry = rox M1/ (4.85)

where M is the number of molecules. The GROMACS preprocessor grompp can do this auto-
matically when the appropriate option is given. The resulting “distance” is then used to calculate
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the scalar force according to:

0 rN <Ti
T
F; = kar(ry —1r1)50 1 < < (4.86)
T
kgr(ro — )7L ry >

Tij

where 7 and j denote the atoms of all the pairs that contribute to the NOE signal.

Using distance restraints

A list of distance restrains based on NOE data can be added to a molecule definition in your
topology file, like in the following example:

[ distance_restraints ]

; ali aj type 1index type’ low upl up2 fac

10 16 1 0 1 0.0 0.3 0.4 1.0
10 28 1 1 1 0.0 0.3 0.4 1.0
10 46 1 1 1 0.0 0.3 0.4 1.0
16 22 1 2 1 0.0 0.3 0.4 2.5
16 34 1 3 1 0.0 0.5 0.6 1.0

In this example a number of features can be found. In columns ai and aj you find the atom
numbers of the particles to be restrained. The t ype column should always be 1. As explained in
sec. 4.3.4, multiple distances can contribute to a single NOE signal. In the topology this can be
set using the index column. In our example, the restraints 10-28 and 10-46 both have index 1,
therefore they are treated simultaneously. An extra requirement for treating restraints together is
that the restraints must be on successive lines, without any other intervening restraint. The t ype’
column will usually be 1, but can be set to 2 to obtain a distance restraint that will never be time-
and ensemble-averaged; this can be useful for restraining hydrogen bonds. The columns low,
upl, and up2 hold the values of rq, r1, and 75 from eqn. 4.77. In some cases it can be useful to
have different force constants for some restraints; this is controlled by the column fac. The force
constant in the parameter file is multiplied by the value in the column fac for each restraint.

Some parameters for NMR refinement can be specified in the grompp . mdp file:

disre: type of distance restraining. The disre variable sets the type of distance restraint.
no/simple turns the distance restraints off/on. When multiple proteins or peptides are
present in one simulation box, ensemble averaging can be turned on by setting disre =
ensemble. Normally one would perform ensemble averaging over multiple subsystems,
each in a separate box, using mdrun -multi; supply topolO.tpr, topoll.tpr, ..
with different coordinates and/or velocities.

disre_weighting: force-weighting in restraints with multiple pairs. By default, the force
due to the distance restraint is distributed equally over all the pairs involved in the restraint.
This can also be explicitly selected with disre_weighting = equal. If you instead
set this option to disre_weighting = conservative you get conservative forces
when disre_tau = 0.
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disre_mixed: how to calculate the violations. disre_mixed = no gives normal time-averaged
violations. When disre_mixed = yes the square root of the product of the time-
averaged and the instantaneous violations is used.

disre_fc: force constant k. for distance restraints. k;. (eqn. 4.77) can be set as variable
disre_fc = 1000 for aforce constant of 1000 kJ mol~! nm~2. This value is multiplied
by the value in the fac column in the distance restraint entries in the topology file.

disre_tau: time constant for restraints. 7 (eqn. 4.82) can be set as variable disre_tau =
10 for a time constant of 10 ps. Time averaging can be turned off by setting disre_tau
to 0.

nstdisreout: pair distance output frequency. Determines how often the time-averaged and
instantaneous distances of all atom pairs involved in distance restraints are written to the
energy file.

4.3.5 Orientation restraints

This section describes how orientations between vectors, as measured in certain NMR experi-
ments, can be calculated and restrained in MD simulations. The presented refinement methodol-
ogy and a comparison of results with and without time and ensemble averaging have been pub-
lished [80].

Theory
In an NMR experiment, orientations of vectors can be measured when a molecule does not tum-
ble completely isotropically in the solvent. Two examples of such orientation measurements are

residual dipolar couplings (between two nuclei) or chemical shift anisotropies. An observable for
a vector r; can be written as follows:

where S is the dimensionless order tensor of the molecule. The tensor D; is given by:

. 3xx—1 3zy 3xz
;= W 3y 3yy — 1 3yz (4.88)
! 3rz 3yz 3zz—1
. Tix Tiy Ti,z
with: o= —=, == z=_—" (4.89)
el 7 Tl [l

For a dipolar coupling 7; is the vector connecting the two nuclei, & = 3 and the constant ¢; is
given by:
Mo _; ;D

= Ayt yh— 4.90
C; 47r717247r (4.90)

where ¢ and 4 are the gyromagnetic ratios of the two nuclei.
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The order tensor is symmetric and has trace zero. Using a rotation matrix T it can be transformed
into the following form:

—1(1—n) 0 0
TIST =5 0 —2(1+mn) 0 (4.91)
0 0 1

where —1 < s < 1land 0 < nn < 1. s is called the order parameter and 7 the asymmetry of
the order tensor S. When the molecule tumbles isotropically in the solvent, s is zero, and no
orientational effects can be observed because all §; are zero.

Calculating orientations in a simulation

For reasons which are explained below, the D matrices are calculated which respect to a reference
orientation of the molecule. The orientation is defined by a rotation matrix R, which is needed to
least-squares fit the current coordinates of a selected set of atoms onto a reference conformation.
The reference conformation is the starting conformation of the simulation. In case of ensemble av-
eraging, which will be treated later, the structure is taken from the first subsystem. The calculated
D matrix is given by:

Dj(t) = R(t)Di(H)R” (¢) (4.92)

The calculated orientation for vector ¢ is given by:
2
o5 (t) = gtr(S(t)Df(t)) (4.93)

The order tensor S(t) is usually unknown. A reasonable choice for the order tensor is the tensor
which minimizes the (weighted) mean square difference between the calculated and the observed

orientations:

MSD(t) = (% wi> > wi(55(t) — 65°)? (4.94)
=1 =1

To properly combine different types of measurements, the unit of w; should be such that all terms
are dimensionless. This means the unit of wj; is the unit of J; to the power —2. Note that scaling
all w; with a constant factor does not influence the order tensor.

Time averaging

Since the tensors D; fluctuate rapidly in time, much faster than can be observed in an experiment,
they should be time averaged in the simulation. However, in a simulation the time and the number
of copies of a molecule are limited. Usually one can not obtain a converged average of the D;
tensors over all orientations of the molecule. If one assumes that the average orientations of the
r; vectors within the molecule converge much faster than the tumbling time of the molecule, the
tensor can be averaged in an axis system that rotates with the molecule, as expressed by equa-
tion (4.92). The time averaged tensors are calculated using an exponentially decaying memory

function: ;

D (u) exp (—t — u) du
DY (1) = ~=0 .

1 t t—
/ exp (— u) du
u=tg T

(4.95)
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Assuming that the order tensor S fluctuates slower than the D;, the time-averaged orientation can
be calculated as:

0 (t) = gtr(S(t)D?(t)) (4.96)

where the order tensor S(t) is calculated using expression (4.94) with 6§ (¢) replaced by 0{'(t).

Restraining
The simulated structure can be restrained by applying a force proportional to the difference be-

tween the calculated and the experimental orientations. When no time averaging is applied, a
proper potential can be defined as:

1 N c erp\2
Vi=k ;wi(éi (t) — 65°P) (4.97)

where the unit of & is the unit of energy. Thus the effective force constant for restraint ¢ is kw;.
The forces are given by minus the gradient of V. The force F; working on vector r; is:

v
B = &,
doi(t)
= —kw;(65(t) — 80Py —~2
w60~ ) S
2¢; 2
— k(051 — 5§$p)\|ruc2+a (QRTSRTZ- - H:Hg‘tr(RTSRririT)ri)

Ensemble averaging

Ensemble averaging can be applied by simulating a system of M subsystems that each contain
an identical set of orientation restraints. The systems only interact via the orientation restraint
potential which is defined as:

1 a C exrp\ 2
V= Mik:; wi (85 (t) — 6;°F) (4.98)

The force on vector 7; ,,, in subsystem m is given by:

dv
d’l"z‘,m

do¢
= —kw; (65(t) — 5?$p>M (4.99)

¢ dTLm

E,m (t> =

Time averaging

When using time averaging it is not possible to define a potential. We can still define a quantity
that gives a rough idea of the energy stored in the restraints:

1 a al a exp\ 2
V= Mgk ;wl@ (t) — 6;°F) (4.100)



86 Chapter 4. Interaction function and force field

The force constant k, is switched on slowly to compensate for the lack of history at times close to
to. It is exactly proportional to the amount of average that has been accumulated:

1t t—
K = = exp (— “) du 4.101)
T Ju=tg T
What really matters is the definition of the force. It is chosen to be proportional to the square root
of the product of the time-averaged and the instantaneous deviation. Using only the time-averaged

deviation induces large oscillations. The force is given by:

0 for ab<0

dse, (t
i s (4-102)

Using orientation restraints
Orientation restraints can be added to a molecule definition in the topology in the section [ orientation_-

restraints ]. Here we give an example section containing five N-H residual dipolar coupling
restraints:

[ orientation_restraints |

; ai aj type exp. label alpha const. obs. weight
; Hz nm” 3 Hz Hz -2
31 32 1 1 3 3 6.083 -6.73 1.0
43 44 1 1 4 3 6.083 -7.87 1.0
55 56 1 1 5 3 6.083 -7.13 1.0
65 66 1 1 6 3 6.083 -2.57 1.0
73 74 1 1 7 3 6.083 -2.10 1.0

The unit of the observable is Hz, but one can choose any other unit. In columns ai and aj you
find the atom numbers of the particles to be restrained. The t ype column should always be 1. The
exp. column denotes the experiment number, starting at 1. For each experiment a separate order
tensor S is optimized. The label should be a unique number larger than zero for each restraint. The
alpha column contains the power « that is used in equation (4.88) to calculate the orientation.
The const. column contains the constant c; used in the same equation. The constant should
have the unit of the observable times nm®. The column obs. contains the observable, in any unit
you like. The last column contains the weights w;; the unit should be the inverse of the square of
the unit of the observable.

Some parameters for orientation restraints can be specified in the grompp . mdp file, for a study
of the effect of different force constants and averaging times and ensemble averaging see [80].

orire: use orientation restraining. no/yes turns the distance restraints off/on. Ensemble av-
eraging can be performed using mdrun -multi, which simulates multiple subsystems in
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separate boxes; supply topolO.tpr, topoll.tpr, ... with different coordinates and/or
velocities.

orire_fc: force constant k for orientation restraints. The unit of & is kJ mol~!. Note that
the force constant for a restraint is this force constant times the weight of the restraint. When
set to zero one obtain the calculated orientation without affecting the simulation.

orire_tau: time constant 7 for restraints. Set orire_tau = 10 for atime constant of 10
ps. Time averaging can be turned off by setting orire_tau to 0.

orire_fitgrp: the fit group for the restraints. This group of atoms is used to determine the
rotation R of the system with respect to the reference orientation. The reference orientation
is the starting conformation of the first subsystem. For a protein backbone should be a
reasonable choice.

nstorireout: orientation output frequency. Determines how often the orientations for all
restraints and the order tensor(s) S are written to the energy file. When using time and/or
ensemble averaging, the time and ensemble averaged orientations as well as the instan-
taneous non-ensemble averaged orientations are written to the energy file. These can be
analyzed using g_energy.

4.4 Polarization

Polarization can be treated by GROMACS by attaching shell (drude) particles to atoms and/or
virtual sites. The energy of the shell particle is then minimized at each time step in order to remain
on the Born-Oppenheimer surface.

4.4.1 Simple polarization

This is merely a harmonic potential with equilibrium distance 0.

4.4.2 Water polarization

A special potential for water that allows anisotropic polarization of a single shell particle [40].

4.4.3 Thole polarization

Based on early work by Thole [81], Roux and coworkers have implemented potentials for molecules
like ethanol [82, 83, 84]. Within such molecules, there are intramolecular interactions between
shell particles, however these must be screened because full Coulomb would be too strong. The
potential between two shell particles ¢ and j is:

Vinote = 240 {1 - (1 n T;) exp”ﬂ} (4.103)

Tij
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Note that there is a sign error in Equation 1 of Noskov et al. [84]:
o= a— (4.104)

where a is a magic (dimensionless) constant, usually chosen to be 2.6 [84]; «; and «; are the
polarizabilities of the respective shell particles.

4.5 Free energy interactions

This section describes the A\-dependence of the potentials used for free energy calculations (see
sec. 3.12). All common types of potentials and constraints can be interpolated smoothly from state
A (A = 0) to state B (A = 1) and vice versa. All bonded interactions are interpolated by linear
interpolation of the interaction parameters. Non-bonded interactions can be interpolated linearly
or via soft-core interactions.

Harmonic potentials

The example given here is for the bond potential, which is harmonic in GROMACS. However,
these equations apply to the angle potential and the improper dihedral potential as well.

1 2
V, = 5[(1—A)k§‘+)\kﬂ (b= (1= \)bg = AF | (4.105)
WVy _ 1.p 4 A B2
v = gk =k b= (= N0+ ] +

(b = B5) [b— (1= 2k = Mg | [(1 = Mgt + Ak (4.106)

GROMOS-96 bonds and angles

Fourth-power bond stretching and cosine-based angle potentials are interpolated by linear interpo-
lation of the force constant and the equilibrium position. Formulas are not given here.

Proper dihedrals
For the proper dihedrals, the equations are somewhat more complicated:
Vi = [(1=Nkf + 07| (14 cos [ngg — (1= Mg = 2?]) 4.107)
A% B A " B
S = (K =k (14 cos [ngo — (1= Mol = Asl]) +
(68 = &) [(1 = Nk = ] sin [ngg — (1= Vol = a6P|  4.108)

Note: that the multiplicity ny4 can not be parameterized because the function should remain peri-
odic on the interval [0, 27].
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Tabulated bonded interactions

For tabulated bonded interactions only the force constant can interpolated:

Vo= (=N +XEB) f (4.109)
oV . p 4
oy = Wk (4.110)

Coulomb interaction

The Coulomb interaction between two particles of which the charge varies with \ is:

_ f A A B _B
Vo= o 0-Nalg! +adle] (@.111)
ov. f A A, BB
- g+ B 4.112
o\ 87.f7"ij |: i qj + 4 q] :| ( )

where f = ﬁ = 138.935 485 (see chapter 2).

Coulomb interaction with reaction field

The Coulomb interaction including a reaction field, between two particles of which the charge
varies with A is:

1

Vo = f T,,+krfr§j—crf] (1= Na'q! +2qlq] | (4.113)
ij

Ve 1 2 A A, BB

N f T’ij+kaTij_CTf] {_qi q; +4q; q]'} (4.114)

Note that the constants &, and c,; are defined using the dielectric constant €, of the medium
(see sec. 4.1.4).

Lennard-Jones interaction

For the Lennard-Jones interaction between two particles of which the atom type varies with A we
can write:

(1-NC+2CE 1 -NCE+ 08

e _ _ 4.115

- x i (4.115)

Vir  _ ch-cfy cf-cg (4.116)
O\ ri? e .

ij ij

It should be noted that it is also possible to express a pathway from state A to state B using o and
€ (see eqn. 4.5). It may seem to make sense physically to vary the force field parameters o and €
rather than the derived parameters C'12 and Cg. However, the difference between the pathways in
parameter space is not large, and the free energy itself does not depend on the pathway, so we use

the simple formulation presented above.
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Kinetic Energy

When the mass of a particle changes, there is also a contribution of the kinetic energy to the free

energy (note that we can not write the momentum p as mv, since that would result in the sign of

9Ek being incorrect [85]):

1 p2

Bk = 2(1 — \ymA + dmB @-117)
OEk 1 p*(mP —m?)
ox  2((1 = XNmA+ amB)? (4-118)

after taking the derivative, we can insert p = mwv, such that:

OEk 1 5 5 4
o 5 Y (m m’) (4.119)

Constraints

The constraints are formally part of the Hamiltonian, and therefore they give a contribution to the
free energy. In GROMACS this can be calculated using the LINCS or the SHAKE algorithm. If
we have a number of constraint equations gg:

g =T — dk (4.120)

where 7, is the distance vector between two particles and d, is the constraint distance between
the two particles, we can write this using a A-dependent distance as

gr =i — (1= Ndit + Adf) (4.121)

the contribution C), to the Hamiltonian using Lagrange multipliers A:

Cr = D Mgk (4.122)
k

80)\ o B A

5 = ;Ak(d —dk) (4.123)

4.5.1 Soft-core interactions

In a free-energy calculation where particles grow out of nothing, or particles disappear, using the
the simple linear interpolation of the Lennard-Jones and Coulomb potentials as described in Equa-
tions 4.116 and 4.114 may lead to poor convergence. When the particles have nearly disappeared,
or are close to appearing (at A close to O or 1), the interaction energy will be weak enough for
particles to get very close to each other, leading to large fluctuations in the measured values of
OV /O (which, because of the simple linear interpolation, depends on the potentials at both the
endpoints of \).



4.5. Free energy interactions 91
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Figure 4.14: Soft-core interactions at A = 0.5, withp = 2 and C§' = Oy = Cf = Cf = 1.

To circumvent these problems, the singularities in the potentials need to be removed. This can be
done by modifying the regular Lennard-Jones and Coulomb potentials with “soft-core” potentials
that limit the energies and forces involved at A values between 0 and 1, but not at A = 0 or 1.

In GROMACS the soft-core potentials V. are shifted versions of the regular potentials, so that the
singularity in the potential and its derivatives at 7 = 0 is never reached:

Vie(r) = (1 =NVAra) +AVE(rp) (4.124)
ra = (aofr40%)° (4.125)
rp = (ao(1=NP+1%)° (4.126)

where V4 and V7 are the normal “hard core” Van der Waals or electrostatic potentials in state A
(A = 0) and state B (A = 1) respectively, « is the soft-core parameter (set with sc_alpha in
the .mdp file), p is the soft-core A power (set with sc_power), o is the radius of the interaction,
which is (012/06)1/6 or an input parameter (sc_sigma) when Cg or Cs is zero.

For intermediate ), r4 and rp alter the interactions very little for » > /¢ and quickly switch
the soft-core interaction to an almost constant value for smaller r (Fig. 4.14). The force is:
B OVie(r)

Foe(r) = or

(1= N FA(r) (7;)5 +AFB(rp) (’")5 4.127)

rB
where F4 and F'Z are the “hard core” forces. The contribution to the derivative of the free energy
is:

OVse(r)

OVA(r4) Ory oVE(rg) orp
o +A

ora 0O\ org o\

= VB(rp) = VAra)+ (1= )

= VB(rp)—VA>ra) +
% B (rp)rgPof (1= NP7t = (1= N FA(ra)r®ef x| @.128)
The original GROMOS Lennard-Jones soft-core function [86] uses p = 2, but p = 1 gives a

smoother 0H /O\ curve. When the changes between the two states involve both the disappearing
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i+1 i+3

[ i+2 i+4

Figure 4.15: Atoms along an alkane chain.

and appearing of atoms, it is important that the overlapping of atoms happens around A = 0.5.
This can usually be achieved with a~ 0.7 for p = 1 and a~ 1.5 for p = 2.

