
Replica exchange molecular dynamics

Advanced molecular dynamics course, KTH

Dr Mark Abraham (mjab@kth.se)

Ion channels

Protein folding

Markov state models

Sampling is often frustrated

I many different motions (bonds, angles, side chains, secondary
structure deformation)

I different motions have different time scales
I difficult to parameterize a model that gets it all right
I more difficult to sample from it afterwards

Barriers in MD

Frustration from barriers

I barriers of more than a few kT exist, and are hard to cross
I need extremely large amount of brute-force sampling to get

over them
I makes solving problems like protein folding exceedingly

computationally expensive

Ways to grapple with the problem

I give up on the fine detail, and use a coarse-graining approach
I accelerate the sampling (work smarter! Today’s topic)
I throw more hardware at it (e.g. Folding@Home)
I write faster software (hard, very hard; tomorrows’s topic)

Accelerating the sampling

I if the problem is that kT is too small. . .

1. increase T
2. sample widely
3. . . .
4. profit!

I unless the landscape changes. . . . (gulp)

Landscapes change with temperature

Simulated tempering

I a Monte Carlo approach to permit system to move in the space
of a “control parameter”

I typically that is temperature
I only collect data when the system returns to the parameter

value of interest
I this is correct if the (Metropolis) exchange criterion is correctly

constructed

For a state s,

P((β, s)→ (β′, s)) = min(1, w(β′, s)
w(β, s))

where β = 1
kT and w(β, s) = exp[−βU(s) + g(β)]

Simulated tempering (2)

I correct if the exchange criterion is constructed correctly
I the optimal g(β) is the free energy. . .
I so you’re good if you already know the relative likelihood of

each conformation at each temperature. . .
I works great if you already know the answer to a harder problem

than the original
I (but you can use an iterative scheme to converge on the

answer)

Parallel tempering (a.k.a. replica exchange)

I side-steps the prior-knowledge problem by running an
independent copy of the simulation at each control parameter

I (note, throwing more hardware at the problem!)
I now the exchange is between copies at different control

parameters, each of which is known to be sampled from a
correct ensemble already

I this eliminates g(β) from the generalized exchange criterion. . .

Parallel tempering

Rescaling the momenta

I when proposing an exchange, can do anything to any
coordinate

I accept exchange only when detailed balance is preserved
I it is convenient for the average KE after exchanges to be

consistent with the target ensemble
I so rescale the momenta as

pnew
i =

√
T old

T new pold
i

Parallel tempering - the exchange criterion

P((β, s)↔ (β′, s ′)) = min(1, w(β, s ′)w(β′, s)
w(β, s)w(β′s ′))

For Boltzmann weights, this reduces to

P((β, s)↔ (β′, s ′)) = min(1, exp[(β′ − β)(U(s ′)− U(s))])

Parallel tempering - understanding the exchanges

Is this real?

I recall that P(β, s) ∝ exp[−βU(s)]
I any scheme that satisfies detailed balance forms a Markov

chain whose stationary distribution is the target (generalized)
ensemble

I so we require only that
P(β, s)P((β, s)→ (β′, s)) = P(β′, s ′)P((β′, s ′)→ (β, s ′))

I which is what was constructed!
I However, dynamical information is lost when exchanges happen

Might this work?

I high-temperature replicas hopefully can cross barriers
I if the conformations they sample are representative of

lower-temperature behaviour, then they will be able to
exchange down

I if not, they won’t

Ensembles commonly used

I natural to use the NVT ensemble with an increasing range of T
and constant V

I there’s a hidden catch - must rescale the velocities to suit the
new ensemble in order to construct the above exchange
criterion

I probably this should use a velocity-Verlet integrator (x and v
at same time)