Another issue that should be considered is the soft-core effect of hydrogens without Lennard-Jones
interaction. Their soft-core o is set with sc_sigma in the . mdp file. These hydrogens produce
peaks in OH /OA at A is 0 and/or 1 for p = 1 and close to 0 and/or 1 with p = 2. Lowering sc_—
sigma will decrease this effect, but it will also increase the interactions with hydrogens relative
to the other interactions in the soft-core state.

4.6 Methods

4.6.1 Exclusions and 1-4 Interactions.

Atoms within a molecule that are close by in the chain, i.e. atoms that are covalently bonded,
or linked by one or two atoms are called first neighbors, second neighbors and third neighbors,
respectively (see Fig. 4.15). Since the interactions of atom i with atoms i+1 and i+2

are mainly quantum mechanical, they can not be modeled by a Lennard-Jones potential. Instead it
is assumed that these interactions are adequately modeled by a harmonic bond term or constraint
(i, i+1) and a harmonic angle term (i, i+2). The first and second neighbors (atoms i+1 and i+2) are
therefore excluded from the Lennard-Jones interaction list of atom i; atoms i+1 and i+2 are called
exclusions of atom i.

For third neighbors, the normal Lennard-Jones repulsion is sometimes still too strong, which
means that when applied to a molecule, the molecule would deform or break due to the inter-
nal strain. This is especially the case for carbon-carbon interactions in a cis-conformation (e.g.
cis-butane). Therefore, for some of these interactions, the Lennard-Jones repulsion has been re-
duced in the GROMOS force field, which is implemented by keeping a separate list of 1-4 and
normal Lennard-Jones parameters. In other force fields, such as OPLS [87], the standard Lennard-
Jones parameters are reduced by a factor of two, but in that case also the dispersion (r—%) and the
Coulomb interaction are scaled. GROMACS can use either of these methods.

4.6.2 Charge Groups

In principle, the force calculation in MD is an O(N?) problem. Therefore, we apply a cut-off for
non-bonded force (NBF) calculations; only the particles within a certain distance of each other
are interacting. This reduces the cost to O(N) (typically 100N to 200N) of the NBF. It also
introduces an error, which is, in most cases, acceptable, except when applying the cut-off implies
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the creation of charges, in which case you should consider using the lattice sum methods provided
by GROMACS.

Consider a water molecule interacting with another atom. When we would apply the cut-off on an
atom-atom basis we might include the atom-oxygen interaction (with a charge of —0.82) without
the compensating charge of the protons, and as a result, induce a large dipole moment over the
system. Therefore, we have to keep groups of atoms with total charge O together. These groups
are called charge groups.

4.6.3 Treatment of Cut-offs

GROMACS is quite flexible in treating cut-offs, which implies there can be quite a number of
parameters to set. These parameters are set in the input file for grompp. There are two sort of
parameters that affect the cut-off interactions; you can select which type of interaction to use in
each case, and which cut-offs should be used in the neighbor searching.

For both Coulomb and van der Waals interactions there are interaction type selectors (termed
vdwtype and coulombtype) and two parameters, for a total of six non-bonded interaction
parameters. See sec. 7.3 for a complete description of these parameters.

The neighbor searching (NS) can be performed using a single-range, or a twin-range approach.
Since the former is merely a special case of the latter, we will discuss the more general twin-
range. In this case, NS is described by two radii: r1ist and max(rcoulomb,rvdw). Usually
one builds the neighbor list every 10 time steps or every 20 fs (parameter nst1ist). In the
neighbor list, all interaction pairs that fall within r1ist are stored. Furthermore, the interac-
tions between pairs that do not fall within r1ist but do fall within max(rcoulomb,rvdw) are
computed during NS. The forces and energy are stored separately and added to short-range forces
at every time step between successive NS. If r1ist = max(rcoulomb,rvdw), no forces are
evaluated during neighbor list generation. The virial is calculated from the sum of the short- and
long-range forces. This means that the virial can be slightly asymmetrical at non-NS steps. In
single precision, the virial is almost always asymmetrical because the off-diagonal elements are
about as large as each element in the sum. In most cases this is not really a problem, since the
fluctuations in the virial can be 2 orders of magnitude larger than the average.

Except for the plain cut-off, all of the interaction functions in Table 4.2 require that neighbor
searching be done with a larger radius than the r. specified for the functional form, because of the
use of charge groups. The extra radius is typically of the order of 0.25 nm (roughly the largest
distance between two atoms in a charge group plus the distance a charge group can diffuse within
neighbor list updates).

4.7 Virtual interaction-sites

Virtual interaction-sites (called dummy atoms in GROMACS versions before 3.3) can be used in
GROMACS in a number of ways. We write the position of the virtual site 5 as a function of the
positions of other particles r;: rs = f(ry..r,,). The virtual site, which may carry charge or be
involved in other interactions, can now be used in the force calculation. The force acting on the
virtual site must be redistributed over the particles with mass in a consistent way. A good way to
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Type Parameters
Coulomb Plain cut-off Te, Ep

Reaction field Tes Epf

Shift function 71, T'e, Er

Switch function | rq, re, &,
Vdw Plain cut-off Te

Shift function 1, Te

Switch function | rq, 7.

Table 4.2: Parameters for the different functional forms of the non-bonded interactions.

do this can be found in ref. [88]. We can write the potential energy as:
V=Vrs,ri,...,rn) =V(ry,...,r) (4.129)
The force on the particle ¢ is then:

LOVE 9V 9V o,
87‘1‘ N 87“7; 87"5 87‘2‘

F;= = Ffirect + (4.130)

The first term is the normal force. The second term is the force on particle ¢ due to the virtual site,
which can be written in tensor notation:

Ors Oys Oz
Ox; Ox; Ox;
F, = gz ZZ g; F, 4.131)
Ors Oys Oz
8zi 6zi 821‘

where F'; is the force on the virtual site and zg, ys and z, are the coordinates of the virtual site. In
this way, the total force and the total torque are conserved [88].

The computation of the virial (eqn. 3.19) is non-trivial when virtual sites are used. Since the virial
involves a summation over all the atoms (rather than virtual sites), the forces must be redistributed
from the virtual sites to the atoms (using eqn. 4.131) before computation of the virial. In some
special cases where the forces on the atoms can be written as a linear combination of the forces on
the virtual sites (types 2 and 3 below) there is no difference between computing the virial before
and after the redistribution of forces. However, in the general case redistribution should be done
first.

There are six ways to construct virtual sites from surrounding atoms in GROMACS, which we
classify by the number of constructing atoms. Note that all site types mentioned can be constructed
from types 3fd (normalized, in-plane) and 3out (non-normalized, out of plane). However, the
amount of computation involved increases sharply along this list, so we strongly recommended
using the first adequate virtual site type that will be sufficient for a certain purpose. Fig. 4.16
depicts 6 of the available virtual site constructions. The conceptually simplest construction types
are linear combinations:

N
re=> wir; (4.132)
i=1
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Figure 4.16: The six different types of virtual site construction in GROMACS. The constructing
atoms are shown as black circles, the virtual sites in gray.

The force is then redistributed using the same weights:
F, = w; Fy (4.133)
The types of virtual sites supported in GROMACS are given in the list below. Constructing atoms

in virtual sites can be virtual sites themselves, but only if they are higher in the list, i.e. virtual
sites can be constructed from “particles” that are simpler virtual sites.

2. As alinear combination of two atoms (Fig. 4.16 2):
wi=1—a, wj=a (4.134)
In this case the virtual site is on the line through atoms ¢ and j.
3. As alinear combination of three atoms (Fig. 4.16 3):
wi=1l—a—-b, wj=a, wy=">0 (4.135)
In this case the virtual site is in the plane of the other three particles.
3fd. In the plane of three atoms, with a fixed distance (Fig. 4.16 3fd):

Tij + arjg

4.136
"I’ij + arjk\ ( )

rs = T; +

In this case the virtual site is in the plane of the other three particles at a distance of |b| from
1. The force on particles ¢, j and k due to the force on the virtual site can be computed as:

F;, = F;—~(Fs—p) ’YZL
F, = (1-a)y(Fs—p) where [7ij + ar i (4.137)
J Tis * Fs
/ = i
F, = ay(Fg — p) p Tis - Tis Tis
3fad. In the plane of three atoms, with a fixed angle and distance (Fig. 4.16 3fad):
rs = 1; + dcos GE + dsin@r—L where 1| = 7rj — T " Tk Tij (4.138)
7351 L Tij i

In this case the virtual site is in the plane of the other three particles at a distance of |d| from
¢ at an angle of o with 7;;. Atom k defines the plane and the direction of the angle. Note



96 Chapter 4. Interaction function and force field

that in this case b and o must be specified, instead of a and b (see also sec. 5.2.2). The force
on particles 4, j and k due to the force on the virtual site can be computed as (with 7 as
defined in eqn. 4.138):

F - F, - dcos@F1 n dsin 6 rij~rij2+F3
[7ij [rol \rij i
. dcos@F1 _ dsinf F2+rij'rij2+F3
[7ij 7ol Tij " Tij
P, - dsinGF2
7L
where Fles—r” Srij, ngFl—rL *r, and ngbm_
Tij - Tij ryL-ry Tij - Tij
(4.139)
3out. As a non-linear combination of three atoms, out of plane (Fig. 4.16 3out):
rs = ritar; + bri, + C(’I‘Z’j X Tik) (4.140)

This enables the construction of virtual sites out of the plane of the other atoms. The force
on particles ¢, j and k due to the force on the virtual site can be computed as:

a —CZik  ClUik
F; = CZik a —cxi | Fs
L —CYik CZik a
i b CZij —CYij (4.141)
F;c = —CZij b CTij; Fs
L Cyij —Cl’ij b
F; = F,—F)-F}

4fdn. From four atoms, with a fixed distance, see separate Fig. 4.17. This construction is a bit
complex, in particular since the previous type (4fd) could be unstable which forced us to
introduce a more elaborate construction:

Tja = ary —Tyj=a(Xp—X) — (X5 — X;)

rj, = bry—r;=>b(x—x;)— (X —x;)

I'ym = Tjo XTjp

Xy = Xi+c— (4.142)
[T

In this case the virtual site is at a distance of |c| from ¢, while a and b are parameters. Note
that the vectors r;; and r;; are not normalized to save floating-point operations. The force
on particles ¢, j, k and [ due to the force on the virtual site are computed through chain rule
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Figure 4.17: The new 4fdn virtual site construction, which is stable even when all constructing
atoms are in the same plane.

derivatives of the construction expression. This is exact and conserves energy, but it does
lead to relatively lengthy expressions that we do not include here (over 200 floating-point
operations). The interested reader can look at the source code in vsite.c. Fortunately,
this vsite type is normally only used for chiral centers such as C, atoms in proteins.

The new 4fdn construct is identified with a ‘type’ value of 2 in the topology. The earlier
41d type is still supported internally (‘type’ value 1), but it should not be used for new
simulations. All current Gromacs tools will automatically generate type 4fdn instead.

N. A linear combination of N atoms with relative weights a;. The weight for atom 3 is:
N -1
wi=a; | Y aj (4.143)
j=1

There are three options for setting the weights:

COG center of geometry: equal weights

COM center of mass: a; is the mass of atom ¢; when in free-energy simulations the mass of
the atom is changed, only the mass of the A-state is used for the weight

COW center of weights: a; is defined by the user

4.8 Dispersion correction

In this section, we derive long-range corrections due to the use of a cut-off for Lennard-Jones or
Buckingham interactions. We assume that the cut-off is so long that the repulsion term can safely
be neglected, and therefore only the dispersion term is taken into account. Due to the nature of
the dispersion interaction, energy and pressure corrections are both negative. While the energy
correction is usually small, it may be important for free energy calculations. In contrast, the
pressure correction is very large and can not be neglected. Although it is, in principle, possible to
parameterize a force field such that the pressure is close to 1 bar even without correction, such a
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method makes the parameterization dependent on the cut-off and is therefore undesirable. Note
that it is not appropriate to use the long-range correction to the dispersion without using either a
reaction field method or a proper long-range electrostatics method such as Ewald summation or
PPPM.

4.8.1 Energy

The long-range contribution of the dispersion interaction to the virial can be derived analytically, if
we assume a homogeneous system beyond the cut-off distance r.. The dispersion energy between
two particles is written as:
-6
V(Tij) = —Cﬁ rij (4.144)

and the corresponding force is:
Fij = —6 CG riggnj (4.145)

In a periodic system it is not easy to calculate the full potentials, so usually a cut-off is applied,
which can be abrupt or smooth. We will call the potential and force with cut-off V. and F'.. The
long-range contribution to the dispersion energy in a system with [V particles and particle density
p=N/Vis:

Vie = 5Np [ 4mrg(r) (V) = Velr) dr (4.146)
2 0

We will integrate this for the shift function, which is the most general form of van der Waals
interaction available in GROMACS. The shift function has a constant difference .S from 0 to 7
and is 0 beyond the cut-off distance r.. We can integrate eqn. 4.146, assuming that the density
in the sphere within r; is equal to the global density and the radial distribution function g(r) is 1
beyond 71:

2

1 4 Tc 4
= -N <<7rp7“:1” - 1) Cs S+ p/ 42 (V(r) — V(r)) dr — §7er Cs 7‘0_3> (4.147)
r1

Vi, = 1N (p/ 1 4rr2g(r) Cg S dr + p/ "4 (V(r) = Ve(r))dr + p/ 412V (r) dr)
0 T1 Tec

2 3

where the term —1 corrects for the self-interaction. For a plain cut-off we only need to assume
that g(r) is 1 beyond r. and the correction reduces to [89]:

2
Vi, = —ngpC6r;3 (4.148)

If we consider, for example, a box of pure water, simulated with a cut-off of 0.9 nm and a density
of 1 g cm™3 this correction is —0.75 kJ mol~! per molecule.

For a homogeneous mixture we need to define an average dispersion constant:

9 N N
(Ce) = mzzc%(i,j) (4.149)
i J>0

In GROMACS, excluded pairs of atoms do not contribute to the average.

In the case of inhomogeneous simulation systems, e.g. a system with a lipid interface, the energy
correction can be applied if (Cg) for both components is comparable.
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4.8.2 Virial and pressure

The scalar virial of the system due to the dispersion interaction between two particles ¢ and j is
given by:

=2 = —%rij i 36’6r (4.150)
The pressure is given by:
P = 32‘/ (Egin — E) (4.151)
The long-range correction to the virial is given by:
1 100
=, = in /0 4rr?g(r) (2 — Z,) dr (4.152)

We can again integrate the long-range contribution to the virial assuming g(r) is 1 beyond r1:

= 1 e = 2 —6
=, = 2Np( 5 4rr?(2 — c)d’r—i—/ﬁ 4mre3 Cory; dr)
]. Te —_ -3
= 2Np( 5 4r?(2 — o) dr + 4nC 1, > (4.153)

For a plain cut-off the correction to the pressure is [89]:
4
Py = —37Cq pPr. 3 (4.154)

Using the same example of a water box, the correction to the virial is 0.75 kJ mol~! per molecule,
the corresponding correction to the pressure for SPC water is approximately —280 bar.

For homogeneous mixtures, we can again use the average dispersion constant (Cg) (eqn. 4.149):

4 _
Plr = —57 <06> pQTc 5

3 (4.155)

For inhomogeneous systems, eqn. 4.155 can be applied under the same restriction as holds for the

energy (see sec. 4.8.1).

4.9 Long Range Electrostatics

4.9.1 Ewald summation

The total electrostatic energy of N particles and the periodic images are given by

_f ZZZZZ 9 (4.156)

Ng Ny Nz* 4

(ng,ny,n.) = n is the box index vector, and the star indicates that terms with ¢ = j should be
omitted when (n,, ny,n,) = (0,0,0). The distance r;; , is the real distance between the charges
and not the minimum-image. This sum is conditionally convergent, but very slow.
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Ewald summation was first introduced as a method to calculate long-range interactions of the pe-
riodic images in crystals [90]. The idea is to convert the single slowly-converging sum eqn. 4.156
into two quickly-converging terms and a constant term:

vV = de + Viee + Vo (4.157)

Vi = 1 zzzz g APriin) (4.158)

T
7,7 Nz Ny Nz* ton

exp (—(mm/B3)* 4+ 2mim - (r; — r;)
Viee = QWVZ%ZZZ <P (~(rm/ — D) 4159)

Mg My My*

/B
o= s ;q% (4.160)

where ( is a parameter that determines the relative weight of the direct and reciprocal sums and
m = (mg, my, m;). In this way we can use a short cut-off (of the order of 1 nm) in the direct
space sum and a short cut-off in the reciprocal space sum (e.g. 10 wave vectors in each direction).
Unfortunately, the computational cost of the reciprocal part of the sum increases as N2 (or N3/2
with a slightly better algorithm) and it is therefore not realistic for use in large systems.

Using Ewald

Don’t use Ewald unless you are absolutely sure this is what you want - for almost all cases the PME
method below will perform much better. If you still want to employ classical Ewald summation
enter this in your . mdp file, if the side of your box is about 3 nm:

coulombtype = Ewald
rvdw = 0.9
rlist = 0.9
rcoulomb = 0.9
fourierspacing = 0.6
ewald _rtol = le-5

The fourierspacing parameter times the box dimensions determines the highest magnitude
of wave vectors my, m,, m. to use in each direction. With a 3-nm cubic box this example would
use 11 wave vectors (from —5 to 5) in each direction. The ewald_rtol parameter is the relative
strength of the electrostatic interaction at the cut-off. Decreasing this gives you a more accurate
direct sum, but a less accurate reciprocal sum.

49.2 PME

Particle-mesh Ewald is a method proposed by Tom Darden [11, 12] to improve the performance
of the reciprocal sum. Instead of directly summing wave vectors, the charges are assigned to a
grid using cardinal B-spline interpolation. This grid is then Fourier transformed with a 3D FFT
algorithm and the reciprocal energy term obtained by a single sum over the grid in k-space.
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The potential at the grid points is calculated by inverse transformation, and by using the interpo-
lation factors we get the forces on each atom.

The PME algorithm scales as N log(/V), and is substantially faster than ordinary Ewald summa-
tion on medium to large systems. On very small systems it might still be better to use Ewald
to avoid the overhead in setting up grids and transforms. For the parallelization of PME see the
section on MPMD PME (3.17.5).

Using PME

To use Particle-mesh Ewald summation in GROMACS, specify the following lines in your . mdp
file:

coulombtype = PME
rvdw = 0.9
rlist = 0.9
rcoulomb = 0.9
fourierspacing = 0.12
pme_order = 4

ewald_rtol = le-5

In this case the fourierspacing parameter determines the maximum spacing for the FFT grid
and pme_order controls the interpolation order. Using fourth-order (cubic) interpolation and
this spacing should give electrostatic energies accurate to about 5 - 1073, Since the Lennard-Jones
energies are not this accurate it might even be possible to increase this spacing slightly.

Pressure scaling works with PME, but be aware of the fact that anisotropic scaling can introduce
artificial ordering in some systems.

4.9.3 PPPM

The Particle-Particle Particle-Mesh methods of Hockney & Eastwood can also be applied in GRO-
MACS for the treatment of long range electrostatic interactions [91, 11, 92]. With this algorithm
the charges of all particles are spread over a grid of dimensions (n,n,,n.) using a weighting
function called the triangle-shaped charged distribution:

W(r) = W(z) W(y) W(z)
2

3_ (¢ h

i (F) 2 <=3 (4.161)
WE = 1(3-5) b<la<y

0 % < g

where £ (x, y or z) is the distance to a grid point in the corresponding dimension. Only the 27
closest grid points need to be taken into account for each charge.
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Then, this charge distribution is Fourier transformed using a 3D inverse FFT routine. In Fourier
space, a convolution with function G is performed:

. gk
Gk) = g(fk; (4.162)

where ¢ is the Fourier transform of the charge spread function g(r). This yields the long-range
potential qg(k) on the mesh, which can be transformed using a forward FFT routine into the real
space potential. Finally, the potential and forces are retrieved using interpolation [92]. It is not easy
to calculate the full long-range virial tensor with PPPM, but it is possible to obtain the trace. This
means that the sum of the pressure components is correct (and therefore the isotropic pressure) but
not necessarily the individual pressure components!

Using PPPM

To use the PPPM algorithm in GROMACS, specify the following lines in your . mdp file:

coulombtype = PPPM
rlist = 1.0
rcoulomb = 0.85
rcoulomb_switch = 0.0
rvdw 1.0
fourierspacing = 0.075

For details on the switch parameters, see the section on modified long-range interactions in this
manual. When using PPPM we recommend to take at most 0.075 nm per grid point (e.g. 20 grid
points for 1.5 nm). PPPM does not provide the same accuracy as PME, but can be slightly faster
in some cases. Due to the problem with the pressure tensor you shouldn’t use it with pressure
coupling.

PPM is currently disabled in GROMACS, but there are plans to re-introduce it.

4.9.4 Optimizing Fourier transforms

To get the best possible performance you should try to avoid large prime numbers for grid dimen-
sions. The FFT code used in GROMACS is optimized for grid sizes of the form 223°5°7911¢13/,
where e 4+ f is 0 or 1 and the other exponents arbitrary. (See further the documentation of the FFT
algorithms at www.fftw.org.

It is also possible to optimize the transforms for the current problem by performing some calcula-
tions at the start of the run. This is not done by default since it takes a couple of minutes, but for
large runs it will save time. Turn it on by specifying

optimize_fft = yes

in your . mdp file.


http://www.fftw.org
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When running in parallel, the grid must be communicated several times, thus hurting scaling
performance. With PME you can improve this by increasing grid spacing while simultaneously
increasing the interpolation to e.g. sixth order. Since the interpolation is entirely local, doing so
will improve the scaling in most cases.

4.10 Force field

A force field is built up from two distinct components:

o The set of equations (called the potential functions) used to generate the potential energies
and their derivatives, the forces. These are described in detail in the previous chapter.

e The parameters used in this set of equations. These are not given in this manual, but in the
data files corresponding to your GROMACS distribution.

Within one set of equations various sets of parameters can be used. Care must be taken that the
combination of equations and parameters form a consistent set. It is in general dangerous to make
ad hoc changes in a subset of parameters, because the various contributions to the total force are
usually interdependent. This means in principle that every change should be documented, verified
by comparison to experimental data and published in a peer-reviewed journal before it can be used.

GROMACS 4.5 includes several force fields, and additional ones are available on the website. If
you do not know which one to select we recommend GROMOS-96 for united-atom setups and
OPLS-AA/L for all-atom parameters. That said, we describe the available options in some detail.

4.10.1 GROMOS87

The GROMOS-87 suite of programs and corresponding force field [71] formed the basis for the
development of GROMACS in the early 1990s. The original GROMOSS87 force field is not
available in GROMACS. In previous versions (< 3.3.2) there used to be the so-called “GRO-
MACS force field,” which was based on GROMOS-87 [71], with a small modification concern-
ing the interaction between water oxygens and carbon atoms [93, 94], as well as 10 extra atom
types [95, 96, 93, 94, 97]. Whenever using this force field, please cite the above references, and
do not call it the “GROMACS force field,” instead name it GROMOS-87 [71] with corrections as
detailed in [93, 94]. As noted by pdb2gmzx, this force field is “deprecated,” indicating that newer,
perhaps more reliable, versions of this parameter set are available. For backwards compatibility, it
is maintained in the current release. Should you have a justifiable reason to use this force field, all
necessary files are provided in the gmx . £ £ subdirectory of the GROMACS library. See also the
note in 5.2.1.

All-hydrogen force-field

The GROMOS-87-based all-hydrogen force-field is almost identical to the normal GROMOS-87
force field, since the extra hydrogens have no Lennard-Jones interaction and zero charge. The
only differences are in the bond angle and improper dihedral angle terms. This force field is only
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useful when you need the exact hydrogen positions, for instance for distance restraints derived
from NMR measurements. When citing this force field please read the previous paragraph.

4.10.2 GROMOS-96

GROMACS supports the GROMOS-96 force fields [70]. All parameters for the 43al, 43a2 (de-
velopment, improved alkane dihedrals), 45a3, 53a5, and 53a6 force fields are included. All
standard building blocks are included and topologies can be built automatically by pdb2gmx.
The GROMOS-96 force field is a further development of the GROMOS-87 force field. The
GROMOS-96 force field has improvements over the GROMOS-87 force field for proteins and
small molecules. It is not, however, recommended for use with long alkanes and lipids. The
GROMOS-96 force field differs from the GROMOS-87 force field in a few respects:

o the force field parameters
o the parameters for the bonded interactions are not linked to atom types
e a fourth power bond stretching potential (sec. 4.2.1)

e an angle potential based on the cosine of the angle (sec. 4.2.5)

There are two differences in implementation between GROMACS and GROMOS-96 which can
lead to slightly different results when simulating the same system with both packages:

e in GROMOS-96 neighbor searching for solvents is performed on the first atom of the solvent
molecule. This is not implemented in GROMACS, but the difference with searching by
centers of charge groups is very small

e the virial in GROMOS-96 is molecule-based. This is not implemented in GROMACS,
which uses atomic virials

The GROMOS-96 force field was parameterized with a Lennard-Jones cut-off of 1.4 nm, so be
sure to use a Lennard-Jones cut-off (rvdw) of at least 1.4. A larger cut-off is possible because the
Lennard-Jones potential and forces are almost zero beyond 1.4 nm.

GROMOS-96 files

GROMACS can read and write GROMOS-96 coordinate and trajectory files. These files should
have the extension .g96. Such a file can be a GROMOS-96 initial/final configuration file, a
coordinate trajectory file, or a combination of both. The file is fixed format; all floats are written
as 15.9, and as such, files can get huge. GROMACS supports the following data blocks in the
given order:

e Header block:

TITLE (mandatory)
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e Frame blocks:

TIMESTEP (optional)
POSITION/POSITIONRED (mandatory)
VELOCITY/VELOCITYRED (optional)
BOX (optional)

See the GROMOS-96 manual [70] for a complete description of the blocks. Note that all GRO-
MACS programs can read compressed (.Z) or gzipped (.gz) files.

4.10.3 OPLS/AA
4.10.4 AMBER

As of version 4.5, GROMACS provides native support for the following AMBER force fields:

e AMBERY4 [98]
AMBERO96 [99]

AMBER99 [100]

AMBERY99SB [101]
AMBER99SB-ILDN [102]

AMBERO3 [103]

AMBERGS [104]

4.10.5 CHARMM

As of version 4.5, GROMACS supports the CHARMM27 force field for proteins [105, 106],
lipids [107] and nucleic acids [108]. The protein parameters (and to some extent the lipid and
nucleic acid parameters) were thoroughly tested — both by comparing potential energies between
the port and the standard parameter set in the CHARMM molecular simulation package, as well by
how the protein force field behaves together with GROMACS-specific techniques such as virtual
sites (enabling long time steps) and a fast implicit solvent recently implemented [65] — and the
details and results are presented in the paper by Bjelkmar et al. [109]. The nucleic acid parameters,
as well as the ones for HEME, were converted and tested by Michel Cuendet.

When selecting the CHARMM force field in pdb2gmx the default option is to use CMAP (dihe-
dral cross terms for protein backbone), use —nocmap flag otherwise.

4.10.6 MARTINI

The MARTINI force field is a coarse-grain parameter set that allows for the construction of many
systems, including proteins and membranes.
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Chapter 5
Topologies

5.1 Introduction

GROMACS must know on which atoms and combinations of atoms the various contributions to
the potential functions (see chapter 4) must act. It must also know what parameters must be
applied to the various functions. All this is described in the topology file * . t op, which lists the
constant attributes of each atom. There are many more atom types than elements, but only atom
types present in biological systems are parameterized in the force field, plus some metals, ions and
silicon. The bonded and special interactions are determined by fixed lists that are included in the
topology file. Certain non-bonded interactions must be excluded (first and second neighbors), as
these are already treated in bonded interactions. In addition, there are dynamic attributes of atoms
- their positions, velocities and forces. These do not strictly belong to the molecular topology,
and are stored in the coordinate file = . gro (positions and velocities), or trajectory file «.trr
(positions, velocities, forces).

This chapter describes the setup of the topology file, the » . top file and the database files: what
the parameters stand for and how/where to change them if needed. First, all file formats are
explained. Section 5.8.1 describes the organization of the force-field files.

Note: if you construct your own topologies, we encourage you to upload them to our topology
archive at www.gromacs.org! Just imagine how thankful you’d have been if your topology had
been available there before you started. The same goes for new force fields or modified versions
of the standard force fields - contribute them to the force field archive!

5.2 Particle type

In GROMACS, there are three types of particles, see Table 5.1. Only regular atoms and virtual
interaction-sites are used in GROMACS; shells are necessary for polarizable models like the Shell-
Water models [40].
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Particle Symbol
atoms A
shells S
virtual interaction-sites | V (or D)

Table 5.1: Particle types in GROMACS

5.2.1 Atom types

Each force field defines a set of atom types, which have a characteristic name or number, and mass
(in a.m.u.). These listings are found in the atomtypes.atp file (.atp = atom type parameter
file). Therefore, it is in this file that you can begin to change and/or add an atom type. A sample
from the deprecated gmx . £ £ force field is listed below.

O 15.99940 ; carbonyl oxygen (C=0)
OM 15.99940 ; carboxyl oxygen (CO-)
OA 15.99940 ; hydroxyl oxygen (OH)
OW 15.99940 ; water oxygen
N 14.00670 ; peptide nitrogen (N or NH)
NT 14.00670 ; terminal nitrogen (NH2)
NL 14.00670 ; terminal nitrogen (NH3)
NRS5 14.00670 ; aromatic N (5-ring,2 bonds)
NR5x 14.00670 ; aromatic N (5-ring, 3 bonds)
NP 14.00670 ; porphyrin nitrogen
Cc 12.01100 ; bare carbon (peptide,C=0,C-N)
CH1 13.01900 ; aliphatic CH-group
CH2 14.02700 ; aliphatic CH2-group
CH3 15.03500 ; aliphatic CH3-group

Note: GROMACS makes use of the atom types as a name, not as a number (as e.g. in GROMOS).

5.2.2 Virtual sites

Some force fields use virtual interaction-sites (interaction sites that are constructed from other
particle positions) on which certain interactions are located (e.g. on benzene rings, to reproduce
the correct quadrupole). This is described in sec. 4.7.

To make virtual sites in your system, you should include a section [ virtual_sites? ] (for
backward compatibility the old name [ dummies? ] can also be used) in your topology file,
where the ‘?’ stands for the number constructing particles for the virtual site. This will be ‘2’ for
type 2, ‘3’ for types 3, 3fd, 3fad and 3out and ‘4’ for type 4fdn. The last of these replace an older
41d type (with the ‘type’ value 1) that could occasionally be unstable; while it is still supported
internally in the code, the old 4fd type should not be used in new input files. The different types
are explained in sec. 4.7.

Parameters for type 2 should look like this:

[ virtual_sites2 ]
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; Site from funct a
5 1 2 1 0.7439756

for type 3 like this:

[ virtual_sites3 ]

; Site from funct a b

5 1 2 3 1 0.7439756 0.128012

for type 3fd like this:

[ virtual_sites3 ]

; Site from funct a d

5 1 2 3 2 0.5 -0.105

for type 3fad like this:

[ virtual_sites3 ]

; Site from funct theta d

5 1 2 3 3 120 0.5

for type 3out like this:

[ virtual_sites3 ]

; Site from funct a b c

5 1 2 3 4 -0.4 -0.4 6.9281
for type 4fdn like this:

[ virtual_sites4d ]

; Site from funct a b c
5 1 2 3 4 2 1.0 0.9 0.105

This will result in the construction of a virtual site, number 5 (first column ‘Site’), based on the
positions of the atoms whose indices are 1 and 2 or 1, 2 and 3 or 1, 2, 3 and 4 (next two, three
or four columns ‘from’) following the rules determined by the function number (next column
‘funct’) with the parameters specified (last one, two or three columns ‘a b . ."). Obviously,
the atom numbers (including virtual site number) depend on the molecule. It may be instructive
to study the topologies for TIP4P or TIPSP water models that are included with the GROMACS
distribution.

Note that if any constant bonded interactions defined between virtual sites and/or normal atoms
will be removed by grompp, which happens after the exclusions have been generated. This way,
exclusions will not be affected by an atom being defined as virtual site or not, but by the bonding
configuration of the atom.

5.3 Parameter files

5.3.1 Atoms

The static properties (see Table 5.2 assigned to the atom types are assigned based on data in several
places. The mass is listed in atomt ypes . atp (see 5.2.1), whereas the charge is listed in » . rtp
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Property | Symbol Unit
Type - -
Mass m am.u.
Charge q electron
epsilon € kJ/mol
sigma o nm

Table 5.2: Static atom type properties in GROMACS

(.rtp = residue topology parameter file, see 5.6.1). This implies that the charges are only defined
in the building blocks of amino acids, nucleic acids or otherwise, as defined by the user. When
generating a topology (* . top) using the pdb2gmx program, the information from these files is
combined.

5.3.2 Non-bonded parameters

The non-bonded parameters consist of the van der Waals parameters V (c6 or o, depending on the
combination rule) and W (c12 or €), as listed in the file f fnonbonded. itp, where ptype is
the particle type (see Table 5.1). As with the bonded parameters, entriesin [ *type ] directives
are applied to their counterparts in the topology file. Missing parameters generate warnings, except
as noted below in section 5.3.4.

[ atomtypes ]

;name at.num mass charge ptype V(c6) W(cl2)
O 8 15.99940 0.000 A 0.22617E-02 0.74158E-06
OM 8 15.99940 0.000 A 0.22617E-02 0.74158E-06

[ nonbond_params ]

;i 3 func V(co6) W(cl2)
0 0 1 0.22617E-02 0.74158E-06
0 OA 1 0.22617E-02 0.13807E-05

Note that most of the included force fields also include the at .num. column, but this same in-
formation is implied in the OPLS-AA bond_type column. The interpretation of the parameters
V and W depends on the combination rule that was chosen in the [ defaults ] section of the
topology file (see 5.7.1):

o o) 6 —1 1mb
for combination rule 1 : Vii 01(12) 4o [k mol™ nm” ] (5.1
Wi = C; = 4 61-0}2 [ kJ mol~! nm'? ]
for combination rules 2 and 3 : Vi = oi [nm] (5.2)

Wi = ¢ [kImol™!]

Some or all combinations for different atom types can be given in the [ nonbond_params ]
section, again with parameters V and W as defined above. Any combination that is not given will
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be computed from the parameters for the corresponding atom types, according to the combination
rule:

c®  _ (C(G) C(G)) 2
for combination rules 1 and 3 : 1(312) 1(12) ](12) 1 (5.3)
2
1
o ) oij = 3(oi+0j)
for combination rule 2 : & = e 5.4)

5.3.3 Bonded parameters

The bonded parameters (i.e. bonds, bond angles, improper and proper dihedrals) are listed in
ffbonded.itp. The entries in this database describe, respectively, the atom types in the in-
teractions, the type of the interaction, and the parameters associated with that interaction. These
parameters are then read by grompp when processing a topology and applied to the relevant
bonded parameters, i.e. bondtypes are applied to entries in the [ bonds ] directive, etc.
Any bonded parameter that is missing from the relevant [ «type ] directive generates a fatal
error. The types of interactions are listed in Tables 5.5 and 5.6. Example excerpts from such files
follow:

[ bondtypes ]
;o1 j func b0 kb
C @) 1 0.12300 502080.
C OM 1 0.12500 418400.
[ angletypes ]

;o1 J k func thO cth
HO OA C 1 109.500 397.480
HO OA CH1 1 109.500 397.480

[ dihedraltypes ]
;o1 1 func g0 cq
NR5% NR5 2 0.000 167.360
NR5% NRS5=* 2 0.000 167.360
[ dihedraltypes ]
| k func phiO cp mult
C OA 1 180.000 16.736 2
C N 1 180.000 33.472 2
[ dihedraltypes ]

; Ryckaert-Bellemans Dihedrals

; aj ak funct
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Cp2 Cp2 3 9.2789 12.156 -13.120 -3.0597 26.240 -31.495

In the ffbonded. itp file, you can add bonded parameters. If you want to include parameters
for new atom types, make sure you define them in atomtypes.atp as well.

5.3.4 Intramolecular pair interactions

Extra Lennard-Jones and electrostatic interactions between pairs of atoms in a molecule can be
added in the [ pairs ] section of a molecule definition. The parameters for these interactions
can be set independently from the non-bonded interaction parameters. In the GROMOS force
fields, pairs are only used to modify the 1-4 interactions (interactions of atoms separated by three
bonds). In these force fields the 1-4 interactions are excluded from the non-bonded interactions
(see sec. 5.4).