I in principle, can use other ensembles like NPT

Ensembles commonly used

I NVT at constant volume must increase P with T
I that seems unphysical
I worse, the force fields are parameterized for a fixed temperature
I but the method doesn’t require that the ensembles correspond

to physical ones
I merely need overlap of energy distribution
I how much overlap determines the probability of accepting an

exchange

Problems with replica exchange

I molecular simulations typically need lots of water
I thus lots of degrees of freedom
I energy of the system grows linearly with system size
I width of energy distributions grow as

√
size

I need either more replicas or accept lower overlap

Unphysics is liberating

I if there’s no need to be physical, then may as well be explicit
about it

I large number of proposed schemes

Example: resolution exchange

I run replicas at different scales of coarse graining
I at exchange attempts, not only rescale velocities, but

reconstruct the coordinates at higher/lower grain level

Hamiltonian replica exchange

I T isn’t the only possible control parameter
I could gradually turn on a restraint or biasing potential
I control parameters can be multi-dimensional, e.g. in a

free-energy calculation, could change both alchemical
transformation parameter λ and T

Replica exchange with solute tempering (REST)

I selectively “heat” only a small region of the system
I modify the parameters to scale the energy, rather than heating

(recall that P(β, s) ∝ exp[−βU(s)])
I advantage that the energy distribution of only part of the

system increases over control parameter space
I needs many fewer replicas for given control parameter space
I implemented in many MD packages, including GROMACS, by

PLUMED plugin (https://www.plumed.org/)

Choices in molecular dynamics studies

I Solvation model
I Resolution of model physics
I Force field
I Statistical ensemble to sample
I Starting condition(s)
I Simulation time step
I Observables
I Data collection rate

Additional choices in replica exchange studies

I Which control parameter? (T , λ)
I At which control parameters to collect data
I Range of control parameter space
I Number of replicas
I Spacing of replicas
I Exchange probability
I Exchange attempt interval

Shameless plug: https://dx.doi.org/10.1021/ct800016r

https://dx.doi.org/10.1021/ct800016r

Average Exchange probability

Recall

P((β, s)↔ (β′, s ′)) = min(1, exp[(β′ − β)(U(s ′)− U(s))])

So

Pave((β, s)↔ (β′, s ′)) =
∫ ∫

min(1, exp[(β′−β)(U(s ′)−U(s))]) dU1 dU2

Generally, you want replicas whose temperatures increase roughly
exponentially

Web server for helping choose T for REMD

http://folding.bmc.uu.se/remd/index.php

Based on https://dx.doi.org/10.1039/B716554D

http://folding.bmc.uu.se/remd/index.php
https://dx.doi.org/10.1039/B716554D

Interval between exchange attempts

I Ideally, after MD step, attempt exchange
I Doesn’t really matter if the exchange probability is low, you’ll

get some exchanges
I Does this spamming help?

Interval between exchange attempts

I observables like potential energy have autocorrelation times
I for e.g. protein in water, it’s about 1 ps
I if you exchange more frequently than that, you get back

exchanges https://dx.doi.org/10.1063/1.2404954
I so either estimate or measure the autocorrelation time, and

exchange that often

https://dx.doi.org/10.1063/1.2404954

Practical replica exchange in GROMACS

I uses the multi-simulation feature
I need enough resources for each simulation on its own
I best to put each simulation in a unique directory, using the

multidir feature
I equilibrate there
I choose the number of simulation steps between exchange

attempts on the command line
I use the most recent versions of GROMACS for minimal

communication between simulations

De-multiplexing

I some MD packages write a continuous trajectory of each
simulation system

I others (including GROMACS) write a continuous ensemble
I demux.pl script in the GROMACS installation will convert the

trajectory files between the two, based on the exchange
information in the log file

Questions?

Tutorial

Get tarball of materials, e.g.

wget ftp://ftp.gromacs.org/contrib/remd-tutorial.tgz

Open the tutorial.pdf file for more information.

Build MPI-enabled GROMACS. Get e.g. openmpi or mpich2
packages for your distro. Then configure GROMACS as normal, but
add the following flag to the CMake line:

cmake −DGMX_MPI=on