[ pairtypes ]
;i J func cs6 csl2 ; THESE ARE 1-4 INTERACTIONS
0 ¢} 1 0.22617E-02 0.74158E-06
o) OM 1 0.22617E-02 0.74158E-06

The pair interaction parameters for the atom types in ffnonbonded.itp are listed in the
[ pairtypes ] section. The GROMOS force fields list all these interaction parameters explic-
itly, but this section might be empty for force fields like OPLS that calculate the 1-4 interactions by
uniformly scaling the parameters. Pair parameters that are not present in the [ pairtypes ]

section are only generated when gen-pairsissetto “yes” inthe [ defaults ] directive of
forcefield.itp (see 5.7.1). When gen—-pairs is set to “no,” grompp will give a warning
for each pair type for which no parameters are given.

The normal pair interactions, intended for 1-4 interactions, have function type 1. Function types
2 and 3 are intended for free-energy simulations. When determining hydration free energies, the
solute needs to be decoupled from the solvent. This can be done by adding a B-state topology
(see sec. 3.12) that uses zero for all solute non-bonded parameters, i.e. charges and LJ parameters.
However, the free energy difference between the A and B states is not the total hydration free
energy. One has to add the free energy for reintroducing the internal Coulomb and LJ interactions
in the solute. This second step can be combined with the first step when the Coulomb and LJ
interactions within the solute are not modified. For this purpose, there is a pairs function type 2,
which is identical to function type 1, except that the B-state parameters are always identical to the
A-state parameters. For searching the parameters inthe [ pairtypes ] section, no distinction
is made between function type 1 and 2. Function type 3 is intended to replace the non-bonded
interaction. It uses the unscaled charges and the non-bonded LJ parameters. Type 3 also only uses
the A-state parameters. Note that one should add exclusions for all atom pairs participating in pair
interactions type 3, otherwise such pairs will also end up in the normal neighbor lists.

All three pair types always use plain Coulomb interactions, even when Reaction-field, PME, Ewald
or shifted Coulomb interactions are selected for the non-bonded interactions. Energies for types
1 and 2 are written to the energy and log file in separate “LJ-14" and “Coulomb-14" entries per
energy group pair. Energies for type 3 are added to the “LJ-(SR)” and “Coulomb-(SR)” terms.
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5.3.5 Implicit Solvent parameters

Starting with GROMACS 4.5, implicit solvent is supported. A section in the topology has been
introduced to list those parameters:

[ implicit_genborn_params ]

; Atomtype sar st pi gbr hct

NH1 0.155 1 1.028 0.17063 0.79 ; N

N 0.155 1 1 0.155 0.79 ; Proline backbone N
H 0.1 1 1 0.115 0.85 ; H

CT1 0.180 1 1.276 0.190 0.72 ; C

In this example the atom type is listed first, followed by five numbers, and a comment (following
a semicolon).

Values in columns 1-3 are not currently used. They pertain to more elaborate surface area algo-
rithms, the one from Still ef al. [62] in particular. Column 4 contains the atomic van der Waals
radii, which are used in computing the Born radii. The dielectric offset is specified in the « . mdp
file, and gets added to the input radii for the different radii methods. Column 5 is the scale factor
for the HCT and OBC models. The values are taken from the original HCT reference [63], as well
as the corresponding implementation in Tinker.

5.4 Exclusions

The exclusions for non-bonded interactions are generated by grompp for neighboring atoms up
to a certain number of bonds away, as defined in the [ moleculetype ] section in the topol-
ogy file (see 5.7.1). Particles are considered bonded when they are connected by “chemical”
bonds ([ bonds ] types 1to5, 7 or 8) or constraints ([ constraints 1] type 1). Type 5
[ bonds ] can be used to create a connection between two atoms without creating an interac-
tion. There is a harmonic interaction ([ bonds ] type 6) that does not connect the atoms by a
chemical bond. There is also a second constraint type ([ constraints ] type 2) that fixes
the distance, but does not connect the atoms by a chemical bond. For a complete list of all these
interactions, see Table 5.5.

Extra exclusions within a molecule can be added manuallyina [ exclusions ] section. Each
line should start with one atom index, followed by one or more atom indices. All non-bonded
interactions between the first atom and the other atoms will be excluded.

When all non-bonded interactions within or between groups of atoms need to be excluded, is it
more convenient and much more efficient to use energy monitor group exclusions (see sec. 3.3).

5.5 Constraints

Constraints are defined in the [ constraints ] section. The format is two atom numbers
followed by the function type, which can be 1 or 2, and the constraint distance. The only differ-
ence between the two types is that type 1 is used for generating exclusions and type 2 is not (see
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sec. 5.4). The distances are constrained using the LINCS or the SHAKE algorithm, which can
be selected in the . mdp file. Both types of constraints can be perturbed in free-energy calcula-
tions by adding a second constraint distance (see 5.7.5). Several types of bonds and angles (see
Table 5.5) can be converted automatically to constraints by grompp. There are several options
for this in the + . mdp file.

We have also implemented the SETTLE algorithm [42], which is an analytical solution of SHAKE,
specifically for water. SETTLE can be selected in the topology file. See, for instance, the SPC
molecule definition:

[ moleculetype ]

; molname nrexcl

SOL 1

[ atoms ]

; nr at type res nr ren nm at nm cg nr charge
1 oW 1 SOL owl 1 -0.82
2 HW 1 SOL HW2 1 0.41
3 HW 1 SOL HW3 1 0.41
[ settles ]

; OW funct doh dhh

1 1 0.1 0.16333

[ exclusions ]

1 2 3

2 1 3

3 1 2

The [ settles ] directive defines the first atom of the water molecule. The settle funct is
always 1, and the distance between O-H and H-H distances must be given. Note that the algorithm
can also be used for TIP3P and TIP4P [95]. TIP3P just has another geometry. TIP4P has a virtual
site, but since that is generated it does not need to be shaken (nor stirred).

5.6 pdb2gmx input files

The GROMACS program pdb2gmx generates a topology for the input coordinate file. Several
formats are supported for that coordinate file, but ».pdb is the most commonly-used format
(hence the name pdb2gmx). pdb2gmx searches for force fields in subdirectories of the GRO-
MACS share/top directory and your working directory. Force fields are recognized from the
file forcefield.itp in a directory with the extension .ff. The file forcefield.doc
may be present, and if so, its first line will be used by pdlb2gmx to present a short description to
the user to help in choosing a force field. Otherwise, the user can choose a force field with the
-ff xxx command-line argument to pdb2gmx, which indicates that a force field in a xxx . £f
directory is desired. pdb2gmx will search first in the working directory, then in the GROMACS
share/top directory, and use the first matching xxx . £ f directory found.

Two general files are read by pdb2gmx: an atom type file (extension . atp, see 5.2.1) from the
force field directory, and a file called residuetypes.dat from either the working directory, or
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the GROMACS share/top directory. residuetypes.dat determines which residue names
are considered protein, DNA, RNA, water, and ions.

pdb2gmx can read one or multiple databases with topological information for different types of
molecules. A set of files belonging to one database should have the same basename, preferably
telling something about the type of molecules (e.g. aminoacids, rna, dna). The possible files are:

e <basename>.rtp

e <basename>.r2b (optional)

e <basename>.arn (optional)

e <basename>.hdb (optional)

e <basename>.n.tdb (optional)

e <basename>.c.tdb (optional)

Only the . rtp file, which contains the topologies of the building blocks, is mandatory. Infor-
mation from other files will only be used for building blocks that come from an . rtp file with
the same base name. The user can add building blocks to a force field by having additional files
with the same base name in their working directory. By default, only extra building blocks can be
defined, but calling pdb2gmx with the —rtpo option will allow building blocks in a local file to
replace the default ones in the force field.

5.6.1 Residue database

The files holding the residue databases have the extension .rtp. Originally this file contained
building blocks (amino acids) for proteins, and is the GROMACS interpretation of the rt 37c4 .dat
file of GROMOS. So the residue database file contains information (bonds, charges, charge groups,
and improper dihedrals) for a frequently-used building block. It is better not to change this file
because it is standard input for pdb2gmx, but if changes are needed make them in the * . t op file
(see 5.7.1), orin a . rtp file in the working directory as explained in sec. 5.6. Defining topologies
of new small molecules is probably easier by writing an include topology file % .itp directly.
This will be discussed in section 5.7.2. When adding a new protein residue to the database, don’t
forget to add the residue name to the residuetypes.dat file, so that grompp, make_ndx
and analysis tools can recognize the residue as a protein residue (see 8.1.1).

The . rtp files are only used by pdb2gmx. As mentioned before, the only extra information this
program needs from the . rtp database is bonds, charges of atoms, charge groups, and improper
dihedrals, because the rest is read from the coordinate input file. Some proteins contain residues
that are not standard, but are listed in the coordinate file. You have to construct a building block for
this “strange” residue, otherwise you will not obtain a * . top file. This also holds for molecules
in the coordinate file such as ligands, polyatomic ions, crystallization co-solvents, etc. The residue
database is constructed in the following way:

[ bondedtypes ] ; mandatory
; bonds angles dihedrals impropers
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1 1 1 2 ; mandatory
[ GLY ] ; mandatory
[ atoms ] ; mandatory
; name type charge chargegroup
N N -0.280 0
H H 0.280 0
CA CH2 0.000 1
C C 0.380 2
0 O -0.380 2
[ bonds ] ; optional
;atoml atom?2 b0 kb
N H
N CA
CA C
C 0
-C N
[ exclusions ] ; optional

;atoml atom2

[ angles ] ; optional
;atoml atom2 atom3 tho cth
[ dihedrals ] ; optional
;atoml atom2 atom3 atomé phiO cp mult
[ impropers ] ; optional
;jatoml atom2 atom3 atomé g0 cq
N -C CA H
-C -CA N -0
[ ZN ]
[ atoms ]
ZN ZN 2.000 0

The file is free format; the only restriction is that there can be at most one entry on a line. The first
field in the file is the [ bondedtypes ] field, which is followed by four numbers, indicating
the interaction type for bonds, angles, dihedrals, and improper dihedrals. The file contains residue
entries, which consist of atoms and (optionally) bonds, angles, dihedrals, and impropers. The
charge group codes denote the charge group numbers. Atoms in the same charge group should
always be ordered consecutively. When using the hydrogen database with pdb2gmx for adding
missing hydrogens (see 5.6.4), the atom names defined in the . rtp entry should correspond ex-
actly to the naming convention used in the hydrogen database. The atom names in the bonded
interaction can be preceded by a minus or a plus, indicating that the atom is in the preceding or
following residue respectively. Explicit parameters added to bonds, angles, dihedrals, and im-
propers override the standard parameters in the . itp files. This should only be used in special
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cases. Instead of parameters, a string can be added for each bonded interaction. This is used in
GROMOS-96 . rtp files. These strings are copied to the topology file and can be replaced by
force field parameters by the C-preprocessor in grompp using #de fine statements.

pdb2gmx automatically generates all angles. This means that for the gmx . £ £ force field, the
[ angles ] field is only useful for overriding . itp parameters. For the GROMOS-96 force
field the interaction number of all angles need to be specified.

pdb2gmx automatically generates one proper dihedral for every rotatable bond, preferably on
heavy atoms. When the [ dihedrals ] field is used, no other dihedrals will be generated for
the bonds corresponding to the specified dihedrals. It is possible to put more than one dihedral
function on a rotatable bond.

pdb2gmx sets the number of exclusions to 3, which means that interactions between atoms con-
nected by at most 3 bonds are excluded. Pair interactions are generated for all pairs of atoms
that are separated by 3 bonds (except pairs of hydrogens). When more interactions need to be
excluded, or some pair interactions should not be generated, an [ exclusions ] field can be
added, followed by pairs of atom names on separate lines. All non-bonded and pair interactions
between these atoms will be excluded.

5.6.2 Residue to building block database

Each force field has its own naming convention for residues. Most residues have consistent nam-
ing, but some, especially those with different protonation states, can have many different names.
The . r2b files are used to convert standard residue names to the force field build block names. If
no . r2b is present in the force field directory or a residue is not listed, the building block name is
assumed to be identical to the residue name. The . r2b can contain 2 or 5 columns. The 2-column
format has the residue name in the first column and the building block name in the second. The
5-column format has 3 additional columns with the building block for the residue occurring in
the N-terminus, C-terminus and both termini at the same time (single residue molecule). This is
useful for, for instance, the AMBER force fields. If one or more of the terminal versions are not
present, a dash should be entered in the corresponding column.

There is a GROMACS naming convention for residues which is only apparent (except for the
pdb2gmx code) through the . r2b file and specbond.dat files. This convention is only of
importance when you are adding residue types to an . rtp file. The convention is listed in Ta-
ble 5.3. For special bonds with, for instance, a heme group, the GROMACS naming convention is
introduced through specbond.dat, which can subsequently be translated by the . r2b file, if
required.

5.6.3 Atom renaming database

Force fields often use atom names that do not follow IUPAC or PDB convention. The .arn
database is used to translate the atom names in the coordinate file to the force field names. Atoms
that are not listed keep their names. The file has three columns: the building block name, the
old atom name, and the new atom name, respectively. The residue name supports question-mark
wildcards that match a single character.
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ARG protonated arginine

ARGN neutral arginine

ASP negatively charged aspartic acid

ASPH neutral aspartic acid

CYS neutral cysteine

CYS2  cysteine with sulfur bound to another cysteine or a heme
GLU negatively charged glutamic acid

GLUH neutral glutamic acid

HISD  neutral histidine with N protonated

HISE  neutral histidine with N, protonated

HISH  positive histidine with both Ns and N, protonated
HIS1 histidine bound to a heme

LYSN neutral lysine

LYS protonated lysine

HEME heme

Table 5.3: Internal GROMACS residue naming convention.

An additional general atom renaming file called x1ateat .dat is present in the share/top
directory, which translates common non-standard atom names in the coordinate file to [UPAC/PDB
convention. Thus, when writing force field files, you can assume standard atom names and no
further atom name translation is required, except for translating from standard atom names to the
force field ones.

5.6.4 Hydrogen database

The hydrogen database is stored in . hdb files. It contains information for the pdb2gmx program
on how to connect hydrogen atoms to existing atoms. In versions of the database before GRO-
MACS 3.3, hydrogen atoms were named after the atom they are connected to: the first letter of
the atom name was replaced by an ‘H.’” In the versions from 3.3 onwards, the H atom has to be
listed explicitly, because the old behavior was protein-specific and hence could not be generalized
to other molecules. If more than one hydrogen atom is connected to the same atom, a number will
be added to the end of the hydrogen atom name. For example, adding two hydrogen atoms to ND2
(in asparagine), the hydrogen atoms will be named HD21 and HD22. This is important since atom
naming in the . rtp file (see 5.6.1) must be the same. The format of the hydrogen database is as
follows:

; res # additions
# H add type H i J k
ALA 1
1 1 H N -C CA
ARG 4
1 2 H N CA C
1 1 HE NE CD CZ
2 3 HH1 NH1 CZ NE
2 3 HH2 NH2 CZ NE
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On the first line we see the residue name (ALA or ARG) and the number of kinds of hydrogen
atoms that may be added to this residue by the hydrogen database. After that follows one line for
each addition, on which we see:

e The number of H atoms added

e The method for adding H atoms, which can be any of:

1

7

10

one planar hydrogen, e.g. rings or peptide bond

One hydrogen atom (n) is generated, lying in the plane of atoms (i,j,k) on the plane
bisecting angle (j-i-k) at a distance of 0.1 nm from atom i, such that the angles (n-i-j)
and (n-i-k) are > 90°.

one single hydrogen, e.g. hydroxyl

One hydrogen atom (n) is generated at a distance of 0.1 nm from atom i, such that
angle (n-i-j)=109.5 degrees and dihedral (n-i-j-k)=trans.

two planar hydrogens, e.g. -NHo

Two hydrogens (nl,n2) are generated at a distance of 0.1 nm from atom i, such that
angle (nl-i-j)=(n2-i-j)=120 degrees and dihedral (nl-i-j-k)=cis and (n2-i-j-k)=trans,
such that names are according to [IUPAC standards [110].

two or three tetrahedral hydrogens, e.g. -CHg3

Three (n1,n2,n3) or two (nl,n2) hydrogens are generated at a distance of 0.1 nm from
atom 1, such that angle (nl-i-j)=(n2-i-j)=(n3-i-j)=109.47°, dihedral (nl-i-j-k)=trans,
(n2-i-j-k)=trans+120 and (n3-i-j-k)=trans+240°.

one tetrahedral hydrogen, e.g. C3CH

One hydrogen atom (n’) is generated at a distance of 0.1 nm from atom i in tetrahedral
conformation such that angle (n’-i-j)=(n’-i-k)=(n’-i-1)=109.47°.

two tetrahedral hydrogens, e.g. C-CH2-C

Two hydrogen atoms (nl,n2) are generated at a distance of 0.1 nm from atom i in
tetrahedral conformation on the plane bisecting angle j-i-k with angle (n1-i-n2)=(n1-i-
J)=(nl-i-k)=109.47°.

two water hydrogens

Two hydrogens are generated around atom i according to SPC [73] water geometry.
The symmetry axis will alternate between three coordinate axes in both directions.

three water “hydrogens”

Two hydrogens are generated around atom i according to SPC [73] water geometry.
The symmetry axis will alternate between three coordinate axes in both directions.
In addition, an extra particle is generated on the position of the oxygen with the first
letter of the name replaced by ‘M’. This is for use with four-atom water models such
as TIP4P [95].

11 four water “hydrogens”

Same as above, except that two additional particles are generated on the position of
the oxygen, with names ‘LP1” and ‘LP2.’ This is for use with five-atom water models
such as TIPSP [111].

e The name of the new H atom (or its prefix, e.g. HD2 for the asparagine example given
earlier).
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e Three or four control atoms (i,j,k,1), where the first always is the atom to which the H atoms
are connected. The other two or three depend on the code selected. For water, there is only
one control atom.

5.6.5 Termini database

The termini databases are stored in aminoacids.n.tdband aminocacids.c.tdb forthe N-
and C-termini respectively. They contain information for the pdb2gmx program on how to con-
nect new atoms to existing ones, which atoms should be removed or changed, and which bonded
interactions should be added. The format of the is as follows (from gmx . f £ /aminoacids.c.tdb):

[ COO- ]

[ replace ]

C C C 12.011 0.27

[ add ]

2 8 0 C CA N
OM 15.9994 -0.635

[ delete ]

O

[ impropers ]

C o1 02 CA

[ None ]

The file is organized in blocks, each with a header specifying the name of the block. These
blocks correspond to different types of termini that can be added to a molecule. In this example
[ COO- 1 is the first block, corresponding to changing the terminal carbon atom into a depro-
tonated carboxyl group. [ None ] is the second terminus type, corresponding to a terminus
that leaves the molecule as it is. Block names cannot be any of the following: replace, add,
delete, bonds, angles, dihedrals, impropers. Doing so would interfere with the pa-
rameters of the block, and would probably also be very confusing to human readers.

For each block the following options are present:

e [ replace ]

Replace an existing atom by one with a different atom type, atom name, charge, and/or
mass. This entry can be used to replace an atom that is present both in the input coordinates
and in the . rtp database, but also to only rename an atom in the input coordinates such
that it matches the name in the force field. In the latter case, there should also be a corre-
sponding [ add ] section present that gives instructions to add the same atom, such that
the position in the sequence and the bonding is known. Such an atom can be present in the
input coordinates and kept, or not present and constructed by pdb2gmx. For each atom to
be replaced on line should be entered with the following fields:

— name of the atom to be replaced
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new atom name (optional)

new atom type

— NEw mass

new charge

[ add ]

Add new atoms. For each (group of) added atom(s), a two-line entry is necessary. The
first line contains the same fields as an entry in the hydrogen database (name of the new
atom, number of atoms, type of addition, control atoms, see 5.6.4), but the possible types of
addition are extended by two more, specifically for C-terminal additions:

8 two carboxyl oxygens, -COO~
Two oxygens (nl,n2) are generated according to rule 3, at a distance of 0.136 nm from
atom i and an angle (nl-i-j)=(n2-i-j)=117 degrees

9 carboxyl oxygens and hydrogen, -COOH
Two oxygens (n1,n2) are generated according to rule 3, at distances of 0.123 nm and
0.125 nm from atom i for nl and n2, respectively, and angles (nl-i-j)=121 and (n2-i-
j)=115 degrees. One hydrogen (n’) is generated around n2 according to rule 2, where
n-i-j and n-i-j-k should be read as n’-n2-i and n’-n2-i-j, respectively.

After this line, another line follows that specifies the details of the added atom(s), in the
same way as for replacing atoms, i.e.:

atom type

mass

charge

charge group (optional)

Like in the hydrogen database (see 5.6.1), when more than one atom is connected to an
existing one, a number will be appended to the end of the atom name. Note that, like in the
hydrogen database, the atom name is now on the same line as the control atoms, whereas it
was at the beginning of the second line prior to GROMACS version 3.3. When the charge
group field is left out, the added atom will have the same charge group number as the atom
that it is bonded to.

[ delete ]
Delete existing atoms. One atom name per line.

[ bonds ], [ angles ], [ dihedrals ] and [ impropers ]
Add additional bonded parameters. The format is identical to that used in the * . rtp file,
see 5.6.1.

5.6.6 Virtual site database

Since we cannot rely on the positions of hydrogens in input files, we need a special input file
to decide the geometries and parameters with which to add virtual site hydrogens. For more
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complex virtual site constructs (e.g. when entire aromatic side chains are made rigid) we also need
information about the equilibrium bond lengths and angles for all atoms in the side chain. This
information is specified in the .vsd file for each force field. Just as for the termini, there is one
such file for each class of residues in the . rtp file.

The virtual site database is not really a very simple list of information. The first couple of sections
specify which mass centers (typically called MCH3/MNH3) to use for CHs, NH3, and NHs groups.
Depending on the equilibrium bond lengths and angles between the hydrogens and heavy atoms
we need to apply slightly different constraint distances between these mass centers. Note that we
do not have to specify the actual parameters (that is automatic), just the type of mass center to use.
To accomplish this, there are three sections names [ CH3 ], [ NH3 ],and [ NH2 ]. Foreach
of these we expect three columns. The first column is the atom type bound to the 2/3 hydrogens,
the second column is the next heavy atom type which this is bound, and the third column the type
of mass center to use. As a special case, in the [ NH2 ] section it is also possible to specify
planar in the second column, which will use a different construction without mass center. There
are currently different opinions in some force fields whether an NHy group should be planar or
not, but we try hard to stick to the default equilibrium parameters of the force field.

The second part of the virtual site database contains explicit equilibrium bond lengths and angles
for pairs/triplets of atoms in aromatic side chains. These entries are currently read by specific
routines in the virtual site generation code, so if you would like to extend it e.g. to nucleic acids
you would also need to write new code there. These sections are named after the short amino
acid names ([ PHE ], [ TYR ], [ TRP ], [ HID ], [ HIE ], [ HIP 1), and simply
contain 2 or 3 columns with atom names, followed by a number specifying the bond length (in
nm) or angle (in degrees). Note that these are approximations of the equilibrated geometry for the
entire molecule, which might not be identical to the equilibrium value for a single bond/angle if
the molecule is strained.

5.7 File formats

5.7.1 Topology file

The topology file is built following the GROMACS specification for a molecular topology. A
* . top file can be generated by pdb2gmx. All possible entries in the topology file are listed in
Tables 5.4, 5.5 and 5.6. Also tabulated are: all the units of the parameters, which interactions
can be perturbed for free energy calculations, which bonded interactions are used by grompp for
generating exclusions, and which bonded interactions can be converted to constraints by grompp.

Description of the file layout:

Semicolon (;) and newline characters surround comments

On a line ending with \ the newline character is ignored.

Directives are surrounded by [ and ]

The topology consists of three levels:

— the parameter level (see Table 5.4)
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Parameters
interaction directive # f.  parameters F. E.
type at. tp
mandatory defaults non-bonded function type;

combination rule(”);
generate pairs (no/yes);
fudge LJ (); fudge QQ ()

mandatory atomtypes atom type; m (u); q (e); particle type;
yer). yier)
bondtypes (see Table 5.5, directive bonds)
pairtypes (see Table 5.5, directive pairs)
angletypes (see Table 5.5, directive angles)

dihedraltypes®™ (see Table 5.5, directive dihedrals)
constrainttypes (see Table 5.6, directive constraints)
LJ nonbond_params 2 1 V(cr); W er)

Buckingham | nonbond_params 2 2 a(kJmol™!); b (nm~1);

¢6 (kJ mol~'nm®)

Molecule definition(s)

mandatory moleculetype molecule name; né’;’"”d)

mandatory atoms 1 atom type; residue number; type
residue name; atom name;
charge group number; g (e); m (u) q,m

intra-molecular interaction and geometry definitions as described in Tables 5.5 and 5.6

System
mandatory system system name
mandatory molecules molecule name; number of molecules

‘# at’ is the number of atom types

‘f. tp’ is function type

‘F. E.” indicates which parameters can be interpolated during free energy calculations

(¢r) the combination rule determines the type of LJ parameters, see 5.3.2

(*) for dihedraltypes one can specify 4 atoms or the inner (outer for improper) 2 atoms
(nrezel) exclude neighbors ne, bonds away for non-bonded interactions

For free energy calculations, type, ¢ and m or no parameters should be added

for topology ‘B’ (A = 1) on the same line, after the normal parameters.

Table 5.4: The topology (* . top) file.
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Intra-molecular interaction definitions

interaction directive # f.  parameters F. E.
type at. tp
bond ponds(e¥cheon) 2 1 by (nm); kp (kJ mol nm—2) all
G96 bond bonds(e¥ebeon) 2 2 by (nm); Ky (kJ mol~nm—%) all
morse bonds(e¥cheon) 23 po(nm); D (kJ mol~1); 8 (nm™ 1)
cubic bond bonds(ezeheon) o 4 bo (nm); Ci—2 3 (kJ mol~'nm™?);
connection bonds(exel) 2 5
harmonic pot. bonds 2 6 by (nm); kp (k] mol 'nm~?2) all
FENE bond bonds(€*) 2 7 by, (nm); ky (kJ mol~'nm~2)
tab. bond bonds(€rel) 2 8 table number (> 0); k (kJ mol™!) k
tab. bond n.c. bonds 2 9 table number (> 0); k (kJ mol™1) k
restraint pot. bonds 2 10 low, upy, up2 (nm); all
kgr (kKJ mol~'nm~2)
LJ/Coul. 1-4 pairs 2 1 v, wilen all
LJ/Coul. 1-4 pairs 2 2 fudge QQ 0); g, g; (e), V), Wwler)
LJ/C. pair NB pairs_nb 2 1 g, g (e) Ve wien
angle angles(cn) 3 1 6 (deg); kg (kJ mol~'rad—2) all
G96 angle angles(®n) 3 2 6 (deg); kg (kI mol~1) all
cross bond-bond | angles 3 3 7l T2 (nm); Ky (kI mol~'nm™2)
cross bond-angle | angles 3 4 7l 79 3. (nm); kg (kI mol~'nm—?2)
Urey-Bradley angles(cn) 3 5 6y (deg); kg (kJ mol~1); ri3 (nm);
kyp (kKJ mol™1)
quartic angle angles(c‘m) 3 6 fHy(deg); Ci=0,1,2,3,4 (k] mol~'rad—?)
tab. angle angles 3 8 table number (> 0); k (kJ mol™1) k
proper dih. dihedrals 4 1 ¢ (deg); ky (kI mol™t); multiplicity ¢,k
proper dih. dihedrals 4 9 ¢ (deg); kg (KJ mol™1); multiplicity ¢,k
improper dih. dihedrals 4 2 & (deg); ke (kI mol~'rad—?) all
RB dihedral dihedrals 4 3 Coy,C,Co C3,Cy, Cs (kI mol™t) all
improper dih. dihedrals 4 4 ¢ (deg); kg (KJ mol~1); multiplicity o, k
Fourier dih. dihedrals 4 5 (C1,Cy Cz Cy (kI mol™h) all
tab. dihedral dihedrals 4 8 table number (> 0); k (kJ mol™1) k
exclusions exclusions 1 one or more atom indices

‘# at’ is the number of atom indices

‘f. tp’ is function type

‘F. E.” indicates which parameters can be interpolated during free energy calculations

(¢7) the combination rule determines the type of LJ parameters, see 5.3.2

(excl)

used by grompp for generating exclusions

(con) can be converted to constraints by grompp
For free energy calculations, all or no parameters for topology ‘B’ (A = 1) should be added
on the same line, after the normal parameters, in the same order as the normal parameters.

Table 5.5: Intra-molecular interaction definitions.
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Intra-molecular geometry and restraint definitions
interaction directive # f. parameters F. E.
type at. tp
constraint constraints(€) 2 1 by (nm) all
constr. n.c. constraints 2 2 by (nm) all
settle settles 1 1 don, dgg (nm)
vsite2 virtual_sites2 3 1 a()
vsite3 virtual_sites3 4 1 a, b
vsite3fd virtual_sites3 4 2 a();d(nm)
vsite3fad virtual_sites3 4 3 0(deg); d(nm)
vsite3out virtual_sites3 4 4 a,b(O;c(mm™)
vsite4fdn virtual_sites4 5 2  a,b();c(nm);
vsite COG virtual_sitesn 1 1 one or more construc. atom ind.
vsite COM | virtual_sitesn 1 2 one or more construc. atom ind.
vsite COW | virtual_sitesn 1 3  oneor more pairs consisting of
a construc. atom ind. and weight
position res. | position_restraints 1 1 kg, ky, ko (K mol~'nm~2) all
restr. pot. bonds 2 10 low, upy, up2 (nm); all
kgr (kJ mol~'nm—2)
distance res. | distance_restraints 2 1  type; label; low, up;, up2 (nm);
weight ()
dihedral res. | dihedral_restraints 4 1  type;label; ¢g (deg); A¢ (deg);
weight ()
orient. res. orientation_restraints
2 1 exp.; label; o; ¢ (U nm®);
obs. (U); weight (U
angle res. angle_restraints 4 1 G (deg); ke (kJ mol 1) 0,k
multiplicity
angleres. z | angle_restraints_z 2 1 6 (deg); k. (k] mol~1); 0,k
multiplicity

‘# at’ is the number of atom indices
‘f. tp’ is function type
‘F. E.” indicates which parameters can be interpolated during free energy calculations

(excl)

used by grompp for generating exclusions

For free energy calculations, all or no parameters for topology ‘B’ (A = 1) should be added
on the same line, after the normal parameters, in the same order as the normal parameters.

Table 5.6: Intra-molecular geometry and restraint definitions.
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— the molecule level, which should contain one or more molecule definitions (see Ta-
ble 5.5)

— the system level: [ system ], [ molecules ]
items should be separated by spaces or tabs, not commas
Atoms in molecules should be numbered consecutively starting at 1

The file is parsed only once, which implies that no forward references can be treated: items
must be defined before they can be used

Exclusions can be generated from the bonds or overridden manually

The bonded force types can be generated from the atom types or overridden per bond
It is possible to apply multiple bonded interactions of the same type on the same atoms
Descriptive comment lines and empty lines are highly recommended

Starting with GROMACS version 3.1.3, all directives at the parameter level can be used
multiple times and there are no restrictions on the order, except that an atom type needs to
be defined before it can be used in other parameter definitions

If parameters for a certain interaction are defined multiple times for the same combination
of atom types the last definition is used; starting with GROMACS version 3.1.3 grompp
generates a warning for parameter redefinitions with different values

Using one of the [ atoms ], [ bonds ], [ pairs ], [ angles ], etc. without
having used [ moleculetype ] before is meaningless and generates a warning

Using [ molecules ] without having used [ system ] before is meaningless and
generates a warning.

After [ system ] the only allowed directive is [ molecules ]

Using an unknown string in [ ] causes all the data until the next directive to be ignored
and generates a warning

Here is an example of a topology file, urea. top:

4
4

4

Example topology file

; The force field files to be included
#include "gmx.ff/forcefield.itp"

[ moleculetype ]
; name nrexcl

Urea

3

[ atoms ]
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; nr
1
2
3
4
5
6
7
8
[ bonds
; ai
3
3
6
6
1
1
1
[ pairs
;ai
2
2
2
2
3
3
4
5
[ angles
; ai
1
1
4
1
1
7
2
2
3

[ dihedrals

; ai

N W NN oy N

type
C
0]
NT
H
H
NT
H
H
]
aj funct
4 1
5 1
7 1
8 1
2 1
3 1
6 1
]
aj funct
4 1
5 1
7 1
8 1
7 1
8 1
6 1
6 1
]
aj ak
3 4
3 5
3 5
6 7
6 8
6 8
1 3
1 6
1 6
]
aj ak
1 3
1 3
1 3
1 3
1 6
1 6
1 6

resnr residu atom cgnr charge
1 UREA C1l 1 0.683
1 UREA 02 1 -0.683
1 UREA N3 2 -0.622
1 UREA H4 2 0.346
1 UREA H5 2 0.276
1 UREA N6 3 -0.622
1 UREA H7 3 0.346
1 UREA HS 3 0.276
b0 kb
1.000000e-01 3.744680e+05
1.000000e-01 3.744680e+05
1.000000e-01 3.744680e+05
1.000000e-01 3.744680e+05
1.230000e-01 5.020800e+05
1.330000e-01 3.765600e+05
1.330000e-01 3.765600e+05
cb6 cl2
0.000000e+00 0.000000e+00
0.000000e+00 0.000000e+00
0.000000e+00 0.000000e+00
0.000000e+00 0.000000e+00
0.000000e+00 0.000000e+00
0.000000e+00 0.000000e+00
0.000000e+00 0.000000e+00
0.000000e+00 0.000000e+00
funct tho cth
1 1.200000e+02 2.928800e+02
1 1.200000e+02 2.928800e+02
1 1.200000e+02 3.347200e+02
1 1.200000e+02 2.928800e+02
1 1.200000e+02 2.928800e+02
1 1.200000e+02 3.347200e+02
1 1.215000e+02 5.020800e+02
1 1.215000e+02 5.020800e+02
1 1.170000e+02 5.020800e+02
al funct phi cp
4 1 1.800000e+02 3.347200e+01
4 1 1.800000e+02 3.347200e+01
5 1 1.800000e+02 3.347200e+01
5 1 1.800000e+02 3.347200e+01
7 1 1.800000e+02 3.347200e+01
7 1 1.800000e+02 3.347200e+01
8 1 1.800000e+02 3.347200e+01

DD NN

mult

.000000e+00
.000000e+00
.000000e+00
.000000e+00
.000000e+00
.000000e+00
.000000e+00
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3 1 6 8 1 1.800000e+02 3.347200e+01 2.000000e+00
[ dihedrals ]
; ai aj ak al funct g0 cq
3 4 5 1 2 0.000000e+00 1.673600e+02
6 7 8 1 2 0.000000e+00 1.673600e+02
1 3 6 2 2 0.000000e+00 1.673600e+02

4

position_restraints ]

you wouldn’t normally use this for a molecule like Urea,

but we include it here for didactic purposes
ai funct fc

1 1 1000 1000 1000 ; Restrain to a point
2 1 1000 0 1000 ; Restrain to a line (Y-axis)
3 1 1000 0 0 ; Restrain to a plane (Y-Z-plane)

Include SPC water topology

#include "spc.itp"

[

system ]

Urea in Water

[ molecules ]
;molecule name nr.
Urea 1
SOL 1000

Here follows the explanatory text.

[

defaults ] :

e non-bond type = 1 (Lennard-Jones) or 2 (Buckingham)
e combination rule =

1. For Lennard-Jones: supply C'®) and C(V), C’Z-]}/[ =

CM CM (M = 6,N). Default

value for N = 12, but it can be overridden using the last parameter on this line. For
Buckingham potentials the combination rule is such that you give the A, B and C
parameters. A;; = \/A; A; and similar for Cy;, B;; = 2/(1/B; + 1/Bj).

2. supply o and €, 0;; = %(ai +0;) and €;; = /€ €;
3. supply o and €, 045 = /0i0j, €j = (/€ €j

e generate pairs = no (the default, get 1-4 parameters from the pairtypes list, when parameters
are not present in the list stop with a fatal error) or yes (generate 1-4 parameters which are
not present in the pair list from normal Lennard-Jones parameters using Fudgel.J)

e FudgeLJ = factor by which to multiply Lennard-Jones 1-4 interactions, default 1

e FudgeQQ = factor by which to multiply electrostatic 1-4 interactions, default 1
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e N = power for the repulsion term in a 6-N potential (with nonbonded-type Lennard-Jones
only), starting with GROMACS version 4.5, mdrun also reads and applies NV, for values
not equal to 12 tabulated interaction functions are used (in older version you would have to
use user tabulated interactions).

Note: generate pairs, FudgeLJ, FudgeQQ and N are optional, FudgeLJ is only used when generate
pairs is set to ‘yes’, FudgeQQ is always used. However if you want to specify N you need to give
a value for the other parameters as well.

#include "gmx.ff/forcefield.itp" : this includes the bonded and non-bonded force
field parameters, the gmx in gmx . ff will be replaced by the name of the force field you are
actually using.

[ moleculetype ] : defines the name of your molecule in this * . t op and nrexcl = 3 stands
for excluding non-bonded interactions between atoms that are no further than 3 bonds away.

[ atoms ] : defines the molecule, where nr and type are fixed, the rest is user defined. So
atom can be named as you like, cgnr made larger or smaller (if possible, the total charge of a
charge group should be zero), and charges can be changed here too.

[ bonds ] :nocomment.
[ pairs ] :LJand Coulomb 1-4 interactions
[ angles ] :nocomment

[ dihedrals ] : in this case there are 9 proper dihedrals (funct = 1), 3 improper (funct =
2) and no Ryckaert-Bellemans type dihedrals. If you want to include Ryckaert-Bellemans type
dihedrals in a topology, do the following (in case of e.g. decane):

[ dihedrals ]

;ai aj ak al funct cO cl c2
1 2 3 4 3
2 3 4 5 3

and do not forget to erase the 1-4 interactionin [ pairs ]!

[ position_restraints ] : harmonically restrain the selected particles to reference posi-
tions (sec. 4.3.1). The reference positions are read from a separate coordinate file by grompp.

#include "spc.itp" :includes atopology file that was already constructed (see section 5.7.2).
[ system ] : title of your system, user-defined

[ molecules ] : this defines the total number of (sub)molecules in your system that are de-
fined in this «.top. In this example file, it stands for 1 urea molecule dissolved in 1000 water
molecules. The molecule type SOL is defined in the spc. itp file.

5.7.2 Molecule.itp file

If you construct a topology file you will use frequently (like the water molecule, spc. itp, which
is already constructed for you) it is good to make a molecule.itp file. This only lists the
information of one particular molecule and allows you to re-use the [ moleculetype ] in
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multiple systems without re-invoking pdb2gmx or manually copying and pasting. An example

follows:

[ moleculetype ]
; name nrexcl
Urea 3

[ atoms ]

; nr type resnr residu
1 C 1 UREA
8 H 1 UREA
[ bonds ]
; ail aj funct c0
3 4 1 1.000000e-01
1 6 1 1.330000e-01
[ pairs 1]
; ai aj funct c0
2 4 1 0.000000e+00
5 6 1 0.000000e+00
[ angles ]
;ai aj ak funct
1 3 4
3 1 6

; ai aj ak al funct
2 1 3 4 1
3 1 6 8 1

[ dihedrals ]

; ai aj ak al funct
3 4 5 1 2
6 7 8 1 2
1 3 6 2 2

(@]

atom
C1l

HS8

cl
.744680e+05

.765600e+05

cl
.000000e+00

.000000e+00

cO

c0

.800000e+02

.800000e+02

cO

.000000e+00
.000000e+00
.000000e+00

Using * . itp files results in a very short = . top file:

; The force field files to be included

cgnr

charge
1 0.683

3 0.276

cl

1 1.200000e+02 2.928800e+02

1 1.170000e+02 5.020800e+02

cl

.347200e+01

.347200e+01

cl

.673600e+02
.673600e+02
.673600e+02

c2
2.000000e+00

2.000000e+00
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#include "gmx.ff/forcefield.itp"

; Include urea topology
#include "urea.itp"

; Include SPC water topology
#include "spc.itp"

[ system ]
Urea in Water

[ molecules ]
;molecule name number
Urea 1
SOL 1000

5.7.3 Ifdef statements

A very powerful feature in GROMACS is the use of #ifdef statements in your .top file.

By making use of this statement, different parameters for one molecule can be used in the same
* . top file. An example is given for TFE, where there is an option to use different charges on
the atoms: charges derived by De Loof ef al. [112] or by Van Buuren and Berendsen [96]. In
fact, you can use much of the functionality of the C preprocessor, cpp, because grompp contains
similar pre-processing functions to scan the file. The way to make use of the #ifdef option is as

follows:

e cither use the option define = -DDeloof inthe » .mdp file (containing grompp input

parameters), or use the line #define Deloof early in your x.top or =.1itp file; and

e put the #1ifdef statements in your * . top, as shown below:

[ atoms ]

; nr type resnr residu
#ifdef DelLoof

; Use Charges from DelLoof

1 C 1 TFE
2 F 1 TFE
3 F 1 TFE
4 F 1 TFE
5 CH2 1 TFE
6 OA 1 TFE
7 HO 1 TFE
felse
; Use Charges from VanBuuren
1 C 1 TFE

2 F 1 TFE

atom

G ]

CH2
OA
HO

cgnr

el

= o

charge

0.74
-0.25
-0.25
-0.25

0.25
-0.65

0.41

-0.2

mass
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3 F 1 TFE F 1 -0.2
4 F 1 TFE F 1 -0.2
5 CH2 1 TFE CH2 1 0.26
6 OA 1 TFE OA 1 -0.55
7 HO 1 TFE HO 1 0.3
fendif
[ bonds ]
;o oai aj funct cO cl
6 7 1 1.000000e-01 3.138000e+05
1 2 1 1.360000e-01 4.184000e+05
1 3 1 1.360000e-01 4.184000e+05
1 4 1 1.360000e-01 4.184000e+05
1 5 1 1.530000e-01 3.347000e+05
5 6 1 1.430000e-01 3.347000e+05

This mechanism is used by pdb2gmx to implement optional position restraints (sec. 4.3.1) by
#include-ing an . itp file whose contents will be meaningful only if a particular #define is
set (and spelled correctly!)

5.7.4 Topologies for free energy calculations

Free energy differences between two systems, A and B, can be calculated as described in sec. 3.12.
Systems A and B are described by topologies consisting of the same number of molecules with
the same number of atoms. Masses and non-bonded interactions can be perturbed by adding B
parameters under the [ atoms ] directive. Bonded interactions can be perturbed by adding B
parameters to the bonded types or the bonded interactions. The parameters that can be perturbed
are listed in Tables 5.4, 5.5 and 5.6. The A-dependence of the interactions is described in section
sec. 4.5. The bonded parameters that are used (on the line of the bonded interaction definition, or
the ones looked up on atom types in the bonded type lists) is explained in Table 5.7. In most cases,
things should work intuitively. When the A and B atom types in a bonded interaction are not all
identical and parameters are not present for the B-state, either on the line or in the bonded types,
grompp uses the A-state parameters and issues a warning.

Below is an example of a topology which changes from 200 propanols to 200 pentanes using the
GROMOS-96 force field.

; Include force field parameters
#include "gromosd43al.ff/forcefield.itp"

[ moleculetype ]

; Name nrexcl
PropPent 3

[ atoms ]

; nr type resnr residue atom cgnr charge mass typeB chargeB massB
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B-state atom types | parameters | parameters in bonded types
all identical to on line A atom types | B atom types | message
A-state atom types A B A B A B
+AB — X X
+A +B X X
yes — — — — error
— — | +AB —
— — +A +B
+AB — X X X X warning
+A +B X X X X
— — X X error
no — — | +AB — — — warning
— — +A +B — — warning
— - +A +B -
— — +A X + +B

Table 5.7: The bonded parameters that are used for free energy topologies, on the line of the
bonded interaction definition or looked up in the bond types section based on atom types. A and
B indicate the parameters used for state A and B respectively, + and — indicate the (non-)presence

of parameters in the topology, x indicates that the presence has no influence.

1 H 1 PROP PH 1
2 OA 1 PROP PO 1
3 CH2 1 PROP PC1 1
4 CH2 1 PROP PC2 2
5 CH3 1 PROP PC3 2
[ bonds ]
; ai aj funct par_A par_B
1 2 2 gb_1 gb_26
2 3 2 gb_17 gb_26
3 4 2 gb_26 gb_26
4 5 2 gb_26
[ pairs ]
; ail aj funct
1 4 1
2 5 1
[ angles ]
;o oai aj ak funct par_A
1 2 3 2 ga_11
2 3 4 2 ga_1l4
3 4 5 2 ga_1l4
[ dihedrals ]
; ail aj ak al funct
1 2 3 4 1

0.398 1.008 CH3
-0.548 15.9994 CH2
0.150 14.027 CH2
0.000 14.027
0.000 15.035
par_B
ga_1l4
ga_1l4
ga_1l4
par_A par_B
gd_12 gd_17

15.035
14.027
14.027
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2 3 4 5 1 gd_17 gd_17

[ system ]
; Name
Propanol to Pentane

[ molecules ]
; Compound #mols
PropPent 200

Atoms that are not perturbed, PC2 and PC3, do not need B-state parameter specifications, since the
B parameters will be copied from the A parameters. Bonded interactions between atoms that are
not perturbed do not need B parameter specifications, as is the case for the last bond in the example
topology. Topologies using the OPLS/AA force field need no bonded parameters at all, since both
the A and B parameters are determined by the atom types. Non-bonded interactions involving one
or two perturbed atoms use the free-energy perturbation functional forms. Non-bonded interac-
tions between two non-perturbed atoms use the normal functional forms. This means that when,
for instance, only the charge of a particle is perturbed, its Lennard-Jones interactions will also be
affected when lambda is not equal to zero or one.

Note that this topology uses the GROMOS-96 force field, in which the bonded interactions are not
determined by the atom types. The bonded interaction strings are converted by the C-preprocessor.
The force field parameter files contain lines like:

#define gb_26 0.1530 7.1500e+06

#define gd_17 0.000 5.86 3

5.7.5 Constraint force

The constraint force between two atoms in one molecule can be calculated with the free energy
perturbation code by adding a constraint between the two atoms, with a different length in the A
and B topology. When the B length is 1 nm longer than the A length and lambda is kept con-
stant at zero, the derivative of the Hamiltonian with respect to lambda is the constraint force. For
constraints between molecules, the pull code can be used, see sec. 6.3. Below is an example for
calculating the constraint force at 0.7 nm between two methanes in water, by combining the two
methanes into one “molecule.” Note that the definition of a “molecule” in GROMACS does not
necessarily correspond to the chemical definition of a molecule. In GROMACS, a “molecule”
can be defined as any group of atoms that one wishes to consider simultaneously. The added con-
straint is of function type 2, which means that it is not used for generating exclusions (see sec. 5.4).

; Include force field parameters
#include "gromos43al.ff/forcefield.itp"

[ moleculetype ]
; Name nrexcl
Methanes 1
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[ atoms ]
; nr type resnr residu atom cgnr charge mass

1 CH4 1 CH4 C1l 1 0 16.043

2 CH4 1 CH4 c2 2 0 16.043
[ constraints ]
;oai aj funct length_A length_B

1 2 2 0.7 1.7

#include "spc.itp"
[ system ]
; Name
Methanes in Water
[ molecules ]
; Compound #mols
Methanes 1
SOL 2002
5.7.6 Coordinate file
Files with the . gro file extension contain a molecular structure in GROMOS-87 format. A sample

piece is included below:

MD of 2 waters, reformat step, PA aug-91
6

1WATER OwWl 1 0.126 1.624 1.679 0.1227 -0.0580 O.
1WATER HW2 2 0.190 1.661 1.747 0.8085 0.3191 -0.
1WATER HW3 3 0.177 1.568 1.613 -0.9045 -2.6469 1.
2WATER OWl 4 1.275 0.053 0.622 0.2519 0.3140 -0.
2WATER HW2 5 1.337 0.002 0.680 -1.0641 -1.1349 O.
2WATER HW3 6 1.326 0.120 0.568 1.9427 -0.8216 -0.
1.82060 1.82060 1.82060

0434
7791
3180
1734
0257
0244

This format is fixed, i.e. all columns are in a fixed position. If you want to read such a file in your
own program without using the GROMACS libraries you can use the following formats:

C-format: "%$51%5s%55s%51%8.3f%8.3f%8.3f%8.4f%8.4f%8.4f"

Or to be more precise, with title efc. it looks like this:

"$s\n", Title
"$5d\n", natoms
for (i1=0; (i<natoms); i++) {
"%5d%55%55%5d%8.3f%8.3f%8.3f%8.4f%8.4f%8.4f\n",
residuenr, residuename, atomname, atomnr, X,vy, z, VX, Vy, VZ

}

"%$10.5£%10.5£%10.5£%10.5£%10.5£%10.5£%10.5£%10.5£%10.5f\n",

box [X] [X],box[Y] [Y],box[Z] [Z],
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box [X] [Y],box[X] [Z2],box[Y] [X],box[Y][Z],box[Z] [X],box[Z][Y]

Fortran format: (i5,2a5,15,3£f8.3,3£8.4)

So confin.gro is the GROMACS coordinate file and is almost the same as the GROMOS-87
file (for GROMOS users: when used with ntx=7). The only difference is the box for which
GROMACS uses a tensor, not a vector.

5.8 Force-field organization

5.8.1 Force-field files

As of GROMACS version 4.5, 18 force fields are available by default. Force fields are detected
by the presence of <name> . £ f directories in the GROMACS /share/top subdirectory and/or
the working directory. The information regarding the location of the force field files is printed by
pdb2gmx so you can easily keep track of which version of a force field is being called, in case you
have made modifications in one location or another. The force fields included with GROMACS
are:

e AMBERO3 force field (Duan et al., J. Comp. Chem. 24, 1999-2012, 2003)

e AMBERY4 force field (Cornell et al., JACS 117, 5179-5197, 1995)

¢ AMBERVY6 force field (Kollman et al., Acc. Chem. Res. 29, 461-469, 1996)

e AMBERY9 force field (Wang et al., J. Comp. Chem. 21, 1049-1074, 2000)

e AMBERY9SB force field (Hornak et al., Proteins 65, 712-725, 2006)

e AMBER99SB-ILDN force field (Lindorff-Larsen et al., Proteins 78, 1950-58, 2010)

e AMBERGS force field (Garcia & Sanbonmatsu, PNAS 99, 2782-2787, 2002)

e CHARMM?27 all-atom force field (with CMAP)

e GROMOS96 43al force field

o GROMOS96 43a2 force field (improved alkane dihedrals)

e GROMOS96 45a3 force field (Schuler JCC 2001 22 1205)

e GROMOS96 53a5 force field (JCC 2004 vol 25 pag 1656)

e GROMOS96 53a6 force field (JCC 2004 vol 25 pag 1656)

e OPLS-AA/L all-atom force field (2001 aminoacid dihedrals)

There are also some additional deprecated force fields listed in the selection from pdb2gmx, but
we do not currently recommend that you use those for new simulations.

A force field is included at the beginning of a topology file with an #include statement followed
by <name>.ff/forcefield. itp. This statement includes the force field file, which, in turn,
may include other force field files. All the force fields are organized in the same way. As an
example, we show the gmx . ff/forcefield.itp file:
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#define _FF_GROMACS
#define _FF_GROMACS1

[ defaults ]
; nbfunc comb-rule gen-pairs fudgelLd fudgeQQ
1 1 no 1.0 1.0

#include "ffnonbonded.itp"
#include "ffbonded.itp"

The first #define can be used in topologies to parse data which is specific for all GROMACS
force fields, the second #de fine is to parse data specific to this force field. The [ defaults ]
section is explained in 5.7.1. The included file f fnonbonded. itp contains all atom types and
non-bonded parameters. The included file f fbonded. itp contains all bonded parameters.

For each force field, there several files which are only used by pdb2gmx. These are: residue
databases (.rtp, see 5.6.1) the hydrogen database (.hdb, see 5.6.4), two termini databases
(.n.tdband .c.tdb, see 5.6.5) and the atom type database (.atp, see 5.2.1), which contains
only the masses. Other optional files are described in sec. 5.6.

5.8.2 Changing force field parameters

If one wants to change the parameters of few bonded interactions in a molecule, this is most easily
accomplished by typing the parameters behind the definition of the bonded interaction directly in
the « . top file under the [ moleculetype ] section (see 5.7.1 for the format and units). If
one wants to change the parameters for all instances of a certain interaction one can change them
in the force-field file or add anew [ ??7?types ] section after including the force field. When
parameters for a certain interaction are defined multiple times, the last definition is used. As of
GROMACS version 3.1.3, a warning is generated when parameters are redefined with a different
value. Changing the Lennard-Jones parameters of an atom type is not recommended, because in
the GROMOS force fields the Lennard-Jones parameters for several combinations of atom types
are not generated according to the standard combination rules. Such combinations (and possibly
others that do follow the combination rules) are defined in the [ nonbond_params ] section,
and changing the Lennard-Jones parameters of an atom type has no effect on these combinations.

5.8.3 Adding atom types

As of GROMACS version 3.1.3, atom types can be added in an extra [ atomtypes ] section
after the the inclusion of the normal force field. After the definition of the new atom type(s), ad-
ditional non-bonded and pair parameters can be defined. In pre-3.1.3 versions of GROMACS, the
new atom types needed to be added in the [ atomtypes ] section of the force field files, be-
cause all non-bonded parameters above the last [ atomtypes ] section would be overwritten
using the standard combination rules.
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5.9 gmx.ff documentation

For backward compatibility we retain here some reference to parameters present in the gmx . £ £
force field. The last 10 atom types were not part of the original GROMOS-87 force field [71], so
if you use them you should refer to one or more of the following papers:

e F was taken from ref. [96],

e CP2 and CP3 from ref. [93] and references cited therein,
e CR5, CR6 and HCR from ref. [113]

e OWT3 from ref. [95]

e SD, OD and CD from ref. [97]

Note that we recommend against using these parameters in new projects since they are not
well-tested.
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6.1 Potential of mean force

A potential of mean force (PMF) is a potential that is obtained by integrating the mean force from
an ensemble of configurations. In GROMACS, there are several different methods to calculate the
mean force. Each method has its limitations, which are listed below.

o pull code: between the centers of mass of molecules or groups of molecules.
o free-energy code with harmonic bonds or constraints: between single atoms.

o free-energy code with position restraints: changing the conformation of a relatively im-
mobile group of atoms.

e pull code in limited cases: between groups of atoms that are part of a larger molecule for
which the bonds are constrained with SHAKE or LINCS. If the pull group if relatively large,
the pull code can be used.

The pull and free-energy code a described in more detail in the following two sections.

Entropic effects

When a distance between two atoms or the centers of mass of two groups is constrained or re-
strained, there will be a purely entropic contribution to the PMF due to the rotation of the two
groups [114]. For a system of two non-interacting masses the potential of mean force is:

Vomy(r) = —(ne — 1)kpT log(r) (6.1)

where n. is the number of dimensions in which the constraint works (i.e. n. = 3 for a normal con-
straint and n. = 1 when only the z-direction is constrained). Whether one needs to correct for this
contribution depends on what the PMF should represent. When one wants to pull a substrate into a
protein, this entropic term indeed contributes to the work to get the substrate into the protein. But
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when calculating a PMF between two solutes in a solvent, for the purpose of simulating without
solvent, the entropic contribution should be removed. Note that this term can be significant; when
at 300K the distance is halved, the contribution is 3.5 kJ mol~!.

6.2 Non-equilibrium pulling

When the distance between two groups is changed continuously, work is applied to the system,
which means that the system is no longer in equilibrium. Although in the limit of very slow pulling
the system is again in equilibrium, for many systems this limit is not reachable within reasonable
computational time. However, one can use the Jarzynski relation [115] to obtain the equilibrium
free-energy difference AG between two distances from many non-equilibrium simulations:

_ —BWap
AGup = —kpTlog <e >A (6.2)
where W 4p is the work performed to force the system along one path from state A to B, the
angular bracket denotes averaging over a canonical ensemble of the initial state A and 5 = 1/kpT.

6.3 The pull code

The pull code applies forces or constraints between the centers of mass of one or more pairs of
groups of atoms. There is one reference group and one more other pull groups. Instead of a ref-
erence group, one can also use absolute reference point in space. The most common situation
consists of a reference group and one pull group. In this case, the two groups are treated equiv-
alently. The distance between a pair of groups can be determined in 1, 2 or 3 dimension, or can
be along a user-defined vector. The reference distance can be constant or can change linearly with
time. Normally all atoms are weighted by their mass, but an additional weighting factor can also
be used.

Three different types of calculation are supported, and in all cases the reference distance can be
constant or linearly changing with time.

1. Umbrella pulling A harmonic potential is applied between the centers of mass of two
groups. Thus, the force is proportional to the displacement.

2. Constraint pulling The distance between the centers of mass of two groups is constrained.
The constraint force can be written to a file. This method uses the SHAKE algorithm but
only needs 1 iteration to be exact if only two groups are constrained.

3. Constant force pulling A constant force is applied between the centers of mass of two
groups. Thus, the potential is linear. In this case there is no reference distance of pull rate.

Definition of the center of mass

In GROMACS, there are three ways to define the center of mass of a group. The standard way
is a “plain” center of mass, possibly with additional weighting factors. With periodic boundary
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spring

Figure 6.1: Schematic picture of pulling a lipid out of a lipid bilayer with umbrella pulling. V.,
is the velocity at which the spring is retracted, Z;;,,;. is the atom to which the spring is attached
and Zping is the location of the spring.

conditions it is no longer possible to uniquely define the center of mass of a group of atoms.
Therefore, a reference atom is used. For determining the center of mass, for all other atoms in the
group, the closest periodic image to the reference atom is used. This uniquely defines the center of
mass. By default, the middle (determined by the order in the topology) atom is used as a reference
atom, but the user can also select any other atom if it would be closer to center of the group.

For a layered system, for instance a lipid bilayer, it may be of interest to calculate the PMF of
a lipid as function of its distance from the whole bilayer. The whole bilayer can be taken as
reference group in that case, but it might also be of interest to define the reaction coordinate for
the PMF more locally. The .mdp option pull_geometry = cylinder does not use all the
atoms of the reference group, but instead dynamically only those within a cylinder with radius
r_1 around the pull vector going through the pull group. This only works for distances defined in
one dimension, and the cylinder is oriented with its long axis along this one dimension. A second
cylinder can be defined with r_ 0, with a linear switch function that weighs the contribution of
atoms between r_ 0 and r_1 with distance. This smooths the effects of atoms moving in and out
of the cylinder (which causes jumps in the pull forces).

For a group of molecules in a periodic system, a plain reference group might not be well-defined.
An example is a water slab that is connected periodically in = and y, but has two liquid-vapor
interfaces along z. In such a setup, water molecules can evaporate from the liquid and they will
move through the vapor, through the periodic boundary, to the other interface. Such a system is
inherently periodic and there is no proper way of defining a “plain” center of mass along z. A
proper solution is to using a cosine shaped weighting profile for all atoms in the reference group.
The profile is a cosine with a single period in the unit cell. Its phase is optimized to give the
maximum sum of weights, including mass weighting. This provides a unique and continuous
reference position that is nearly identical to the plain center of mass position in case all atoms are
all within a half of the unit-cell length. See ref [116] for details.

When relative weights w; are used during the calculations, either by supplying weights in the input
or due to cylinder geometry or due to cosine weighting, the weights need to be scaled to conserve
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Figure 6.2: Comparison of a plain center of mass reference group versus a cylinder reference
group applied to interface systems. C is the reference group. The circles represent the center of
mass of two groups plus the reference group, d. is the reference distance.

momentum:

N N
wh = w; Z w;j mj/ Z wjz m; (6.3)
j=1

=1

where m; is the mass of atom j of the group. The mass of the group, required for calculating the
constraint force, is:

N
M= wim, (6.4)
=1

The definition of the weighted center of mass is:

N
Teom = Zw; m; ri/M (6.5)
i=1

From the centers of mass the AFM, constraint, or umbrella force F,,;, on each group can be
calculated. The force on the center of mass of a group is redistributed to the atoms as follows:

/
wi my;

F=—

Feom (6.6)

Limitations

There is one important limitation: strictly speaking, constraint forces can only be calculated be-
tween groups that are not connected by constraints to the rest of the system. If a group contains
part of a molecule of which the bond lengths are constrained, the pull constraint and LINCS or
SHAKE bond constraint algorithms should be iterated simultaneously. This is not done in GRO-
MACS. This means that for simulations with constraints = all-bonds in the .mdp file
pulling is, strictly speaking, limited to whole molecules or groups of molecules. In some cases this
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limitation can be avoided by using the free energy code, see sec. 6.4. In practice, the errors caused
by not iterating the two constraint algorithms can be negligible when the pull group consists of a
large amount of atoms and/or the the pull force is small. In such cases, the constraint correction
displacement of the pull group is small compared to the bond lengths.

6.4 Calculating a PMF using the free-energy code

The free-energy coupling-parameter approach (see sec. 3.12) provides several ways to calculate
potentials of mean force. A potential of mean force between two atoms can be calculated by
connecting them with a harmonic potential or a constraint. For this purpose there are special
potentials that avoid the generation of extra exclusions, see sec. 5.4. When the position of the
minimum or the constraint length is 1 nm more in state B than in state A, the restraint or constraint
force is given by OH/O\. The distance between the atoms can be changed as a function of A and
time by setting delta-lambda in the .mdp file. The results should be identical (although not
numerically due to the different implementations) to the results of the pull code with umbrella
sampling and constraint pulling. Unlike the pull code, the free energy code can also handle atoms
that are connected by constraints.

Potentials of mean force can also be calculated using position restraints. With position restraints,
atoms can be linked to a position in space with a harmonic potential (see sec. 4.3.1). These
positions can be made a function of the coupling parameter A. The positions for the A and the
B states are supplied to grompp with the —r and —rb options, respectively. One could use this
approach to do targeted MD; note that we do not encourage the use of targeted MD for proteins. A
protein can be forced from one conformation to another by using these conformations as position
restraint coordinates for state A and B. One can then slowly change A from O to 1. The main
drawback of this approach is that the conformational freedom of the protein is severely limited by
the position restraints, independent of the change from state A to B. Also, the protein is forced
from state A to B in an almost straight line, whereas the real pathway might be very different. An
example of a more fruitful application is a solid system or a liquid confined between walls where
one wants to measure the force required to change the separation between the boundaries or walls.
Because the boundaries (or walls) already need to be fixed, the position restraints do not limit the
system in its sampling.

6.5 Removing fastest degrees of freedom

The maximum time step in MD simulations is limited by the smallest oscillation period that can
be found in the simulated system. Bond-stretching vibrations are in their quantum-mechanical
ground state and are therefore better represented by a constraint instead of a harmonic potential.

For the remaining degrees of freedom, the shortest oscillation period (as measured from a simu-
lation) is 13 fs for bond-angle vibrations involving hydrogen atoms. Taking as a guideline that
with a Verlet (leap-frog) integration scheme a minimum of 5 numerical integration steps should be
performed per period of a harmonic oscillation in order to integrate it with reasonable accuracy,
the maximum time step will be about 3 fs. Disregarding these very fast oscillations of period 13 fs,
the next shortest periods are around 20 fs, which will allow a maximum time step of about 4 fs.
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Removing the bond-angle degrees of freedom from hydrogen atoms can best be done by defining
them as virtual interaction-sites instead of normal atoms. Whereas a normal atom is connected
to the molecule with bonds, angles and dihedrals, a virtual site’s position is calculated from the
position of three nearby heavy atoms in a predefined manner (see also sec. 4.7). For the hydrogens
in water and in hydroxyl, sulfhydryl, or amine groups, no degrees of freedom can be removed,
because rotational freedom should be preserved. The only other option available to slow down
these motions is to increase the mass of the hydrogen atoms at the expense of the mass of the
connected heavy atom. This will increase the moment of inertia of the water molecules and the
hydroxyl, sulfhydryl, or amine groups, without affecting the equilibrium properties of the system
and without affecting the dynamical properties too much. These constructions will shortly be
described in sec. 6.5.1 and have previously been described in full detail [117].

Using both virtual sites and modified masses, the next bottleneck is likely to be formed by the
improper dihedrals (which are used to preserve planarity or chirality of molecular groups) and the
peptide dihedrals. The peptide dihedral cannot be changed without affecting the physical behavior
of the protein. The improper dihedrals that preserve planarity mostly deal with aromatic residues.
Bonds, angles, and dihedrals in these residues can also be replaced with somewhat elaborate virtual
site constructions.

All modifications described in this section can be performed using the GROMACS topology build-
ing tool pdb2gmx. Separate options exist to increase hydrogen masses, virtualize all hydrogen
atoms, or also virtualize all aromatic residues. Note that when all hydrogen atoms are virtual-
ized, those inside the aromatic residues will be virtualized as well, i.e. hydrogens in the aromatic
residues are treated differently depending on the treatment of the aromatic residues.

Parameters for the virtual site constructions for the hydrogen atoms are inferred from the force
field parameters (vis. bond lengths and angles) directly by grompp while processing the topology
file. The constructions for the aromatic residues are based on the bond lengths and angles for the
geometry as described in the force fields, but these parameters are hard-coded into pdb2gmx due
to the complex nature of the construction needed for a whole aromatic group.

6.5.1 Hydrogen bond-angle vibrations
Construction of virtual sites

The goal of defining hydrogen atoms as virtual sites is to remove all high-frequency degrees of
freedom from them. In some cases, not all degrees of freedom of a hydrogen atom should be
removed, e.g. in the case of hydroxyl or amine groups the rotational freedom of the hydrogen
atom(s) should be preserved. Care should be taken that no unwanted correlations are introduced
by the construction of virtual sites, e.g. bond-angle vibration between the constructing atoms could
translate into hydrogen bond-length vibration. Additionally, since virtual sites are by definition
massless, in order to preserve total system mass, the mass of each hydrogen atom that is treated as
virtual site should be added to the bonded heavy atom.

Taking into account these considerations, the hydrogen atoms in a protein naturally fall into several
categories, each requiring a different approach (see also Fig. 6.3).

e hydroxyl (-OH) or sulfhydryl (-SH) hydrogen: The only internal degree of freedom in a
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Figure 6.3: The different types of virtual site constructions used for hydrogen atoms. The atoms
used in the construction of the virtual site(s) are depicted as black circles, virtual sites as gray
ones. Hydrogens are smaller than heavy atoms. A: fixed bond angle, note that here the hydrogen
is not a virtual site; B: in the plane of three atoms, with fixed distance; C: in the plane of three
atoms, with fixed angle and distance; D: construction for amine groups (-NHs or -NHJ), see text
for details.

hydroxyl group that can be constrained is the bending of the C-O-H angle. This angle is
fixed by defining an additional bond of appropriate length, see Fig. 6.3A. Doing so removes
the high-frequency angle bending, but leaves the dihedral rotational freedom. The same
goes for a sulfhydryl group. Note that in these cases the hydrogen is not treated as a virtual
site.

e single amine or amide (-NH-) and aromatic hydrogens (-CH-): The position of these hy-
drogens cannot be constructed from a linear combination of bond vectors, because of the
flexibility of the angle between the heavy atoms. Instead, the hydrogen atom is positioned
at a fixed distance from the bonded heavy atom on a line going through the bonded heavy
atom and a point on the line through both second bonded atoms, see Fig. 6.3B.

e planar amine (-NHs) hydrogens: The method used for the single amide hydrogen is not well
suited for planar amine groups, because no suitable two heavy atoms can be found to define
the direction of the hydrogen atoms. Instead, the hydrogen is constructed at a fixed distance
from the nitrogen atom, with a fixed angle to the carbon atom, in the plane defined by one
of the other heavy atoms, see Fig. 6.3C.

e amine group (umbrella -NHy or -NH3 ) hydrogens: Amine hydrogens with rotational free-
dom cannot be constructed as virtual sites from the heavy atoms they are connected to, since
this would result in loss of the rotational freedom of the amine group. To preserve the rota-
tional freedom while removing the hydrogen bond-angle degrees of freedom, two “dummy
masses” are constructed with the same total mass, moment of inertia (for rotation around
the C-N bond) and center of mass as the amine group. These dummy masses have no in-
teraction with any other atom, except for the fact that they are connected to the carbon and
to each other, resulting in a rigid triangle. From these three particles, the positions of the
nitrogen and hydrogen atoms are constructed as linear combinations of the two carbon-mass
vectors and their outer product, resulting in an amine group with rotational freedom intact,
but without other internal degrees of freedom. See Fig. 6.3D.
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His

Figure 6.4: The different types of virtual site constructions used for aromatic residues. The atoms
used in the construction of the virtual site(s) are depicted as black circles, virtual sites as gray ones.
Hydrogens are smaller than heavy atoms. A: phenylalanine; B: tyrosine (note that the hydroxyl
hydrogen is not a virtual site); C: tryptophan; D: histidine.

6.5.2 Out-of-plane vibrations in aromatic groups

The planar arrangements in the side chains of the aromatic residues lends itself perfectly to a
virtual-site construction, giving a perfectly planar group without the inherently unstable con-
straints that are necessary to keep normal atoms in a plane. The basic approach is to define three
atoms or dummy masses with constraints between them to fix the geometry and create the rest of
the atoms as simple virtual sites type (see sec. 4.7) from these three. Each of the aromatic residues
require a different approach:

e Phenylalanine: C., C.1, and C,, are kept as normal atoms, but with each a mass of one
third the total mass of the phenyl group. See Fig. 6.3A.

o Tyrosine: The ring is treated identically to the phenylalanine ring. Additionally, constraints
are defined between C1, Cco, and O,;. The original improper dihedral angles will keep both
triangles (one for the ring and one with O,) in a plane, but due to the larger moments of
inertia this construction will be much more stable. The bond-angle in the hydroxyl group
will be constrained by a constraint between C, and H,,. Note that the hydrogen is not treated
as a virtual site. See Fig. 6.3B.

e Tryptophan: Cg is kept as a normal atom and two dummy masses are created at the center
of mass of each of the rings, each with a mass equal to the total mass of the respective ring
(Cs2 and C,,, are each counted half for each ring). This keeps the overall center of mass and
the moment of inertia almost (but not quite) equal to what it was. See Fig. 6.3C.

e Histidine: CV, C.1 and Ny are kept as normal atoms, but with masses redistributed such
that the center of mass of the ring is preserved. See Fig. 6.3D.

6.6 Viscosity calculation

The shear viscosity is a property of liquids that can be determined easily by experiment. It is useful
for parameterizing a force field because it is a kinetic property, while most other properties which
are used for parameterization are thermodynamic. The viscosity is also an important property,
since it influences the rates of conformational changes of molecules solvated in the liquid.
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The viscosity can be calculated from an equilibrium simulation using an Einstein relation:
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This can be done with g_energy. This method converges very slowly [118], and as such a
nanosecond simulation might not be long enough for an accurate determination of the viscosity.
The result is very dependent on the treatment of the electrostatics. Using a (short) cut-off results
in large noise on the off-diagonal pressure elements, which can increase the calculated viscosity
by an order of magnitude.

GROMACS also has a non-equilibrium method for determining the viscosity [118]. This makes
use of the fact that energy, which is fed into system by external forces, is dissipated through viscous
friction. The generated heat is removed by coupling to a heat bath. For a Newtonian liquid adding
a small force will result in a velocity gradient according to the following equation:

n 0%v,(z
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=0 (6.8)

Here we have applied an acceleration a,(z) in the z-direction, which is a function of the z-
coordinate. In GROMACS the acceleration profile is:

2
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where [, is the height of the box. The generated velocity profile is:
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The viscosity can be calculated from A and V:
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In the simulation V is defined as:
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The generated velocity profile is not coupled to the heat bath. Moreover, the velocity profile is
excluded from the kinetic energy. One would like V' to be as large as possible to get good statistics.
However, the shear rate should not be so high that the system gets too far from equilibrium. The
maximum shear rate occurs where the cosine is zero, the rate being:
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For a simulation with: n = 1073 [kgm~!s™1], p = 103 [kgm™3] and [, = 27 [nm], shyax =
1[psnm~—'] A. This shear rate should be smaller than one over the longest correlation time in
the system. For most liquids, this will be the rotation correlation time, which is around 10 ps. In
this case, A should be smaller than 0.1 [nm ps~2]. When the shear rate is too high, the observed
viscosity will be too low. Because V' is proportional to the square of the box height, the optimal
box is elongated in the z-direction. In general, a simulation length of 100 ps is enough to obtain
an accurate value for the viscosity.

The heat generated by the viscous friction is removed by coupling to a heat bath. Because this
coupling is not instantaneous the real temperature of the liquid will be slightly lower than the
observed temperature. Berendsen derived this temperature shift [28], which can be written in
terms of the shear rate as:

T, = 12 (6.15)

20C, M

where 7 is the coupling time for the Berendsen thermostat and C, is the heat capacity. Using
the values of the example above, 7 = 1078 [s]and C, = 2-103[J kg_1 K11, we get: Ts =
25 [K ps~2]sh2,,.. When we want the shear rate to be smaller than 1/10 [ps~!], T is smaller than

max:*

0.25 [K], which is negligible.

Note that the system has to build up the velocity profile when starting from an equilibrium state.
This build-up time is of the order of the correlation time of the liquid.

Two quantities are written to the energy file, along with their averages and fluctuations: V' and
1/m, as obtained from (6.12).

6.7 Tabulated interaction functions

6.7.1 Cubic splines for potentials

In some of the inner loops of GROMACS, look-up tables are used for computation of potential
and forces. The tables are interpolated using a cubic spline algorithm. There are separate tables
for electrostatic, dispersion, and repulsion interactions, but for the sake of caching performance
these have been combined into a single array. The cubic spline interpolation for z; < z < x;41
looks like this:

Vi(z) = Ag+ Aye+ Ay + Az é® (6.16)

where the table spacing h and fraction € are given by:

h = Ti4+1 — T4 (6.17)
e = (x—a;)/h (6.18)
so that 0 < e < 1. From this, we can calculate the derivative in order to determine the forces:

_dVy(@) de
de dz

—V/(z) = = — (A1 +242¢+3A43€)/h (6.19)

The four coefficients are determined from the four conditions that Vs and —V_ at both ends of each
interval should match the exact potential V' and force — V. This results in the following errors for
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each interval:

h4
“/s - V‘maa: = v 334 + O(h’S) (6.20)
h3
Ve = Vimar = V7ot O(h*) (6.21)
h2
|Vs” - V”|max = v 12 + O(h3) (6.22)

V and V’ are continuous, while V” is the first discontinuous derivative. The number of points per
nanometer is 500 and 2000 for single- and double-precision versions of GROMACS, respectively.
This means that the errors in the potential and force will usually be smaller than the single precision
accuracy.

GROMACS stores Ag, A1, Ao and As. The force routines get a table with these four parameters
and a scaling factor s that is equal to the number of points per nm. (Note that h is s~!). The
algorithm goes a little something like this:

1. Calculate distance vector (7;;) and distance r;;

2. Multiply r;; by s and truncate to an integer value n to get a table index
3. Calculate fractional component (e = sr;; — ng) and €2

4. Do the interpolation to calculate the potential V' and the the scalar force f
5

. Calculate the vector force F' by multiplying f with r;;

Note that table look-up is significantly slower than computation of the most simple Lennard-Jones
and Coulomb interaction. However, it is much faster than the shifted Coulomb function used in
conjunction with the PPPM method. Finally, it is much easier to modify a table for the potential
(and get a graphical representation of it) than to modify the inner loops of the MD program.

6.7.2 User-specified potential functions

You can also use your own potential functions without editing the GROMACS code. The potential
function should be according to the following equation

V(Tij) = %f(TZJ) + Cg g(nj) + Ci2 h(?“ij) (6.23)

where f, g, and h are user defined functions. Note that if g(r) represents a normal dispersion
interaction, g(r) should be < 0. Cg, C;2 and the charges are read from the topology. Also note
that combination rules are only supported for Lennard-Jones and Buckingham, and that your tables
should match the parameters in the binary topology.

When you add the following lines in your . mdp file:

rlist =1.0
coulombtype = User
rcoulomb = 1.0
vdwtype = User

rvdw = 1.0
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mdrun will read a single non-bonded table file, or multiple when energygrp_table is set (see
below). The name of the file(s) can be set with the mdrun option —~table. The table file should
contain seven columns of table look-up data in the order: z, f(x), —f'(x), g(z), —¢'(z), h(z),
—h/(x). The x should run from O to 7. + 1 (the value of table_extension can be changed
in the . mdp file). You can choose the spacing you like; for the standard tables GROMACS uses a
spacing of 0.002 and 0.0005 nm when you run in single and double precision, respectively. In this
context, r. denotes the maximum of the two cut-offs rvdw and rcoulomb (see above). These
variables need not be the same (and need not be 1.0 either). Some functions used for potentials
contain a singularity at z = 0, but since atoms are normally not closer to each other than 0.1 nm,
the function value at x = 0 is not important. Finally, it is also possible to combine a standard
Coulomb with a modified LJ potential (or vice versa). One then specifies e.g. coulombtype =
Cut—-off or coulombtype = PME, combined with vdwtype = User. The table file must
always contain the 7 columns however, and meaningful data (i.e. not zeroes) must be entered in
all columns. A number of pre-built table files can be found in the GMXLIB directory for 6-8, 6-9,
6-10, 6-11, and 6-12 Lennard-Jones potentials combined with a normal Coulomb.

If you want to have different functional forms between different groups of atoms, this can be set
through energy groups. Different tables can be used for non-bonded interactions between different
energy groups pairs through the .mdp option energygrp_table (see sec. 7.3). Atoms that
should interact with a different potential should be put into different energy groups. Between
group pairs which are not listed in energygrp_table, the normal user tables will be used.
This makes it easy to use a different functional form between a few types of atoms.

6.8 Mixed Quantum-Classical simulation techniques

In a molecular mechanics (MM) force field, the influence of electrons is expressed by empirical
parameters that are assigned on the basis of experimental data, or on the basis of results from
high-level quantum chemistry calculations. These are valid for the ground state of a given covalent
structure, and the MM approximation is usually sufficiently accurate for ground-state processes
in which the overall connectivity between the atoms in the system remains unchanged. However,
for processes in which the connectivity does change, such as chemical reactions, or processes that
involve multiple electronic states, such as photochemical conversions, electrons can no longer be
ignored, and a quantum mechanical description is required for at least those parts of the system in
which the reaction takes place.

One approach to the simulation of chemical reactions in solution, or in enzymes, is to use a com-
bination of quantum mechanics (QM) and molecular mechanics (MM). The reacting parts of the
system are treated quantum mechanically, with the remainder being modeled using the force field.
The current version of GROMACS provides interfaces to several popular Quantum Chemistry
packages (MOPAC [119], GAMESS-UK [120], Gaussian [121] and CPMD [122]).

GROMACS interactions between the two subsystems are either handled as described by Field et
al. [123] or within the ONIOM approach by Morokuma and coworkers [124, 125].
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6.8.1 Overview

Two approaches for describing the interactions between the QM and MM subsystems are sup-
ported in this version:

1. Electronic Embedding The electrostatic interactions between the electrons of the QM re-
gion and the MM atoms and between the QM nuclei and the MM atoms are included in the
Hamiltonian for the QM subsystem:

2 N 2
QMMM _ QM _ ZZ Qs ZZ ZaAQy (6.24)
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where n and NV are the number of electrons and nuclei in the QM region, respectively,
and M is the number of charged MM atoms. The first term on the right hand side is the
original electronic Hamiltonian of an isolated QM system. The first of the double sums is
the total electrostatic interaction between the QM electrons and the MM atoms. The total
electrostatic interaction of the QM nuclei with the MM atoms is given by the second double
sum. Bonded interactions between QM and MM atoms are described at the MM level by the
appropriate force field terms. Chemical bonds that connect the two subsystems are capped
by a hydrogen atom to complete the valence of the QM region. The force on this atom,
which is present in the QM region only, is distributed over the two atoms of the bond. The
cap atom is usually referred to as a link atom.

2. ONIOM In the ONIOM approach, the energy and gradients are first evaluated for the iso-
lated QM subsystem at the desired level of ab initio theory. Subsequently, the energy and
gradients of the total system, including the QM region, are computed using the molecular
mechanics force field and added to the energy and gradients calculated for the isolated QM
subsystem. Finally, in order to correct for counting the interactions inside the QM region
twice, a molecular mechanics calculation is performed on the isolated QM subsystem and
the energy and gradients are subtracted. This leads to the following expression for the total
QM/MM energy (and gradients likewise):

Epor = EPM + EMYM _ pMM (6.25)

where the subscripts I and II refer to the QM and MM subsystems, respectively. The su-
perscripts indicate at what level of theory the energies are computed. The ONIOM scheme
has the advantage that it is not restricted to a two-layer QM/MM description, but can easily
handle more than two layers, with each layer described at a different level of theory.

6.8.2 Usage
To make use of the QM/MM functionality in GROMACS, one needs to:
1. introduce link atoms at the QM/MM boundary, if needed;

2. specify which atoms are to be treated at a QM level;

3. specify the QM level, basis set, type of QM/MM interface and so on.
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Adding link atoms

At the bond that connects the QM and MM subsystems, a link atoms is introduced. In GROMACS
the link atom has special atomtype, called LA. This atomtype is treated as a hydrogen atom in the
QM calculation, and as a virtual site in the force field calculation. The link atoms, if any, are part
of the system, but have no interaction with any other atom, except that the QM force working on
it is distributed over the two atoms of the bond. In the topology, the link atom (LA), therefore, is
defined as a virtual site atom:

[ virtual_sites2 ]
LA QMatom MMatom 1 0.65

See sec. 5.2.2 for more details on how virtual sites are treated. The link atom is replaced at every
step of the simulation.

In addition, the bond itself is replaced by a constraint:

[ constraints ]
QOMatom MMatom 2 0.153

Note that, because in our system the QM/MM bond is a carbon-carbon bond (0.153 nm), we use
a constraint length of 0.153 nm, and dummy position of 0.65. The latter is the ratio between the
ideal C-H bond length and the ideal C-C bond length. With this ratio, the link atom is always
0.1 nm away from the OMat om, consistent with the carbon-hydrogen bond length. If the QM and
MM subsystems are connected by a different kind of bond, a different constraint and a different
dummy position, appropriate for that bond type, are required.

Specifying the QM atoms

Atoms that should be treated at a QM level of theory, including the link atoms, are added to the
index file. In addition, the chemical bonds between the atoms in the QM region are to be defined
as connect bonds (bond type 5) in the topology file:

[ bonds ]
QOMatoml QMatom2 5
QMatom2 QMatom3 5

Specifying the QM/MM simulation parameters

In the . mdp file, the following parameters control a QM/MM simulation.

OMMM = no
If this is set to yes, a QM/MM simulation is requested. Several groups of atoms can be
described at different QM levels separately. These are specified in the QMMM-grps field
separated by spaces. The level of ab initio theory at which the groups are described is
specified by OMmethod and QMbasis Fields. Describing the groups at different levels of
theory is only possible with the ONIOM QM/MM scheme, specified by QMMMscheme.
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OMMM-grps =
groups to be described at the QM level

OMMMscheme = normal

Options are normal and ONIOM. This selects the QM/MM interface. normal implies
that the QM subsystem is electronically embedded in the MM subsystem. There can only
be one QMMM—-grps that is modeled at the QMmethod and QMbasis level of ab initio
theory. The rest of the system is described at the MM level. The QM and MM subsystems
interact as follows: MM point charges are included in the QM one-electron Hamiltonian
and all Lennard-Jones interactions are described at the MM level. If ONIOM is selected, the
interaction between the subsystem is described using the ONIOM method by Morokuma
and co-workers. There can be more than one QMMM-grps each modeled at a different level
of QM theory (QMmethod and QMbasis).

OMmethod =
Method used to compute the energy and gradients on the QM atoms. Available meth-
ods are AM1, PM3, RHF, UHF, DFT, B3LYP, MP2, CASSCF, MMVB and CPMD. For
CASSCEF, the number of electrons and orbitals included in the active space is specified by
CASelectrons and CASorbitals. For CPMD, the plane-wave cut-off is specified by
the planewavecutof f keyword.

OMbasis =
Gaussian basis set used to expand the electronic wave-function. Only Gaussian basis sets
are currently available, i.e. STO-3G, 3-21G, 3-21G*, 3-21+G*, 6-21G, 6-31G, 6-31G*,
6-31+G*, and 6-311G. For CPMD, which uses plane wave expansion rather than atom-
centered basis functions, the planewavecutoff keyword controls the plane wave ex-
pansion.

QMcharge =
The total charge in e of the QMMM~-grps. In case there are more than one QMMM-grps, the
total charge of each ONIOM layer needs to be specified separately.

OMmult =
The multiplicity of the QMMM—grps. In case there are more than one QMMM~-grps, the
multiplicity of each ONIOM layer needs to be specified separately.

CASorbitals =
The number of orbitals to be included in the active space when doing a CASSCF computa-
tion.

CASelectrons =
The number of electrons to be included in the active space when doing a CASSCF compu-
tation.

SH = no
If this is set to yes, a QM/MM MD simulation on the excited state-potential energy surface
and enforce a diabatic hop to the ground-state when the system hits the conical intersection
hyperline in the course the simulation. This option only works in combination with the
CASSCF method.
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6.8.3 Output

The energies and gradients computed in the QM calculation are added to those computed by GRO-
MACS. In the . edr file there is a section for the total QM energy.

6.8.4 Future developments

Several features are currently under development to increase the accuracy of the QM/MM inter-
face. One useful feature is the use of delocalized MM charges in the QM computations. The most
important benefit of using such smeared-out charges is that the Coulombic potential has a finite
value at interatomic distances. In the point charge representation, the partially-charged MM atoms
close to the QM region tend to “over-polarize” the QM system, which leads to artifacts in the
calculation.

What is needed as well is a transition state optimizer.

6.9 GROMACS on GPUs

GROMACS 4.5 provides support for GPU acceleration through the OpenMM library. Although
limited in functionality compared to the CPU algorithms of standard GROMACS, GROMACS-
GPU gives a preview of GPU-accelerated MD which we expect to be an important direction in the
future. The following should be noted before using the accelerated mdrun—gpu:

e The current release runs only on modern, CUDA compatible NVIDIA GPU hardware (for
details see ??. Make sure that the necessary CUDA drivers and libraries for your operating
system are already installed.

e Only single-GPU simulations are supported.

e Only a relatively small subset of the GROMACS features and options are supported with
the current OpenMM-based implementation. See section ?? for a detailed list.

e Consumer-level GPU cards are known to often have problems with faulty memory. It is
strongly recommended that a full memory check of the cards is done at least once (using
option memtest=full). A partial memory check (using option memtest=15) before
and after the simulation run would help spot problems resulting from overheating of the
graphics card.

e The maximum size of the simulated systems depends on the GPU used. With high-end
cards, like GeForce GTX 480 or Tesla 2050, systems of size up to 200.000 atoms have been
successfully simulated.

e In order to take a full advantage of the GPU platform features, many algorithms have been
implemented in a very different way than they are on the CPUs. Therefore, numerical corre-
spondence between some properties of the system’s state should not be expected. Moreover,
the values will likely vary when simulations are done on different hardware. However, suf-
ficiently long trajectories should produce comparable statistical averages.
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e Frequent retrieval of system state information such as trajectory coordinates and energies
can greatly influence the performance of the program due the overhead of CPU«~—GPU com-
munication.

e MBD algorithms are complex and often do not translate very well onto streaming architec-
tures. Realistic expectations about the achievable speed-up from tests with a GeForce 400
series card: for small protein systems in implicit solvent using all-vs-all kernels the speedup
can be up to 10-15x, but in most other setups involving cutoffs and PME, performance is
close to the one on a modern 4 core CPU (e.g. Intel Core 17-930).

6.9.1 Supported features

e Integrators: md/md-vv/md-vv-avek, sd/sdl and bd.
OpenMM implements only the velocity-Verlet algorithm for MD simulations. The option
md is accepted, but keep in mind that the actual algorithm is not leap-frog. Thus all three
options md, md-vv, and md-vv-avek are equivalent. Similarly, sd and sd1 are equiva-
lent.

e Long-range interactions: Reaction-Field, Ewald, PME, No-cutoff Cut-off.

— for No-cutoff, set rcoulomb=0 and rvdw=0.
— for Ewald summation only 3D geometry is supported, and dipole correction is not.

— the Cut-off method is supported only for implicit solvent simulations.

e Temperature control: Supported only with the sd/sd1, bd, md/md-vv/md-vv-avek
integrators. OpenMM implements only the Andersen thermostat. All values for tcoupl
are thus accepted and equivalent to andersen. Multiple temperature coupling groups are
not supported, only t c-grps=System will work.

e Force fields: Supported FF are Amber, CHARMM. GROMOS and OPLS-AA are not sup-
ported.

— CMAP dihedrals in CHARMM are not supported, so use the —nocmap option with
pdb2gmx.

o Implicit solvent: Supported only with Reaction-Field electrostatics. The only sup-
ported algorithm for GB is OBC, and the default GROMACS values for the scale fators are
hard coded in OpenMM, i.e. obc_alpha=1, obc_beta=0.8 and obc_gamma=4.85
and therefore can not be changed.

e Constraints: Constraints in OpenMM are done by a combination of SHAKE, SETTLE and
CCMA. Accuracy is based on the SHAKE tolerance as set by the shake_tol option.

e Periodic Boundary Conditions: Only pbc=xyz and pbc=no in rectangular cells (boxes)
are supported.

e Pressure control: OpenMM implements the Monte Carlo barostat. All values for pcoupl
are thus accepted.
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e Simulated annealing: Not supported.
e Pulling: Not supported.

e Restraints: Distance, orientation, angle and dihedral restraints are not supported in the
current implementation.

e Free energy calculations: Not supported in the current implementation.
e Walls: Not supported.
e Non-equilibrium MD: Option acc_grps is not supported.

e Electric Fields: Not supported.

QMMM: Not supported.

6.9.2 Installing and running GROMACS-GPU

GROMACS-GPU can be installed either from the officially distributed binary or source packages.
We provide pre-compiled binaries built for and tested on the most common Linux, Windows,
and Mac OS operating systems (for details see the GROMACS-GPU download page). Using the
binary distribution is highly recommended and it should work in most of the cases. Below we
summarize how to get the GPU accelerated mdrun—-gpu work.

Prerequisites

The current GROMACS-GPU release uses OpenMM acceleration, the necessary libraries and
plug-ins are included in the binary packages.

Both the OpenMM library and GROMACS-GPU require version 3.1 of the CUDA libraries and
compatible NVIDIA driver (i.e. version > 256).

Last but not least, to run GPU accelerated simulations, a CUDA-enabled graphics card is neces-
sary. Molecular dynamics algorithms are very demanding and unlike in other application areas,
only high-end graphics cards are capable of providing performance comparable to or higher then
modern CPUs. For this reason, mdrun—gpu is compatible with only a subset of more performant
CUDA-enabled GPUs (for detailed list see section ??) and by default it does not run if it detects
incompatible hardware.

For details about compatibility of NVIDIA drivers with harthe CUDA library and GPUs consult
the NVIDIA developer page.

Summary of prerequisites:

e OpenMM v2.0

NVIDIA CUDA libraries v3.1

NVIDIA drivers >v256
NVIDIA CUDA-enabled GPU
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Installing

1. Download and unpack the binary package for the respective OS and architecture. Copy the
content of the package to your normal GROMACS installation directory (or to a custom
location).

Note that the distributed GROMACS-GPU packages do not contain the entire set of tools
and utilities included in a full GROMACS installation. Therefore, it is recommended to
have a >v4.5 standard GROMACS installation along the GPU accelerated one.

2. Add the openmm/11ib directory to your library path, e.g. in bash:
export LD_LIBRARARY_PATH=path_to_gromacs/openmm/lib:S$LD_LIBRARY_PATH
If there are other OpenMM versions installed, make sure that the supplied libraries have
preference when running mdrun-gpu. Also, make sure that the CUDA libraries installed
match the version of CUDA that was used for compilation of GROMACS-GPU.

3. Set the OPENMM_PLUGIN_DIR environment variable to contain the path to the
openmm/1lib/plugins directory, e.g. in bash:
export OPENMM_PLUGIN_DIR=path_to_gromacs/openmm/lib/plugins

4. At this point, running the command path_to_gromacs/bin/mdrun—-gpu -h should
display the standard mdrun—-gpu help which means that the binary runs and all the neces-
sary libraries are accessible.

Compiling mdrun-gpu

The GPU accelerated mdrun can be compiled on Linux, Mac OS and Windows operating sys-
tems, both for 32- and 64-bit. Besides the prerequisites discussed above, in order to compile
mdrun-gpu the following additional software is required:

e CMake version >2.6.4
e CUDA-compatible compiler:
